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Abstract   In the present paper, the expressions for scalar and vector potentials in lossless isotropic 
chiral media are analyzed. Propagating eigenvalues of these potentials are then obtained.  
Furthermore by decomposition of sources and fields in a chiral medium, we introduce the auxiliary 
right-and left-handed potentials and find the associated fields. These potentials are used to solve the 
problem of a horizontal electric dipole (HED) above a chiral half space. Auxiliary right and left 
handed Hertzian vector potentials are introduced and E

r
 and H

r
 fields in terms of these potentials are 

obtained. The Hertzian potentials due to VED and/or VMD sources within a chiral half space are 
determined in terms of two-dimensional Fourier spectral domain and the expressions for EM fields 
with respect to these potentials are presented. 
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در مقاله حاضر پتانسيل های برداری و عددی کايرال بدون تلفات و مقادير ويژه انتشار اين پتانسيل ها                  چكيده          

 با تجزيه ی منابع و ميـدانها در محـيط کـايرال پتانـسيل هـای      علاوه بر اين .مده استآدر اين محيط ها بدست 
اين پتانـسيل هـا    .نها تعيين گرديده استآر يک از کمکی راستگرد و چپگرد معرفی شده و ميدانهای وابسته به ه

پتانسيل های  .در بالای يک نيم فضای کايرال بکار گرفته شده است           ) HED( دو قطبی الکتريکی     برای حل مساله  
E برداری راستگرد و چپگرد هرتز معرفی شده و ميدانهای

r
Hو  

r
پتانسيل هـای   . حسب آنها بدست آمده اندبر 

داخل يک نيم فضای کايرال بر حسب حوزه ی طيفی فوريه دو بعـدی  VMD يا  /وVED هرتز مربوط به منابع 
 .تعيين گرديده و ميدانهای الکترومغناطيسی بر حسب اين پتانسيل ها بيان شده است

 
 
 

1. INTRODUCTION 
 
In recent decades, much attention has been given 
to the electromagnetic properties of chiral 
materials. One of the important properties of chiral 
media is optical activity. In such media, the EM 
waves propagate with two different wave numbers 
which correspond to right and left handed 
circularly polarized eigenmodes. With regard to 
radiation and propagation of EM waves in these 
media, several important problems have been 
investigated. Among which are Dyadic Green's 
functions in chiral media [1,2], reflection and 

refraction of EM waves in chiral-achiral interface 
[3,4], propagating properties of EM in chiral media 
[5] and Radiation in chiral media [6-9]. While EM 
properties of chiral media are extensively 
investigated, an adequate treatment of auxiliary 
potentials is not reported. Some applications of 
auxiliary potentials are also studied for uniaxial 
chiral omega media [10] and pseudochiral omega 
media [11]. In the present paper, scalar and vector 
potentials are introduced in order to investigate the 
problem of sources and fields in chiral media. The 
decomposition of sources and fields in chiral 
media is used for this purpose [8]. As an example 
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the application of these auxiliary potentials in the 
analysis of chiral-achiral planar interface problems 
involving a horizontal electric dipole (HED) is 
studied. Then the auxiliary right and left handed 
potentials are introduced and the fields according 
to an electric and/or magnetic source in infinite 
chiral media are determined by decomposing 
sources and fields [8]. The expressions for these 
potentials due to localized electric and magnetic 
sources are obtained. The EM fields due to a 
vertical electric dipole (VED) and/or a magnetic 
source (VMD) located inside a half space chiral 
medium is carried out. The method used is based 
on the decomposition of sources and fields using 
the introduced auxiliary potentials followed by a 
two-dimensional Fourier transformation. An 
application of interface conditions finally yields 
these potentials in the spectral domain. The 
expressions for the EM fields in terms of auxiliary 
potentials have been achieved. Finally the 
approximate relations for these potentials and the 
small chirality conditions are derived. 
 
 
 

2. ELECTRIC AND MAGNETIC VECTOR 
POTENTIALS 

 
Consider a lossless isotropic chiral media in the 
presence of an electric current source, J

r
. Our 

purpose is to obtain the expression for the 
magnetic vector potential A

r
 and the relations of 

the electric and magnetic fields E
r

 and H
r

 in terms 
of A

r
. The constitutive relations in chiral media 

can be considered as [8] 
 

HrjED
rrr

εμκ−ε=  (1) 
 

ErjHB
rrr

εμκ+μ=  (2) 
 
Where rκ  is the chirality parameter (dimensionless). 

     We introduce the potentials cA
r

 and ecΦ  as 
auxiliary potentials in the chiral media. Equations 
1 and 2 yield the so called Lorentz gauge in chiral 
form: 
 

ec)2
r1(jcA Φκ−ωμε−=⋅∇

r
 (3) 

Where cA  satisfies Equation 4 
 

JcAr2
cA)2

r1(2
cA2

rr

rr

μ−=×∇μεκω

+κ−εμω+∇
 (4) 

 
Equation 4 yields cA

r
 for a chiral media and 

reduces to the conventional equation for A
r

, when 
chirality is set to zero. The scalar electric and 
magnetic fields are thus given by: 
 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

κ−εμω

⋅∇∇
+

η

κω
−

μ
×∇=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

κ−εμω

⋅∇∇
+ω−=

)2
r1(2
)cA(

cA)r(cA
H

,
)2

r1(2

)cA(
cAjE

r
r

r
r

r
rr

(5) 

 
Where: 
 

ε
μ

=η . 

 
As for the electric vector potential in chiral media, 
consider a magnetic current source M

r
 within a 

chiral medium. In a similar manner as the previous 
section by considering the electric vector potential 
in the chiral medium, cF

r
, with cFD

rr
×−∇=  and 

applying the duality properties between electric 
and magnetic fields, the Lorentz gauge for the 
potential cF

r
 is considered as 

 

cm)2
r1(jcF Φκ−εμω−=⋅∇

r
 (6) 

 
Where cF

r
 satisfies Equation 7 

 

McFr2
cF)2

r1(2
cF2

rr

rr

ε−=×∇εμκω

+κ−εμω+∇
 (7) 

 
In view of Equation 5, and in the presence of both 
electric and magnetic sources, generalized 
expressions for E

r
 and H

r
 fields in terms of electric 

and magnetic chiral potentials can be obtained as 
follows: 
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⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

κ−μεω

⋅∇∇
+ηκω

+
ε

×∇
−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

κ−μεω

⋅∇∇
+ω−=

)2
r1(2
)cF(

cFr

cF

)2
r1(2
)cA(

cAjE

r
r

rr
rr

 (8) 

 
and 
 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

κ−εμω

⋅∇∇
+ω

−
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

κ−εμω

⋅∇∇
+

η

κω
−

μ

×∇
=

)2
r1(2

)cF(
cFj

)2
r1(2

)cA(
cA)r(cA

H

r
r

r
r

r
r

 (9) 

 
The electric and magnetic scalar potentials for the 
chiral media readily follow from Equation 1 
through Equation 7: 
 

)2
r1(

e
)2

r1(

Jj
ec)2

r1(2
ec

2

κ−ε

ρ
−=

κ−εω

⋅∇
−

=Φκ−εμω+Φ∇
r  (10) 

 

)2
r1(

m
)2

r1(

Mj
cm)2

r1(2
cm

2

κ−μ

ρ
−=

κ−μω

⋅∇
−

=Φκ−εμω+Φ∇
r  (11) 

 
Where eρ  and mρ  are the electric and magnetic 
volume charge densities respectively. 
 
2.1. Eigenvalues for Vector Potentials   In a 
source free chiral medium Equation 4 reduces to: 
 

0cAr2
cA)2

r1(2
cA2

=×∇εμκω

+κ−εμω+∇
r

rr

 (12) 

 
Without loss of generality we assume that the wave 
propagates along the z axis and the wave number 
in z direction is denoted by h. Thus 
 

)zhj(exp)ẑzcAŷycAx̂xcA(cA −++=
r

 (13) 

 
By substituting Expression 13 in 12, to have a 

propagating wave along the z axis with nonzero 
components in x̂  and ŷ  directions, the following 
determinant must vanish; 
 

0
2h)2

r1(2hr2j

hr2j2h)2
r1(2

=
−κ−μεωμεκω−

μεκω−κ−μεω
 (14) 

 
Which yields 
 

.)r1(4,3h

,)r1(2,1h

κ−μεω±=

κ+μεω±=
 (15a,b) 

 
The solutions 2,1h  in Equation 15a and 4,3h  in 

Equation 15b correspond to the right and left handed 
circularly polarized waves respectively, which 
propagate along the z axis in both directions. In this 
case, vector cA

r
 involves only two components in x̂  

and ŷ  directions with different eigenvalues 2,1h  and 

4,3h , each of which are as follows 

 

)zkhjexp(
4

1k
ikAciA −∑

=
= ,   i = x, y (16) 

 

In a similar manner the same eigenvalues for cF
r

 
can be deduced. 
 
 
 
3. ANALYSIS OF POTENTIALS IN CHIRAL 

MEDIA BY DECOMPOSITION OF 
SOURCES 

 
3.1. Auxiliary Right and Left Handed Scalar 
and Vector Potentials in Chiral Media   Let 
us consider a chiral medium in the presence of a 
time harmonic electric current source J

r
 and a 

magnetic current source M
r

. The constitutive 
equations of such a chiral medium are given by 
Equations 1 and 2. By decomposing E

r
 and H

r
 fields 

into two wave fields +E
r

, +H
r

 and −E
r

, −H
r

, we treat 
the chiral medium as two nonchiral media with 
respective effective parameters +μ , +ε  and −μ , 

−ε . The wave fields are defined by [8] 
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)HjE(
2
1E

r
m

rr
η=±  

 
and 
 

−++= EEE
rrr

 (17a,b) 
 

)EjH(
2
1H

rrr

η
±=±  

 
and 
 

−++= HHH
rrr

 (18a,b) 
 
Where, 
 

ε
μ

=η . 

 
Since the wave fields do not couple in an isotropic 
chiral medium, Maxwell's equations can be written 
as a pair of double equations as follows 
 

)r1(

,MHjE

κ±μ=±μ
±−±±ωμ−=±×∇

rrr

 (19) 

 

)r1(

,JEjH

κ±ε=±ε
±+±±ωε=±×∇
rrr

 (20) 

 
The decomposed electric and magnetic sources ±J

r
 

and ±M
r

 are defined as 
 

±η±=η±=±

η
=±

Jj)JjM(
2
1M

,)MjJ(
2
1J

rrrr

r
m

rr

 (21) 

 
Due to the relations between ±E

r
 and ±H

r
 on one 

hand and ±J
r

 and ±M
r

 on the other, Equation 20 is 
actually the same pair of equations as Equation 19 
and they can also be expressed as 
 

±η=±±±×∇ JjEkE
r

m
r

m
r

 (22) 
 
With regard to Expressions 19 and 20, we can 

observe that the wave fields ±E
r

 and ±H
r

 satisfy 
Maxwell's equations corresponding to a pair of 
nonchiral isotropic media with effective 
parameters ±μ , ±ε . Therefore, in this case we 
can use all the potentials commonly applied in 
isotropic media. With this respect, we can define 
the above mentioned wave fields in terms of the 
right and left handed potentials ±A

r
 and ±F

r
 and 

the corresponding scalar potentials ±Φe  and 

±Φm  respectively [8]. The wave fields ±E
r

 and 

±H
r

 can therefore be written in terms of the above 
mentioned right and left handed potentials. In 
view of Lorentz's conditions, these fields finally 
reduce to 
 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

±⋅∇∇

±κ
+±ω−

±μ
±×∇

=±

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

±⋅∇∇

±

+±ω−
±ε
±×∇

−=±

F2
1Fj

A
H

,A2k

1Aj
F

E

rr
r

r

rr
r

r

(23) 

 

Where: ±ε±μω=±
22k , )r1( κ±ε=±ε  and 

)r1( κ±μ=±μ . Therefore, 
 

)r1(k κ±εμω=±ε±μω=±  (24) 
 
The above wave numbers are in agreement with 
Equations 15a and 15b, and the eigenvalues given 
in [8]. 
 
3.2. Right and Left H anded Green 
Functions   Consider a general case of a chiral 
medium in the presence of localized electric and 
magnetic current sources; n̂)RR(J ′−δ=

rrr
 and 

n̂)RR(M ′−δ=
rrr

 respectively. Due to the linearity 
property of the decomposed nonchiral media and 
Maxwell's Equations, we can deduce AG

r
 and FG

r
 

as: 
 

n̂
RR

)RRkj(exp
)j1(

8
e
AGAG

′−

′−−

η
±

π
±μ=±=

± rr

rr

mrr
(25) 

 
and 
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h 

J
r

 

(1) Air )0,0( με  

(2) Chiral Medium )rk,,( με  

z = 0

 
Figure 1. A localized current source a distance "h" above air-
chiral medium interface. 

n̂
RR

)RRkj(exp
)j1(

8
e
FGFG

′−

′−−
η±

π
±ε=±=

± rr

rr

mrr
(26) 

 
The ẑ  component of Green’s electric field 
function due to an electric source oriented in ẑ  
direction is obtained as, 
 

ẑ
RR

)RRjk(exp

2dz

2d
2k

11
8

je
zG

′−

′−±−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

±

±
π
±μω−=±

rr

rr

r

 (27) 

 
Equation 27 is in agreement with [9]. 
 
3.3. A Horizontal Electric Dipole Source 
Above a Chiral Half Space   Consider a HED 
source, x̂)hz(ILJ −δ=

r
 located in air, z > 0, a 

distance of h above the interface, z = 0, with the 
isotropic chiral medium in region 2, z < 0; (Figure 1). 
     By applying the two-dimensional Fourier 
transform and Sommerfeld identity, one can find, 
similar to [8]: 
 

x̂
hz0j

e
j2

IL0)1(iA~
−β−μ

=
r

 for z > 0 (28) 

 

Where; )2
yk2

xk(2
0k0 +−=β , 000k εμω=  and 

superscript 1 is used for region 1. The incident 

potential )1(iF~
r

 is simply zero; therefore the 
reflected potentials are: 
 

)hz(0j
eiA)1(

eR)1(r
xA~

+β−
=  

 
and 
 

)hz(0j
eiA)1(

mR)1(r
xF~

+β−
= . (29) 

 
While the transmitted potentials are given by: 
 

)h0z(j
eiAT)2(t

xA~
β−±β

±=±  
 
and 
 

)2(t
xA~j)2(t

xF~ ±η
±=±  (30) 

 
Where; 
 

)2
yk2

xk(2k +−±=±β , ±ε±μω=±k , 

)rk1( ±μ=±μ , )rk1( ±=±ε  and superscripts 1 and 
2 denote regions 1 and 2 respectively. 
     The electric and magnetic field components in 
terms of the vector potentials are given in 
Appendix A. In view of the tangential components 
of E

r
 and H

r
 fields given in Appendix A across 

the interface z = 0 and using the expressions 28-30 
for vector potentials, and some mathematical 
manipulations, the reflection and transmission 
coefficients ( +T,)1(

mR,)1(
eR  and −T ) can be 

obtained from a system of four simultaneous 
equations, i.e.  
 

)DLDL(0a0

)aDaD(02
j)1(

mR

,
)DLDL(0a0

)aDaD(02
1)1(

eR

+−−−+ημ
+−+−+β

−=

+−−−+μ
+−−−+β

+−=

(31) 

 

)DLDL(0

D02
T

,
)DLDL(0

D02
T

+−−−+μ
+β

=−

+−−−+μ
−β

−=+
 (32) 
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Where 0a , +a , −a , ±D and ±L  are given in 
Appendix B. The z components of zE  and zH  in 
both regions in terms of auxiliary potentials are: 
 

)1(
xF~

0

yk
j

z

)1(
xA~

00
xk)1(

zE~
ε

−
∂

∂

εμω
−=  (33a) 

 

)1(
xA~

0

yk
j

z

)1(
xF~

00

xk)1(
zH~

μ
+

∂

∂

εμω
−=  (33b) 

 

)2(
xF~yk

j
z

)2(
xA~xk)2(

zE~ ±
±ε

−
∂

±∂

±ε±μω
−=±  (34a) 

 

)2(
xA~yk

j
z

)2(
xF~xk)2(

zH~ ±
±μ

+
∂
±∂

±ε±μω
−=±  (34b) 

 
)2(

zH~)2(
zH~)2(

zH~,)2(
zE~)2(

zE~)2(
zE~ −++=−++=  (35) 

 
Having determined the reflection and transmission 
coefficients, and using the auxiliary potentials, it is 
possible to determine the EM fields E

r
 and H

r
 in both 

regions. Let us consider the special case 0r →κ , 
which approaches a nonchiral medium in which 
K±→K; β±→β with εμω=k  and 

)2
yk2

xk(2k +−=β . Then the reflection 

coefficients are reduced to: 
 

00

00)1(
eR

βε+βε

βε−βε
=  

 
and 
 

0)1(
mR = . (36) 

 
It is observed that with zero chirality there is no 
coupling between electric and magnetic fields, 
which is true for an ordinary nonchiral half space. 
Furthermore in the limiting case of a perfect 
electric conductor (PEC) with ε+ = ε- → ∞, and for 
ky = 0, one will conclude 1)1(

eR −→  and 0)1(
mR →  

as expected. 

4. AUXILIARY HERTZIAN POTENTIALS 
 
Let us consider a chiral medium in the presence of 
a time harmonic electric current source J

r
 and a 

magnetic current source M
r

. The constitutive 
relations for such a chiral medium are given by 
Equations 1 and 2. Similar to the previous section, 
by decomposing the E

r
 and H

r
 fields into two wave 

fields ±E
r

 and ±H
r

, which treats the chiral medium 
as two nonchiral media with effective parameters 
±μ , ±ε  [8], we can define the above mentioned 

wave fields in terms of the auxiliary Hertzian 
vector potentials ±Π

r
 and ∗

±Π
r

. Thus, electric and 
magnetic fields in terms of Hertzian vector 
potentials are expressed as, 
 

±Π⋅∇∇+±Π±+∗
±Π×∇±ωμ−=±

rrrr 2kjE  (37a) 

 
∗
±Π⋅∇∇+∗

±Π±+±Π×∇±ωε=±
rrrr 2kjH  (37a) 

 
Where ±Π

r
 and ∗

±Π
r

 satisfy Helmholtz equations; 

 

±μω
±−

=±∏±+±∏∇

εω
±−

+±Π±+±∏∇

j
M*2k*2

,
j

J2k2

r
r

r
rr

 (38) 

 
In which 
 

±ε±μω±=±k  

 
In view of 38 ±E

r
 and ±H

r
 can be determined using 

37a,b. 
 
4.1. Potentials for Dipole Sources   Let us 
consider a vertical electric dipole (VED) and a 
vertical magnetic dipole (VMD) with respective 
moments, IL and LmI  as follows: 

 
ẑ)z()y()x(IL)z(J δδδ=

r
 

 
and 
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               h 

J
r

 

(1) Air )0,0( με

(2) Chiral Medium )rk,,( με  

z = 0

 
Figure 2. The half space problem with the source in the chiral 
medium. 

ẑ)z()y()x(LmI)z(M δδδ=
r

 (39) 
 

In order to calculate the potentials ±Π
r

 and ∗
±Π

r
 at 

first we substitute the expression of Equation 39 in 
Equation 21. In view of Equation 21 the 
decomposed electric and magnetic sources will be; 
 

ẑ)z()y()x()LmIjIL(
2
1J δδδ

η
=± m

r
 (40a) 

 

±η±=δδδη±=± Jjẑ)z()y()x()ILjLmI(
2
1M

r
 (40b) 

 

±Π
r

 and ∗
±Π

r
 are therefore expressed as 

 

ẑ
R

Rjk
e

j8
)LIjLmI(

z

,ẑ
R

Rjk
e

j8

)LmIjIL(

z

±−

±ωμπ

η±∗
±Π

±−

±ωεπ
η=±Π

r

mr

 (41) 

 
Where R is the variable of the spherical coordinate 
system, and ẑ  is the unit vector along the z axis. 

From Equation 41, the ratio 
±Π

∗
±Π

z

zr

r

 is determined as 

 

±Π
η

±=∗
±Π z

j
z

rr
 (42) 

 
4.2. The Half Space Problem   Let us now 
consider the case where the sources are in a chiral 
medium; z < 0. region 1 is air; with VED or VMD 
as sources (Figure 2) i.e., 
 

ẑ)hz(LmI)z(M

,ẑ)hz(LI)z(J

+δ=

+δ=
r

r

 (43) 

 
Applying expressions of Equation 21 the vertical 
sources ±J

r
 and ±M

r
 are; 

 

ẑ)hz()LIjLmI(
2
1M

,ẑ)hz()LmIjLI(
2
1J

+δη±=±

+δ
η

=±
r

m
r

 (44) 

With these sources, the incident potentials are 
assumed to be; i)2(

±Π
r

 and i)2(∗
±Π

r
 respectively. 

Either of these potentials create a pair of reflected 
and a pair of transmitted potentials below and 
above the interface respectively denoted by r)2(

z ±Π
r

, 
r)2(

z
∗
±Π

r
 and t)1(

z ±Π
r

, t)1(
z
∗
±Π

r
. Considering the 

sources and Equation 41 the incident potentials are 
seen to be spherical waves. Applying a two-
dimensional Fourier transform and Sommerfeld 
identity, one can deduce [8]; 
 

±
±β±ωε

=±Π

+±β−
±Π=±Π

I
2

1i~

,
hzj

ei~i)2(
z

~

 (45) 

 

±
±β±ωμ

=∗
±Π

+±β−∗
±Π=∗

±Π

mI
2

1i~

,
hzj

ei~i)2(
z

~

 (46) 

 
Where; 
 

±ε±μω=±+=ρ k,2
yk2

xk2k , )LmIjIL(
2
1I

η
=± m  

 
and 
 

±η±=η±=± Ij)ILjLmI(
2
1

mI , 2k2k ρ−±=±β . 

 
The reflected and transmitted potentials are given 
in Appendix C. The reflection and transmission 
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coefficients can be obtained from the interface 
conditions at z = 0, valid for arbitrary i

+Π  and 
i
−Π . In order to obtain the interface conditions for 

these auxiliary potentials, first we use the Fourier 
transform of Equation 37a by applying vector 

analysis and the transformations xjk
x

−→
∂
∂  and 

yjk
yx

−→
∂
∂

∂
∂ .This yields [11] 

 

ẑ)2z
z

~2

z
~2k(

ŷ)
z
z

~

ykjz
~

xkjk(

x̂)
z
z

~

xjk_z
~

ykjk(E~

∂
+Π∂

++Π+

+
∂

+Π∂
−+Π+

+
∂

+Π∂
+Π+−=+

r

(47) 

 
and 
 

ẑ)2z
z

~2

z
~2k(

ŷ)
z
z

~

ykjz
~

xkjk(

x̂)
z
z

~

xjk_z
~

ykjk(E~

∂
−Π∂

+−Π−

+
∂

−Π∂
−−Π−

+
∂

−Π∂
−Π−−=−

r

(48) 

 
From the z component of the wave fields, we have: 
 

2
yk2

xk2k

,z
~2kzE~

+=ρ

±Πρ=±  (49) 

 

In this case by noting 2kρ  in Equation 49, we see 

that the value of ρk  is identical in both regions. 

Therefore, the same interface conditions apply for 
both ±Πz

~  and ±zE~ . So we can use the interface 

conditions for ±Πz
~  as for the vertical wave field 

component in [8]. 
 

contz
~

z
1

z
~

z
1

,contz
~

zz
~

z

=−Π
∂
∂

η
−+Π

∂
∂

η

=−Π
∂
∂

++Π
∂
∂

 (50) 

contz
~kz

~k

,contz
~kz

~k

=
η

−Π−+
η

+Π+

=−Π−−+Π+
 (51) 

 
Where, "cont" denotes continuity at the interface. 
By applying the interface conditions Equations 50-
51 at z = 0 for any arbitrary values of i

+Π  and i
−Π  

one can find systems of equations in terms of 
reflection and transmission coefficients. By solving 
these systems of equations the reflection and 
transmissions coefficients can be determined [12]. 
     Using these coefficients and Equations 45-46, it 
is possible to determine the potentials r)2(

z
~

±Π  and 
)1(

z
~

±Π  from Appendix C. The potentials in region 2 
are thus derived from the following equation: 
 

r)2(
z

~i)2(
z

~)2(
z

~
±Π+±Π=±Π  (52) 

 
Where i)2(

z
~

±Π  is determined from Equation 45. In 

view of Equation 42, the potentials ∗
±Πz

~  are 

derived in terms of ±Πz
~  in both media; 

 

)2(
z

~j)2(
z

~

,)1(
z

~

0

j)1(
z

~

±Π
η

±=∗
±Π

±Π
η

±=∗
±Π

 (53) 

 
Now by applying relations Equation 53 and using 
Equations 47 and 48 it will be possible to obtain 
the wave fields, ±E~

r
 and ±H~

r
 in both regions. 

Finally, the total field corresponding to both 
regions is given by Equations 17b and 18b. 
 
4.3. Approximate Solutions for Small 
Chirality   Let us assume that the chirality 
parameter rκ  is small ( rκ  << 1) which is often the 

practical case. By neglecting 2
rκ  and higher order 

terms, and after tedious mathematical 
manipulations the reflection and transmission 
coefficients reduce to: 
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Δ′β

β−η+ηβ+β−ββηη

≈++

)22k()2
0

2(00kkrk)2
0

2k22
0k(0

R

 

 
 (54) 
 

Δ′β

β−η+ηβ−β−ββηη

≈−−

)22k()2
0

2(00kkrk)2
0

2k22
0k(0

R

 

 
 (55) 
 

Δ′β
⎥⎦
⎤

⎢⎣
⎡ +β−βη−ηβ

≈−+

)2k2(rk2)2
0

2(00kk
R  (56) 

 

Δ′β
⎥⎦
⎤

⎢⎣
⎡ +β+βη−ηβ

≈+−

)2k2(rk2)2
0

2(00kk
R  (57) 

 

Δ′β

⎥⎦
⎤

⎢⎣
⎡ β+ββ+β+βη+ηη

≈++

2

)0
3k3

0k(rk)0k0k()0(k0

T

 (58) 

 

Δ′β

⎥⎦
⎤
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2
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3k3

0k(rk)0k0k()0(k0

T

 (59) 
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×
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η−ηη
=−+

2

)0
3k2

0k23
0k(rk)0k0k(2

2
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 (60) 
 

Δ′β

⎥⎦
⎤

⎢⎣
⎡ β+ββ−ββ−β−ββ

×
Δ′β

η−ηη
=+−

2

)0
3k2

0k23
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2
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 (61) 

Where; 
 

0

0
0,,2

yk2
xk

2k,2k2
0k2

0,2k2k2,00

0k,k),22
0k2

0
2k(0

)2
0

2(00kk

ε

μ
=η

ε
μ

=η+

=ρρ−=βρ−=βεμω

=μεω=β+βηη

+η+ηββ=Δ′

 (62) 
 
 
 

5. VED AND VMD SOURCES 
 
In the case where only a single VED or VMD source 
is present, even though in the relations of Appendix 
C the absolute values of +I  and −I  are equal, but 
due to the difference between the values of +β  and 

−β  on one hand and the values of +ε  and −ε  on the 

other, the absolute value of i~
+Π  (or i~∗

+Π ) is not the 

same as the values of i~
−Π  (or i~∗

−Π ). Thus with regard 
to the above explanation and Equation 42 it is seen 
that the potentials r)2(

z
~

+Π  and r)2(
z

~
−Π  involve different 

exponential functions of z with different wave 
numbers +β  and −β  respectively. Similarly the 

above result is valid for i)2(
z

~
+Π  and i)2(

z
~

−Π  in 
Equation 45. Therefore the reflected wave fields 

r)2(
zE~ +  and r)2(

zE~ −  (or r)2(
zH~ +  and r)2(

zH~ − ) include 
different exponential functions of z with different 
wave numbers +β  and −β  respectively. 
Consequently in region 2 we can not define the 
reflection coefficients Re, Rem, Rm and Rme as is 
applicable in air. Consequently, the exact image 
method given by Lindell [8], can not be applied in 
the present problem where the source is located in 
the chiral medium. As a special case, we set rk  = 0, 
in Equation 45 and relations of Appendix C and 
subsequent equations, Re and Rm are reduced to: 
 

00

00
eR

εβ+βε

εβ−βε
=  
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and 
 

00

00
mR

μβ+βμ

μβ−βμ
=  (63) 

 
and the problem reduces to a simple dielectric half 
space. 
 
 
 

6. CONCLUSION 
 
The scalar and vector potentials in chiral media 

cA
r

, cF
r

, ecΦ  and mcΦ  were introduced in this 

work and the E
r

 and H
r

 fields were obtained 
using these potentials. It is observed that either of 
the fields E

r
 and H

r
 contain a vector component 

in the directions of both cF
r

 and cA
r

. This is 
different from the nonchiral media, where the 
vectors E

r
 and H

r
 are perpendicular to the vector 

cF
r

(or cA
r

) in the presence of an electric source 
(or a magnetic source). It was shown that in the 
case of a chiral media, and in the presence of only 
an electric or a magnetic source, both the electric 
and magnetic potentials are nonzero. Therefore 
unlike the nonchiral media, there is coupling 
between the electric and magnetic potentials in a 
chiral media. It is seen that the right and left 
handed potentials presented here, simplify the 
analysis of EM fields in two layered problems 
involving chiral media. To do this, we write the 
fields in a pair of equivalent ordinary nonchiral 
media with the effective parameters  of ±ε  and 

±μ . Then by using a decomposition scheme for 
sources and fields in an infinite chiral medium, the 
uncoupled right and left handed auxiliary Hertzian 
vector potentials were derived. These potentials 
correspond to the right and left handed features of 
chiral media of the Helmholtz equation with 
different effective parameters ( ±ε , ±μ ) or 
( −ε , −μ ). These parameters depend on the chirality 
parameter of the medium. These auxiliary 
potentials are then used to obtain the EM fields in 
the spectral domain for the chiral medium. The 
problem of a VED and/or VMD within a chiral 
half space in the vicinity of free space was 

investigated. It was observed that due to the 
properties of the chiral media the right and left 
handed incident waves with different wave 
numbers were generated. This case is completely 
different from the case in which a VED and/or a 
VMD is located in air where the corresponding 
right and left handed incident waves have identical 
wave numbers. Therefore the physical behavior 
when the source is in the chiral medium, is 
different from the case with a source in air [8]. In 
addition the exact image method [8], can not be 
used in the present scheme with the source located 
in the chiral medium. 
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8. APPENDICES 
 
8.1. Appendix A 
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8.2. Appendix B 
 

±εη
±β±

±ε±μω
−=±

±ε±μω
=±εμω

=

±ε±μ

−±=±εμ

−
=

jykxk
B

,ykxk
b,

00

ykxk
0b

,
2
xk2k

a,
00

2
xk2

0k
0a

 
 (1B) 
 

0a

a0b
j

0a0

a0L

,B)
0

0j0b(
0a

a
D

,ykxk
jC

η
±±

μ
±β

−=±

±+
εη

β
±±=±

±μ
±β−

±ε±μωη
=± m

 
 (2B) 

8.3. Appendix C 
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Where; 
 

2k2
0k0 ρ−=β  

 
with 
 

000k εμω= . 
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