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Abstract   A 2D finite element model for the solution of wave equations is developed. The fluid is 
considered as incompressible and irrotational. This is a difficult mathematical problem to solve 
numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s 
equation) on the free surface is not fixed and varies with time. The finite element technique is applied 
to solve nonlinear wave equations. The finite element model includes the conventional method based 
on a variational principle. This model minimizes the relevant function of the problem. After 
calculating two independent variables (i.e. φ  and η ) the pressure, forces and moments acting on sea-
walls can be computed. These values are compared with existing experimental and theoretical 
outputs. The standing wave behavior is well described by the model, e.g. we can get the envelope of 
breaking waves in curve designs, which are developed for non-breaking waves. Also we can estimate 
the effective depth of a certain wave. Therefore the model can be used to propose some design curves. 
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سيال بصورت . وج ارائه شده استدر اين مقاله يک مدل دوبعدي اجزای محدود براي حل معادلات مچكيده       

حل اين مساله بدليل وجود شرايط مرزي ديناميکي . غيرقابل تراکم و غيرچرخشي در نظر گرفته شده است
در سطح آزاد، مشکل است زيرا اين يک شرط غير خطي بوده و مکان سطح آزاد در ابتدا ) معادله برنولي(

. ي حل معادلات غير خطي موج بکار گرفته شده استدر اين تحقيق، روش المان محدود برا. مشخص نيست
، η و φدو متغير مستقل بدست آوردن بعد از . باشد روش المان محدود استفاده شده بر پايه اصول تغييراتي مي

ر ادامه، مقادير محاسبه شده با د. دشون محاسبه مينيروهاي فشاري و لنگرهاي خمشي ايجاد شده بر روي ديواره 
نتايج نشان دهنده قابليت مدل در مدل سازي . نتايج آزمايشگاهي و نيز نتايج تحقيقات نظری مقايسه شده اند

توان پوش امواج شکسته شده را در منحني هاي مربوط به امواج  باشد، بطوريکه مي رفتار امواج ايستاده مي
همچنين مدل قادر به ارائه . عمق اثر يک موج مشخص را تعيين نمودتوان  شکسته نشده رسم کرد و يا مي

 .باشد منحني هاي طراحي مي
 
 

1. INTRODUCTION 
 
One of the main problems in the analysis of wave 
effects on marine structures is to approximate the 
forces acting on sea-walls. Unfortunately, there is 
no explicit formula for calculating these forces and 
their momentums. 
     A good understanding of the behavior of an off-

shore structure depends on a good understanding 
of the surrounding wave fields and relevant forces. 
In other words, the main step in loading such 
structures is to solve the wave field around them. 
     The literature review on this subject suggests 
that a number of wave crests are parallel to the 
wall so that the reflection effect can be ignored [1]. 
     Therefore, it will be enough to analyze only the 
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effect of a standing wave on the wall. It is 
supposed that the maximum pressure load on the 
wall occurs in such case; however this has been 
shown that the ultimate pressure belongs to the 
waves that strikes the wall obliquely and then 
reflects back. 
     One of the most important problems in fluid 
mechanics is the analysis of nonlinear behavior of 
a fluid with a free surface. Evidently, such 
problems are numerically-analytically 
troublesome. This difficulty is caused by dynamic 
boundary condition (Bernoulli equation) at free-
surface, where the location of free surfaces is time 
dependent and may or may not be initially 
determined. 
     Although several investigations are conducted 
with this theory never the less, there are many 
problems left for the future. In this paper a finite 
element model is developed to solve the wave 
equations near seawalls. This includes the 
conventional methods based on variational 
principles. 
 
 
 

2. GOVERNING EQUATIONS AND 
BOUNNDARY CONDITIONS 

 
Assuming the flow is incompressible and 
irrotational, the Laplace equation defines the 
problem over the flow domain: 
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Where X and Y are horizontal and vertical 
coordinate, h is the mean water level and )t,x(η  
states the location of free surface above the still 
water level. Equation 2 sets the horizontal velocity 
component to be zero at bottom. Equations 3 and 4 
state the kinematic and dynamic boundary 
conditions at free surface, respectively. Equation 3 
also indicates that the fluid particles just in contact 
with free surface will remain in contact with it. The 
dynamic boundary condition states the iso-pressure 
free surface (which is set to be zero in Bernoulli 
equation). This equation stands where the surface 
tension is neglected. The velocities at vertical 
boundaries are set to be zero in Equation 5. 
     Now what is left is to find the potential function 
φ  and to compute the desired forces and moments. 
Figure 1 shows the geometry, the boundary 
conditions and also the direction of the wave. 
 
2.1. Literature Review of Existing Methods   
The problem of a standing wave with zero contact 
angle is analyzed by Tadjbaksh, et al [2]. Goda [3] 
has analyzed the same problem using fourth order 
approximation. He studied the pressure of standing 
waves in more details. Sainflous, et al [4] found 
that in the case of high amplitude waves where the 
water is deep enough, for most cases the maximum 
pressure occurs near the wave crest, not just at 
maximum. 
     Tsuchiya, et al [5] made a comparison between 
various analytical methods and experimental data 
and observed that the first and second order 
theories stand over limited ranges while the third 
and fourth order theories agree with a large domain 
of experiments. 
     Nagai [1] made a comparison between 
experimental data and irrational theories and 

 
 
 

 
Figure 1. General form of the wave on the seawall. 
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developed relations for maximum applicable 
pressure. In case of inclining reflected waves, the 
intersecting waves are a kind of short-crested 
waves in which the top view of intersections has 
regularly, repeated diamond-like appearance. 
     The common theoretical method for the solution 
of short-crested waves is the Stokes theory, which is 
applicable for deep waters. Hsu, et al [6], developed 
the third order method. Roberts [7] and Roberts, et 
al [8] studied the problems in more details. Using 
Fourier expansion they developed numerical 
approximation to higher orders. 
     While the forces and the moments are matters of 
interest, none of the above mentioned papers had 
studied the parameters of the force. Battjes [9] 
developed expressions based on the linear theory for 
intersecting short- crested waves. Clark [10] solved 
the three dimensional wave problems for off-shore 
structures using frequency domain method. In the 
same year, Liao [11] developed the solitary wave 
equations using finite process method. Cao [12] 
studied the solitary waves generated by ship motion. 
Cao, et al [13] analyzed the solitary waves 
generated by submarines and moving objects. 
Johnson [14] simulated the impact of wave on solid 
boundaries. Takikawa [15] used the model 
developed by Washisu to study the wave effect on 
floating bodies. 
 
2.2. Finite Element Model   This model was 
first used by Washizu [16] for slashing problem in 
wave tanks. The model used the variational 
technique to minimize the relevant function of the 
problem. 
     This kind of problem can be defined by the 
following equation: 
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In which jG  and jg  are the specific function that 

can be integrated. The Equation 6 can be changed 
in the form: 
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In which Ω is the domain element and Г is the 
boundary. 

For the application of finite element method to 
solve this kind of problem, first the variational 
method is used in the following equation: 
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In which u is the unknown function, E and F are 
specific operators. 
     Luck [17] has stated this variational principle as 
below: 
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In which φ  and η  are independent variables of 
variational expression. Note that the fluid volume 

V acts as a function of η . Also 
t∂
φ∂  and 

t∂
η∂  are 

assumed to be constant during the time increment 
∆; so their first order variations are neglected in 
each element as shown in Figure 2, the parameter 
φ  is specified as a linear function of x and y: 
 

cybxa ++=φ  (14) 
 
The function η  on the boundary is defined as a 
 
 
 

 
Figure 2. The finite-element mesh for the problem. 
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product of isoperimetric functions as below: 
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After each time increment, the unknown values of 
the problem are considered to have the form of: 
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Where 0φ  and 0η  are the values obtained in 
previous step. Considering Figure 3 and regarding 
back to Equation 14, for the time 0t  it can be 
written that: 
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After each tie increment, the area of the triangle 

kpjpip  is: 
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Where ηΔ  represents the vector of unknowns and 

0Δ  and P contains the known values of pervious 
step: 
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Now, substituting each of variables in the 
variational expression, leads to: 
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Figure 3. The element in contact with upper boundary. 
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Also Equation 11 can be computed as bellow: 
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Where l represents the horizontal length of the 
element on the boundary S1, for example 

kxixl −=  in Figure 4. Since the isoperimetric 
functions are used for all variables over the 
boundary, for the variational term I3 it can be 
shown that: 
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Also the parameters 
t∂
η∂  and φ  over the boundary 

may be shown as: 
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Finally, the variational expression has the form of: 
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Having φΔ  and ηΔ  and the variables, the variation 
of above expression with respect to the variables 
gives: 
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Figure 4. Variation of η with respect to x. 
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In which I indicates the unique matrix. Now 
Equation 45 leaves a system of linear equations 
which are really the stability conditions for x with 
respect to φΔ  and ηΔ , i.e. 
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Replacing these equations in 45 and satisfying the 
stability conditions 46 and 47, leads to: 
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In which: 
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Solving Equation 51 and replacing φΔ  and ηΔ  in 
17, the values of φ  and η  can be obtained for that 
time step. The same Procedure may be repeated for 
achieving the dynamic response of the fluid. 
 
2.3. Initial Values   The statement 52 includes 

 
 
 

 
 

Figure 5. The situation of open boundary. 
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the initial values of 0)
t

(,0,0 ∂
φ∂

ηφ  and 0)t
(
∂
η∂ . To 

define the initial values for the program, it is 
assumed that the wave comes near the wall as 
shown in Figure 5. It is assumed that at the spacing 
b from the wall, the disturbance caused by the 
wave is eliminated and the wave has a fixed shape. 
Therefore it can be assumed that in each time step 
the values of φ  and η  over the boundary 4S  are 
constant φΔ  and ηΔ  are zero. 
     At the first step of program execution, the 
values of 0φ  and 0η  are considered to be zero, 
except for the boundary S4, on which the above 
variables are constant for each time step. To 
evaluate these values, the specifications of a short-
crested wave are considered. As it is shown in 
Figure 5, just at the beginning of execution, 0φ  
and 0η  have the values of: 
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=
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φ  (57) 

 

t0ttat

..

t0t
n

..
t0t

0 Δ+=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧
Δ+

η=
Δ+

η  (58) 

 
Where dots indicate nonzero values. 
     Specifying the values of 0φ  and 0η  for each 

time step, the relevant values of 0)t
(
∂
φ∂  and 0)t

(
∂
η∂  

may be simply extracted from dynamic/kinematic 
boundary conditions. Considering the Bernoulli 
equation we have: 
 

gy2)
y

(2)
x

(
2
1

t
−⎥

⎦

⎤
⎢
⎣

⎡
∂
φ∂

+
∂
φ∂−

=
∂
φ∂  (59) 
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t

(

η−

⎥
⎥
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⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

φφ+φφ
−

=
∂
φ∂

444 8444 76444 8444 76  

 (60) 
 
In which: 
 

element00,element00 η=ηφ=φ  
 
Applying the kinematic boundary condition 
together with Figure 4, it can be concluded that: 
 

K
TE

ji
x

=
η−η

=
∂
η∂  (61) 

 
Therefore for each boundary piece: 
 

constcbK0)x
( =−=
∂
η∂  (62) 
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Also as it was mentioned, φΔ  and ηΔ  give zero 
values over that boundary. To employ this 
condition, the program considers some zero 
elements in {∆u} and in the force vector. On the 
other hand, in the matrix [K], the relevant values 
for the nodes locating on the boundary are initially 
set to zero, then the diagonal elements give the 
value of unity. 
 
 
 

3. ITERATION PROCESS 
 
Figure 6 shows the process of iterations. The 
superscripts indicate that the relevant values belong 
to the boundary S4. 

     Specifying {uo} = 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

η

φ

0

0 , the stiffness matrix 

and the force vector can be computed using 52, 
after which {u1} may be computed with {uo}. 
Owen, et al [18] have shown that the solution 
converges when the following condition is 
satisfied: 
 

RCON100
N

1i
2)

)1(i
u(

N

1i
2)

)r(i
u(

N

1i
2)

)1r(i
u(

≤×

∑
=

∑
=

∑
=

−
−  

 (63) 
 
In application, the parameter RCON usually gives 
the values of unity. After the solution converge for 
a certain time step, the program considers {ur}, 

which is the solution of that step, as the initial 
value for the next step. 
 
3.1. Forces and Moments   After the velocity 
potentials are computed for nodal points, the 
pressure may be computed for the nodes locating 
in contact with the wall, applying the Bernoulli 
equation as follows: 
 

⎥
⎦

⎤
⎢
⎣

⎡
∂
φ∂

+
∂
φ∂

−
∂
φ∂

−−=
ρ

2)
y

(2)
x

(
2
1

t
gzp  (64) 
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2
1
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(

t
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 (65) 

 
Finally, the forces and moments can be computed 
integration: 
 

∫−= h
h dy)t,y,x(pF  (66) 

 

∫− += h
h dy)t,y,x(p)yh(M  (67) 

 
 
 

4. DISCUSSION AND EVALUATION 
OF RESULTS 

 
In this section, several examples are solved by the 
program. The parameters required before the 
execution are: 
 
a = The wave amplitude (m) 
h = The depth of still water (m) 
T = The wave period (s) 
DT = The time increment (s) 
TE = The base length of rectangular element (m) 
 
4.1. The Effect of Wave Amplitude   As the 
first set of examples, the values of forces and 
moments on the wall are computed for 12 distinct 
cases, in which h = 5, T = 8, DT = 0.1 and TE = 1. 
     A summary of outputs are compared with those 
of Sainflou's Formula modified by Miche-

 
 
 

 
 
Figure 6. The iteration process. 
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Rundgren (MR, S, [4]) (Table 1). 
     The variation of forces and moments with time 
is shown in Figures 7 to 9. 
     Finally, outputs are compared with the existing 
data in Figures 10 and 11. The results show more 
agreement with (MR and S) in comparison with the 
outputs of Nagai. Note that (MR and S) have used 
higher order methods. 
     The following results can be obtained from the 
previous figures: 
 
• As a confirmation of the program, the 
lower the wave amplitude, the lower differences 
observed between the forces (developed by the 
wave) and relevant hydrostatic values, as well as 
moments and hydrostatic ones. 
• The maximum values show much variance 
with respect to the hydrostatic one. This is due to 
the first and second powers of depth, which are 
arisen during integration of forces and moments 
respectively. 
• The force and moments increase due to an 
in increase in wave amplitude. 
 
4.2. The Effect of Wave Period   The 
Parameters assumed for the second set of examples 
are: h = 15, a = 2, DT = 0.1, TE = 1 and Hi/h = 0.267. 
A summary of outputs are illustrated in Table 2. 

     Nagai’s outputs are approximate results, which 
are attained comparing the experimental data with 
the nearest relevant theoretical ones. The results 
obtained near the wave-breaking zone are not 
valid. Also the outputs of the program at such 
zones show relatively high peaks as shown in 
Figures 12 and 13 for T = 3. 
     Therefore performing enough examples, a 
design curve may be extracted as the envelope of 
this breaking zone (which occurs about T = 4 in 
this example). After the breaking-zone the outputs 
show more reliability and well agreement with 
(MR and S) results (with about 0.5 % error), while 
Nagai’s results show about 20 % deviation with 
this outputs (Figure 5). The figure states; as the 
period increases, the forces increase, directly. 
 
4.3. The Sensitivity of Outputs to Time 
Increment   A sensitivity analysis is carried out 
to show the effect of time increments on the 
maximum forces and moments. For all of 15 
examples here, h = 5, T = 1, a = 1 and TE = 1. A 
summary of outputs is presented in Table 3. To 
attain the generality of the problem, another set of 
examples is solved assuming h = 5, T = 2, a = 1.25 
and TE = 1. 
     From these two examples, the following results 
can be obtained: 

 
 
 

TABLE 1. The Values of Maximum Force and Moment for Various Wave Amplitudes. 
 

 MR and S MR and S Nagai P-RES P-RES 

ia  
ih
iH

 2gT
iH

 totalF  totalM  totalF  totalF  totalM  

0.05 0.02 1.59 E-4 127.5 216.4 127.7 125.9 213.0 
0.1 0.04 3.18 E-4 132.5 228.7 133.1 134.4 222.2 
0.2 0.08 6.37 E-4 140.1 253.2 144.4 144.7 242.0 
0.3 0.12 9.56 E-4 149.4 276.2 156.3 153.7 264.3 
0.4 0.16 1.27 E-3 157.5 299.7 156.3 163.6 290.1 
0.5 0.20 1.59 E-3 172.2 357.3 182.1 174.7 320.0 
0.6 0.24 1.91 E-3 185.2 394.0 196.0 187.2 354.4 
0.7 0.28 2.23 E-3 97.72 432.0 210.5 201.1 395.3 
0.8 0.32 2.55 E-3 213.1 465.1 220.8 216.7 442.9 
0.9 0.36 2.87 E-3 225.2 534.9 241.7 234.9 498.5 
1.0 0.40 3.18 E-3 240.2 591.3 258.3 252.2 568.5 
1.1 0.44 3.51 E-3 254.8 651.3 275.6 259.3 643.3 
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• The time increment should be chosen such 
that the value T/ tΔ  falls below 5. 
• The moments are much sensitive than 
forces. 
 
4.4. The Effect of Water Depth   Here a set of 
examples is solved for various depth conditions in 
which T = 5, a = 5 and DR = 0.1. Let’s define the 
relative force and moment as: 
 

2h/waveFrelF γ=  (68) 

 
Figure 7. The variation of force with the time (a = 0.05-0.5). 
 
 
 

 
Figure 8. The variation of moment with the time (a = 0.05-0.5).
 
 
 

 
Figure 9. The variation of force with the time (a = 0.6-1.1). 

 
Figure 10. The variation of force with respect to amplitude. 
 
 
 

 
Figure 11. The variation of moment with respect to amplitude.
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TABLE 2. The Force and Moments for Various Wave Periods. 
 

 P-RE P-RE P-RE P-RE MR and S MR and S Nagai 

T 2gT
iH

 
L
h  totalF  totalM waveF  waveM totalF  totalM  totalF  

3 0.045 1.07 1554 13470 451.6 7958 - - 1111.8 
4 0.0255 0.601 1352 9030 250.1 3518 - - 1179.8 
5 0.0163 0.390 1372 8703 269.5 3191 - - 1263.1 
6 0.113 0.282 1420 8883 317.7 3371 1395 8882.1 1493.6 
7 0.0083 0.222 1464 9094 365.6 3581 1462.3 9091.5 1553.9 
8 0.0064 0.183 1500 9283 402.5 3770 1487.7 9282.0 1598.6 
9 0.0050 0.157 1530 9461 432.0 3949 1529.4 9459.5 1631.5 

10 0.0041 0.137 1557 9627 460.0 4115 1555.2 9625.2 1656.1 
 
 
 

 
 

Figure 12. The variation of force with time for different periods. 
 
 
 

 
 

Figure 13. The variation of moment with time for different periods. 
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3h/waveMrelM γ=  (69) 
 
A summary of outputs for forces and moments is 
illustrated in Figures 14 to 18. The distribution of 
wave Pressure for different depths is shown in 
Figures 19 and 20. Values of forces and moments 
for different depth conditions are presented in 
Table 4. 
     These figures show that, as the water depth 
increases, the forces and moments increase as well. 
While the values of relative force/moment 
decrease. Figures 18 to 20 also indicate that the 
wave pressures change adversely as the water 
depth varies (note that the resultant force increases 
as the water depth increases). 
 
4.5. Design Curves (for Hi /hi = 0.4)   Here a 
set of examples is solved in order to acquire a 
dimensionless design curve such a design curve  

TABLE 3. Computational Errors Produced by Various 
Time Increments. 
 

Δt  
Δt
T  Force Error 

% 
Moment Error 

% 

3 1.67 28.68 43.64 

2 2.5 0.1254 0.2159 

1 5 0.1254 0.2159 

0.9 5.56 9.067 15.08 

0.8 6.25 0.1254 0.2159 

0.7 7.14 1.395 2.394 

0.6 8.33 1.395 2.394 

0.5 10 0.1254 0.2159 

0.4 12.5 0.1254 0.2159 

0.3 16.67 1.183 2.031 

0.2 25 0.1254 0.2159 

0.1 50 0.1254 0.2159 

0.08 62.5 0.06328 0.1092 

0.06 83.33 0.04128 0.7111 

0.05 100 0.0 0.0 
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Figure 14. Force error versus 
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Figure 15. Moment error versus 
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Figure 16. Variation of wave force due to the water depth. 
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(Figure 21) is extracted from the data in Table 5. 
     The parameters assumed here are: h = 4, a = 
0.8, DT = 0.1 and TE = 1. 
 
 
 

5. SUMMARY AND CONCLUSION 
 
The outputs obtained from the model shows that 
the effects of wave amplitude in the present study 
are in agreement with the wave behavior. When 
the wave amplitude is relatively small, as the force 
history passes the hydrostatic point, no distinct 
local maximum/minimum point can be observed. 
In case of higher amplitudes, however, a distinct 
local maximum/minimum point can be observed 
just when the curve passes the hydrostatic Point. 
Therefore the theories of limited amplitudes, rule 
such problems where the profiles come out the 
sinusoidal shapes. In some cases a small 
depression may be developed at the wave crest, as 
well as a small knob at the perigee. The outputs 
(forces and moments) show about 6 % difference 
with Nagai's experimental data [1]. 
     The results obtained for the effect of period 
agrees with data obtained by Nagai [1], with about 
4 percent difference. The breaking-zone and the 
envelope of this zone can simply be discretized in 
the figures. 
     The moment's sensitivity to time increments is 
more than the relevant forces. Where ∆t < 0.2 s, 
the computational error is negligible. 

 
Figure 17. Variation of wave moment due to the water depth. 
 
 
 

 
Figure 18. Variation of maximum relative force/moment with 
respect to the water depth. 
 
 
 

 
Figure 19. The net pressure of the wave for h = 10. 

 
Figure 20. The net pressure of the wave for h = 11. 
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TABLE 4. Values of Forces and Moments for Different Depth Conditions. 
 

Depth totalF  totalM  waveF  waveM  relF  relM  

4 154.30 319.68 75.898 215.14 0.48404 0.34302 

5 200.99 468.71 78.487 264.54 0.32036 0.21595 

6 259.50 682.26 83.100 329.46 0.23554 0.15564 

7 327.55 961.90 87.449 401.66 0.18211 0.11949 

8 405.12 1317.2 91.522 480.90 0.14592 0.09584 

9 429.07 1756.6 95.166 656.91 0.11989 0.07921 

10 588.15 2287.7 98.153 654.34 0.10016 0.06677 

11 693.45 2919.5 100.55 755.12 0.08480 0.05716 
 
 
 

 
 

Figure 21. Design curves for 4.0h/H ii = . 

 
 
 

TABLE 5. Dimensionless Values of Forces and Moments for 4.0h/H ii = . 
 

PERIOD 2gT
iH

 MAX RTL-FRC MAX RLT-MOM MIN RTL-FRC MIN RLT-MOM 

4 0.010194 0.28894 0.19971 -0.18326 -0.08737 
5 0.006524 0.34051 0.22391 -0.22265 -0.10056 
6 0.004531 0.38908 0.25098 -0.25411 -0.11090 
7 0.003329 0.44310 0.28508 -0.28367 -0.12035 
8 0.002548 0.50466 0.32697 -0.31287 -0.12926 
9 0.002014 0.57594 0.37827 -0.34232 -0.13765 

10 0.001631 0.65839 0.44054 -0.37173 -0.14535 
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The outputs of the last set of examples indicate that 
as the water depth increases, the effect of wave on 
the lower part of the wall decreases and by 
comparing the experimental data, In a short, the 
Program or the numerical model can be used to 
study the effect of wave under various conditions. 
 
Appendix I.   The flow chart of the finite element 

program is shown in Figure 22. 
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