AUXILIARY POTENTIALS IN CHIRAL MEDIA
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Abstract In the present paper, the expressions for scalar and vector potentials in lossless isotropic
chiral media are analyzed. Propagating eigenvalues of these potentials are then obtained.
Furthermore by decomposition of sources and fields in a chiral medium, we introduce the auxiliary
right-and left-handed potentials and find the associated fields. These potentials are used to solve the
problem of a horizontal electric dipole (HED) above a chiral half space. Auxiliary right and left

handed Hertzian vector potentials are introduced and E and H fields in terms of these potentials are
obtained. The Hertzian potentials due to VED and/or VMD sources within a chiral half space are
determined in terms of two-dimensional Fourier spectral domain and the expressions for EM fields
with respect to these potentials are presented.
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1. INTRODUCTION

In recent decades, much attention has been given
to the electromagnetic properties of chiral
materials. One of the important properties of chiral
media is optical activity. In such media, the EM
waves propagate with two different wave numbers
which correspond to right and left handed
circularly polarized eigenmodes. With regard to
radiation and propagation of EM waves in these
media, several important problems have been
investigated. Among which are Dyadic Green's
functions in chiral media [1,2], reflection and
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refraction of EM waves in chiral-achiral interface
[3,4], propagating properties of EM in chiral media
[5] and Radiation in chiral media [6-9]. While EM
properties of chiral media are extensively
investigated, an adequate treatment of auxiliary
potentials is not reported. Some applications of
auxiliary potentials are also studied for uniaxial
chiral omega media [10] and pseudochiral omega
media [11]. In the present paper, scalar and vector
potentials are introduced in order to investigate the
problem of sources and fields in chiral media. The
decomposition of sources and fields in chiral
media is used for this purpose [8]. As an example
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the application of these auxiliary potentials in the
analysis of chiral-achiral planar interface problems
involving a horizontal electric dipole (HED) is
studied. Then the auxiliary right and left handed
potentials are introduced and the fields according
to an electric and/or magnetic source in infinite
chiral media are determined by decomposing
sources and fields [8]. The expressions for these
potentials due to localized electric and magnetic
sources are obtained. The EM fields due to a
vertical electric dipole (VED) and/or a magnetic
source (VMD) located inside a half space chiral
medium is carried out. The method used is based
on the decomposition of sources and fields using
the introduced auxiliary potentials followed by a
two-dimensional Fourier transformation. An
application of interface conditions finally yields
these potentials in the spectral domain. The
expressions for the EM fields in terms of auxiliary
potentials have been achieved. Finally the
approximate relations for these potentials and the
small chirality conditions are derived.

2. ELECTRIC AND MAGNETIC VECTOR
POTENTIALS

Consider a lossless isotropic chiral media in the
presence of an electric current source, J. Our
purpose is to obtain the expression for the
magnetic vector potential A and the relations of
the electric and magnetic fields E and H in terms

of A. The constitutive relations in chiral media
can be considered as [8]

Dzeﬁ—jKr neH (D
E:uﬁ+j1<r neE 2)

Where «_ is the chirality parameter (dimensionless).

We introduce the potentials A . and D, as

auxiliary potentials in the chiral media. Equations
1 and 2 yield the so called Lorentz gauge in chiral
form:

V-Acz—jmps(l—K?)(Dec 3)
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Where A satisfies Equation 4

2% 2 2\
\% AC+(0 p.s(l—Kr)AC+

2001(r pe VxAcz—uJ

Equation 4 yields A . for a chiral media and

reduces to the conventional equation for A, when
chirality is set to zero. The scalar electric and
magnetic fields are thus given by:

B 3 (VV-A,)
E=—jo|A +———— ,
¢ wzus(l—Kf)
3 B (%)
- A oK - VV-A
H=Vx—-S%-(—L) A(:Jrz(—c)2
n o pe(l-x;)

As for the electric vector potential in chiral media,
consider a magnetic current source M within a
chiral medium. In a similar manner as the previous
section by considering the electric vector potential

in the chiral medium, Fc’ with ﬁz—Vch and
applying the duality properties between electric
and magnetic fields, the Lorentz gauge for the
potential I:“C is considered as

- _2
V-F, =—jope(l Kr)CI)mC (6)
Where FC satisfies Equation 7

2% 2 24\ F
\Y% FC+(9 us(l—Kr)FC+ 7

2 GRI uanFC:—g M

In view of Equation 5, and in the presence of both
electric and magnetic sources, generalized

expressions for E and H fields in terms of electric

and magnetic chiral potentials can be obtained as
follows:
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E:—J(D A+ < C 4
¢ mzus(l Kf) €
L ®
. (VV-E)
ox N F + ¢

(VV-A)

(uzus(l—l(f)
=R ()

- VV.-F
J(DFJ,_#

mzua(l—lcrz)

The electric and magnetic scalar potentials for the
chiral media readily follow from Equation 1
through Equation 7:

2 2 2 _
\% CDeC+03 us(l—Kr)q)eC—
jv-J Pe (10)

ma(l—Kf)__s(l—Kf)

2 2 2 _
\% CI)mc+(u ua(l—Kr)(DmC =

VM Py (11)
op(-x?)  p-«2)

Where Pe and Py, are the electric and magnetic

volume charge densities respectively.

2.1. Eigenvalues for Vector Potentials 1In a
source free chiral medium Equation 4 reduces to:

2% 2 2\ %
VA +o pe(l-x2)A_ +
C T C - (12)
20k 4 pe VxA =0
r c

Without loss of generality we assume that the wave
propagates along the z axis and the wave number
in z direction is denoted by h. Thus

Acz(ACX§+Acy9+AC22) exp(—jhz)  (13)

By substituting Expression 13 in 12, to have a
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propagating wave along the z axis with nonzero
components in x and y directions, the following

determinant must vanish;

o?pe(1-k2)~h? 2ok \Jpeh

=0 (14)
—j2(m<r\/Eh co2p8(1—1<r2)—h2
Which yields
hy =% oue (1+x)
(15a,b)

h3’4=i(x)\/E(l—Kr).

The solutions hy 5 in Equation 15a and hy 4 in

Equation 15b correspond to the right and left handed
circularly polarized waves respectively, which
propagate along the z axis in both directions. In this

case, vector A . involves only two components in X

and y directions with different eigenvalues h; , and

hy 4, each of which are as follows

A =
¢ x

M

lAik eXP(_jth) , 1=X,y (16)

In a similar manner the same eigenvalues for FC

can be deduced.

3. ANALYSIS OF POTENTIALS IN CHIRAL
MEDIA BY DECOMPOSITION OF
SOURCES

3.1. Auxiliary Right and Left Handed Scalar
and Vector Potentials in Chiral Media Let
us consider a chiral medium in the presence of a

time harmonic electric current source J and a

magnetic current source M. The constitutive
equations of such a chiral medium are given by
Equations 1 and 2. By decomposing E and H fields
into two wave fields E .o H , and E_, H_, we treat
the chiral medium as two nonchiral media with
respective effective parameters p , e, and p_,

¢_ . The wave fields are defined by [8]
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B, — (ETjni)
and
E:E++E_ (17a,b)
i, =L@i=ip)
t7 5 n
and
H=H, +H_ (18a,b)
Where,

Since the wave fields do not couple in an isotropic
chiral medium, Maxwell's equations can be written
as a pair of double equations as follows

£ (19)

o (20)

si:s(lixr)

The decomposed electric and magnetic sources J,

and M, are defined as

M) ,

I+

N | —
—_
—
+l

€2y

M, =—M=jnd)==%jn]

I+
N | —

Due to the relations between E, and H, on one

hand and J, and M, on the other, Equation 20 is
actually the same pair of equations as Equation 19
and they can also be expressed as

VxE, Fk,E, =FjnJ, (22)

With regard to Expressions 19 and 20, we can
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observe that the wave fields E , and H , satisfy

Maxwell's equations corresponding to a pair of
nonchiral isotropic media with effective
parameters p, &, . Therefore, in this case we

can use all the potentials commonly applied in
isotropic media. With this respect, we can define
the above mentioned wave fields in terms of the

right and left handed potentials A + and F . and

the corresponding scalar potentials D4 and

@ _ ., respectively [8]. The wave fields E + and

H 4 can therefore be written in terms of the above
mentioned right and left handed potentials. In

view of Lorentz's conditions, these fields finally
reduce to

- VXF+ - 1 -
Ei=— = -] Ai+_2VVAi N
ey k2
B (23)
~ VxA, | |- 1 -
Hi: =—]O Fi—i-—2VV~Fi
“i Ky
Where: k2 = o2p, ¢ e, =e(ltx) and
C S T O Hafye B TEUSK,

py =p(ltx). Therefore,

\k+\=@/piai=m@(1nr) (24)

The above wave numbers are in agreement with
Equations 15a and 15b, and the eigenvalues given
in [8].

3.2. Right and Left Handed Green

Functions Consider a general case of a chiral
medium in the presence of localized electric and

magnetic current sources; J=8(R—-R’)n and
M =8(R-R')f respectively. Due to the linearity
property of the decomposed nonchiral media and
Maxwell's Equations, we can deduce G A and GF

as.

- - [T ] exp(—ij_r‘R—R") .

G, =G%.=—%@1zY) . n (25)
At T TAE gn T R-R

and
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exp(—jkﬂﬁ—f{")

7 (26)

The Zz component of Green’s electric field

function due to an electric source oriented in Z
direction is obtained as,

Bl 1 d

1+——

G® =—jo +
+
ZE 8| k2 dz?

@27

exp(~jk,|R-R])
EET

Equation 27 is in agreement with [9].

3.3. A Horizontal Electric Dipole Source
Above a Chiral Half Space Consider a HED
source, J=IL3(z—h)x located in air, z > 0, a
distance of h above the interface, z = 0, with the
isotropic chiral medium in region 2, z < 0; (Figure 1).

By applying the two-dimensional Fourier
transform and Sommerfeld identity, one can find,
similar to [8]:

= IL —j —~h
i _Mo 'L -iBglz
2]

Where; BO:,/kg—(k§+k§/), kg=0,/1oE( and

superscript 1 is used for region 1. The incident

x forz>0 (28)

>

(1) Air (ggsHg) . z=0

(2) Chiral Medium (s,p,kr)

Figure 1. A localized current source a distance "h" above air-
chiral medium interface.
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potential D s simply zero; therefore the
reflected potentials are:

~1(1) _ (D) ,i.7IByz+h)

Ax —Re A'e

and

~ : =] h

O _r Wy Poz+h) (29)
While the transmitted potentials are given by:

~ i J(BLz=Byh)
AD o Al 0

and

=t(2 J7t(2

Fi2) —iHAX( D (30)
Where;

Bi:\/ki—(ki+k§), ky=o [u, e, .
ny=pn(dzk), e, =1+ k) and superscripts 1 and
2 denote regions 1 and 2 respectively.

The electric and magnetic field components in
terms of the vector potentials are given in
Appendix A. In view of the tangential components
of E and H fields given in Appendix A across
the interface z = 0 and using the expressions 28-30

for vector potentials, and some mathematical
manipulations, the reflection and transmission

coefficients (RS),R(D,T and T ) can be
m’ +

obtained from a system of four simultaneous
equations, i.e.

R(l):_1+ 2BO(D+a_—D_a+)

e b
npan(L. D —L D)
070 "+ + 31)
R(l)z_' 2BO(D+a_+D_a+)

m npgag(L,D_-L_D,)
_ 2By D_
* py@,D_-L D)

32
_ 2l3OD+ 2

T =
~ py(L,D_-L.D,)
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Where ag, a_,
Appendix B. The z components of E_ and H, in

a_, Dyand L, are given in

both regions in terms of auxiliary potentials are:

~(
D __ Lﬂ_jk_yfsg) (33a)

z opy g, 0z &

A= —x —x  YROD (33b)

x(2)
E(ZZ_az_ ky OAGH _jk_yfr(z_z (34a)
* op e, 0z ey X=x
72k
~ k OF ~
AP - —x “x& . YE@) (34b)
+ opg e, 0z u, X+
=2)_z=12) , 52 52)_502) =2
EP-EQDED HO-_a? 52 (35)

Having determined the reflection and transmission
coefficients, and using the auxiliary potentials, it is

possible to determine the EM fields E and H in both
regions. Let us consider the special case x . — 0,

which approaches a nonchiral medium in which
K—K; B.—p  with k=0 pne and

B = K2 —(k2 +k2 ). Then  the  reflection
Xy

coefficients are reduced to:

R _%oP by

€ SOB +8B0
and
rRW 0. (36)

It is observed that with zero chirality there is no
coupling between electric and magnetic fields,
which is true for an ordinary nonchiral half space.
Furthermore in the limiting case of a perfect
electric conductor (PEC) with &, = €. — oo, and for
ky = 0, one will conclude RS) — -1 and qu) —0

as expected.
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4. AUXILIARY HERTZIAN POTENTIALS

Let us consider a chiral medium in the presence of
a time harmonic electric current source J and a

magnetic current source M. The constitutive
relations for such a chiral medium are given by
Equations 1 and 2. Similar to the previous section,

by decomposing the E and H fields into two wave
fields E + and H, , which treats the chiral medium

as two nonchiral media with effective parameters
uy, &, [8], we can define the above mentioned

wave fields in terms of the auxiliary Hertzian
vector potentials TT, and IT} . Thus, electric and

magnetic fields in terms of Hertzian vector
potentials are expressed as,

. = 25 -
Eiz_JmuiVXHi+kiHi+VV~Hi (37a)
H, = jos,VxII, +k20% +vv.i* 37

i__]o)gi X i+ + i+ . + ( a)

Where 1, and f[i satisfy Helmholtz equations;

-J

2 25 +
VeIl +k5I0, +——=
AT
N (38)
V2L 2 T -
- T T oy
In which
kiziw Hygy

In view of 38 E + and H, can be determined using
37a,b.

4.1. Potentials for Dipole Sources Let us
consider a vertical electric dipole (VED) and a
vertical magnetic dipole (VMD) with respective
moments, IL and I L as follows:

J(z)=1IL8(x) 8(y) 8(z) 2

and
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M(z) =1L 8(x)8(y)3(z)2 (39)

In order to calculate the potentials IT + and f[i at

first we substitute the expression of Equation 39 in
Equation 21. In view of Equation 21 the
decomposed electric and magnetic sources will be;

I, = %(IL i%ImL) 8(x)8(y)8(z) 2 (40a)

- 1 . n .
M, =E(ImLimIL) 8(x)8(y)d(z)z =t jnl (40b)
I 4+ and ﬁi are therefore expressed as

_J .
(IL+HImL) kR

2t~ 8mjwe R
* (41)
. ~jk,R
-, (I LEmIL)e T
Hzi Z

Smjou R

Where R is the variable of the spherical coordinate
system, and z is the unit vector along the z axis.
1‘_'[*
From Equation 41, the ratio —2% is determined as
zt

(42)

z* z*t

o, =+1n
n

4.2. The Half Space Problem Let us now
consider the case where the sources are in a chiral
medium; z < 0. region 1 is air; with VED or VMD
as sources (Figure 2) i.e.,

J(z)=1L&(z+h) 2 ,

- A 43)
M(z)= Im Lo(z+h)z

Applying expressions of Equation 21 the vertical
and M 4+ are;

sources J +

1 .
Ji=E(1L+ilmL)5(z+h)z ,
(44)

n
~ 1 . N
M, ZE(ImLi_]T]IL)S(Z-Fh)Z
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(1) Air (¢.hg) 2=0

h

(2) Chiral Medium (2,1, ) T
v .
........ ,

Figure 2. The half space problem with the source in the chiral
medium.

With these sources, the incident potentials are
assumed to be; l:ISrz)1 and ﬁi(z)l respectively.

Either of these potentials create a pair of reflected
and a pair of transmitted potentials below and

. . =(2)r
above the interface respectively denoted by H(zi)- ,

ﬁz(i)r and I:I(le_f, ﬁz(}_r)t. Considering the

sources and Equation 41 the incident potentials are
seen to be spherical waves. Applying a two-
dimensional Fourier transform and Sommerfeld
identity, one can deduce [8];

~(2)i_zi ~iBilz+h|

Hgi) =Ilie =~ g

y (45)
=

ok (2)i _xi ~iBylz+h|
HZJ_r —Hie - s

Where;

2 12 .2
kp:kx+ky,ki=® U

Lo
L Ii=5(1L+HImL)

and

1 : . [2 .2
Ips =5 UL Einil)=£inly, By = ki —kJ -

The reflected and transmitted potentials are given
in Appendix C. The reflection and transmission
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coefficients can be obtained from the interface

conditions at z = 0, valid for arbitrary HiJr and

1" . In order to obtain the interface conditions for

these auxiliary potentials, first we use the Fourier
transform of Equation 37a by applying vector

analysis and the transformations 5i_>_jkx and
X

%6_‘3}/ ——jk,, This yields [11]

L
E+=(—_]k+kyHZ+__]kX )X +

0z
. ~d . 6ﬁz+ A
(ke Ty =k — )3+ (47)
(kzﬁ &)2
+z+ 2
0z
and
= ~ 8ﬁz
E =(-jk kyHZ _jky )X +
oIl
0 —; Z=y3 48
(K _key T, = jly, —25)§+ (48)
2 2ﬁ -5
(k“I1,  +——27)7
z 622

From the z component of the wave fields, we have:

(49)
k2 =k2 +k2
p~x Ny

In this case by noting kg in Equation 49, we see
that the value of kp is identical in both regions.

Therefore, the same interface conditions apply for
both ﬁz + and EZ +- So we can use the interface

conditions for ﬁz 4 as for the vertical wave field

component in [8].

iﬁ +iﬁ =cont ,
0z %2t o0z Z—
9

(50)

ﬁ =cont
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k I kK I (51)
=cont

Where, "cont" denotes continuity at the interface.
By applying the interface conditions Equations 50-

51 at z = 0 for any arbitrary values of HiJr and Hi_

one can find systems of equations in terms of
reflection and transmission coefficients. By solving
these systems of equations the reflection and
transmissions coefficients can be determined [12].
Using these coefficients and Equations 45-46, it
is possible to determine the potentials ﬁ;zlr and
ﬁg)i from Appendix C. The potentials in region 2

are thus derived from the following equation:
=2) =i, =5
- i &

Where ﬁg%)ri is determined from Equation 45. In

view of Equation 42, the potentials [1°

L4 are
derived in terms of ﬁz + inboth media;
ﬁ*g_l)ziiﬁ(zll ,
"o | (53)
s*(2) _ ) 5(2)
I, 5 _iﬁnzi

Now by applying relations Equation 53 and using
Equations 47 and 48 it will be possible to obtain

the wave fields, E, and H + in both regions.

+
Finally, the total field corresponding to both
regions is given by Equations 17b and 18b.

4.3. Approximate Solutions for Small
Chirality = Let us assume that the chirality
parameter x_ is small (« P << 1) which is often the

practical case. By neglecting Krz and higher order

terms, and after tedious  mathematical
manipulations the reflection and transmission
coefficients reduce to:
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R 4=

MoBkg B% —k? B2)+k kk By (n* +nd) (k2 -p?)
pa’

(54

mgh (kB K% B) K kP (n” +n) (% %)

Ba
(55)
kkoBy 2 —n2)| B2~k (B2 +k%)]
+-7 BA (56)
Kk By (2 —n2)| B2+ (B2 +k)
= v (57)
T, .=
gk + 1) (kB +kgB) +k BikoB + 1) | (58)
BZA/
T ~

gk (1) By + ko) -k B ko + k) | (59)

B2Ar
_ Mokm—-ng)
T
B (kB ko) +k Bk B ~2kBp +1B)|
BZAr
(60)
nokM-ng)
T
B2A
B2 (kg k) Blegp® - 2k + 5 ) |
B2Al
61)
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Where;

, 2,2
A :kk()BB()(n +n0)+
202 1202
Tm()(k Bo+k0B ), k=oq/pe ,k():

2,2 2 22 2 .2 .2
ofigeg « B =k” —k5 . By=kj k7. k=

2.2 w Mo
k2 +k2, n=,E - |0
x TRy =y g ‘)

(62)

5. VED AND VMD SOURCES

In the case where only a single VED or VMD source
is present, even though in the relations of Appendix
C the absolute values of I, and I_ are equal, but

due to the difference between the values of B N and

B_ on one hand and the values of ¢ and &_ on the
other, the absolute value of ﬁi (or ﬁf) is not the

same as the values of ﬁi_ (or ﬁii ). Thus with regard
to the above explanation and Equation 42 it is seen
that the potentials ﬁg}rr and ﬁ;22r involve different
exponential functions of z with different wave
numbers B, and B_ respectively. Similarly the
above result is wvalid for ﬁ(z%)ri and ﬁ(zzzi in
Equation 45. Therefore the reflected wave fields
AT ang AT (or gAr and ﬁ(z)r) include
Z+ z— Z+ z—
different exponential functions of z with different
wave numbers B, and PB_  respectively.

Consequently in region 2 we can not define the
reflection coefficients R., R.n, Ry and R, as is
applicable in air. Consequently, the exact image
method given by Lindell [8], can not be applied in
the present problem where the source is located in
the chiral medium. As a special case, we set kr =0,

in Equation 45 and relations of Appendix C and
subsequent equations, R, and R,, are reduced to:

_goB—2By
e 80B+ SBO
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and

mzHoB_HBO (63)

P-()B + P—BO
and the problem reduces to a simple dielectric half
space.

6. CONCLUSION

The scalar and vector potentials in chiral media

Ay, B, @ and @ . were introduced in this

work and the E and H fields were obtained
using these potentials. It is observed that either of
the fields E and H contain a vector component

in the directions of both I:“C and AC. This is

different from the nonchiral media, where the
vectors E and H are perpendicular to the vector

FC (or AC) in the presence of an electric source

(or a magnetic source). It was shown that in the
case of a chiral media, and in the presence of only
an electric or a magnetic source, both the electric
and magnetic potentials are nonzero. Therefore
unlike the nonchiral media, there is coupling
between the electric and magnetic potentials in a
chiral media. It is seen that the right and left
handed potentials presented here, simplify the
analysis of EM fields in two layered problems
involving chiral media. To do this, we write the
fields in a pair of equivalent ordinary nonchiral
media with the effective parameters of e, and

py . Then by using a decomposition scheme for

sources and fields in an infinite chiral medium, the
uncoupled right and left handed auxiliary Hertzian
vector potentials were derived. These potentials
correspond to the right and left handed features of
chiral media of the Helmholtz equation with
different effective parameters (e, ,u,) or

(e_,u_). These parameters depend on the chirality

parameter of the medium. These auxiliary
potentials are then used to obtain the EM fields in
the spectral domain for the chiral medium. The
problem of a VED and/or VMD within a chiral
half space in the vicinity of free space was
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investigated. It was observed that due to the
properties of the chiral media the right and left
handed incident waves with different wave
numbers were generated. This case is completely
different from the case in which a VED and/or a
VMD is located in air where the corresponding
right and left handed incident waves have identical
wave numbers. Therefore the physical behavior
when the source is in the chiral medium, is
different from the case with a source in air [§8]. In
addition the exact image method [8], can not be
used in the present scheme with the source located
in the chiral medium.
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8. APPENDICES

8.1. Appendix A

s)_ 1

2 2%
k2 -k2) AW |
X jw“OSO( 0 x) X

ik _k =)
g0 _ Ty z 1R

y OHE X gy 0z

(1A)
O__ 1 42 2,50
H jwuoso(ko KDHFED
- ~(
2y 1 AP
y OHGE X Ho 0z
(2A)
=(2 1 2 2.7 (2
B - (3 kDAL +

a2 -kH)E?
JCOIJ_S_ — X X =

(3A)
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ik _k 7(2)
=2 _Txty )1 KL,
Y ope, X+ ¢ 0z
kky ~2) 1 R

(4A)
2) 1 2 2,302
72 _ k2 —1k2H)yFP)
+ +
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op e X7 p 0z
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8.2. Appendix B
2 .2 2 .2
. _kpkx a ki k%
O ) i )
Ho %o Hify
k k k_k
by=— b=
Oy & Opy e,
L S A |
toonge mey
(1B)
k. k
c iy P
- MOy e Hy
a4 . Po
Diza—(bOiJT)+Bi ,
0 N&o
= Po?s Po%s
Hodp M3
(2B)
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8.3. Appendix C

F@r_
Z+
. (10)
i i |\ iB, (z—h)
(R, ML +R, M )e "+
ﬁ(ZZ_)r:
. (20)
i i \ iB_(z—h)
(R_, ML +R__11' e
st _
II =
Z+
. (3C)
i i . —iByz+B h)
(T, (I, +T, T )e 07 7+
ﬁg)_t:
. 40)
- i —IBgz+B_h)
(T_, I +T__1)ye 0
Where;
2 .2
Bo=yk0 %5
with

kO = “’LO‘C’O .
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