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Abstract   In this paper, system planning network is formulated with mixed-integer programming. 
Two meta-heuristic procedures are considered for this problem. The cost function of this problem 
consists of the capital investment cost in discrete form, the cost of transmission losses and the power 
generation costs. The DC load flow equations for the network are embedded in the constraints of the 
mathematical model to avoid sub-optimal solutions that can arise if the enforcement of such 
constraints is done in an indirect way. The solution of the model gives the best line additions, and also 
provides information regarding the optimal generation at each generation point. This method of 
solution is demonstrated on the expansion of a 5 bus-bar system to 6 bus-bars. 
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در اين مقاله برنامه ريزي شبكه بوسيله برنامه ريزي اعداد صحيح مختلط، سرد كننده تدريجي و چكيده       

له شامل هزينه هاي سرمايه گذاري، تلفات و اتابع هدف براي اين مس. الگوريتم ژنتيك مدل سازي شده است
در نهايت حل . ها در نظر گرفته شده استعنوان محدوديته معادلات جريان بار براي شبكه ب. باشد ژنراتور ها مي

آورد و اطلاعاتي راجع به ژنراتور هاي بهينه در هر باس بار را مشخص  له بهترين اضافات خط را بدست ميامس
 .وسيله مثالي از پنج باس بار به شش باس بار حل شده استه  اين روش ب.كند مي

 
 
 

1. INTRODUCTION 
 
System network planning expansion is a complex 
mathematical optimization problem because it 
involves, typically, a large number of problem 
variables. The commonly used methods reported in 
the literature can be categorized into mathematical 
programming, heuristic based, artificial intelligence 
and iterative improvement methods [1-22]. 
     As long ago as 1960, Knight [2] used such a 
method in which starting from the geographical 
positions of the substations required to interconnect, 
a set of equations is obtained and solved by linear 
programming to obtain a minimum cost power 
transmission network design. The drawback of this 
method is that the load flow constraints are not 
taken into consideration. Garver [3] proposed a 
method which starts by converting the electrical 

network expansion problem into a linear 
programming problem. The mathematical 
programming technique used in solving the linear 
network model minimizes a loss function defined as 
power times a guide number summed over all 
network links. The overload path with the largest 
overload is selected for circuit addition. The 
drawback of this method is that the model has no 
user interaction and is fixed by program 
formulation. Villasana et al [1] and Serna et al [4] 
also proposed methods used a DC linear power flow 
model and a transportation model respectively. In 
both methods, the model is intractable. 
     Berg and Sharaf [5] proposed a method, using 
the admittance approach and linear programming, 
for planning transmission capacity additions. The 
method consists of two phases. In the first phase 
admittance addition is made, while in the second 
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phase VAR (Voltage Amper Reactive) allocation is 
specified. In this method, losses have been 
excluded. Kaltenbach et al [6] proposed a model 
which uses a combination of linear and dynamic 
programming techniques to find the minimum cost 
capacity addition to accommodate a given change 
in demand and generation. The drawback of this 
method is that a very large number of decision 
variables is required. 
     Farrag and El-Metwally [7] proposed a method, 
using mixed-integer programming, in which the 
objective function contains both capital cost 
represented in its discrete form and the 
transmission loss cost in a linear form. Kirchhoff’s 
first and second laws are included in the 
constraints, in addition to the line security 
constraints. In this method, the loss term is 
linearized and a large number of decision variables 
are required. Sharifnia and Ashtiani [8] proposed a 
method for the synthesis of a minimum-cost secure 
network. In this method, the loss terms are 
linearized in the constraints and a large number of 
decision variables are required. Adam et al [9] 
proposed a method which is based on an 
interpretation of fixed cost transportation type 
models and includes both network security (in the 
transmission network) and cost of loss (in the 
distribution network). The drawback of this 
method is that the loss term is in a linearized form 
and it requires a large number of decision variables 
due to the use of the mixed-integer linear 
programming technique as the solution tool. 
     Lee et al [10] proposed a method which is 
based on static expansion of networks using the 
zero-one integer programming technique and 
Romero and Monticelli [11] proposed a zero-one 
implicit enumeration method for optimizing 
investments in transmission expansion planning. 
These methods require a large number of decision 
variables and are computationally very expensive. 
Padiyar et al [12] made a comparison of the 
computation times required by four different 
optimization techniques: the transportation 
model; linear; zero-one and non-linear 
programming. The use of zero-one and non-linear 
programming requires high CPU times compared 
to other methods which makes them ineffective 
for large scale systems [13] and all of the methods 
reviewed are fixed by program formulation. 
     Yousef and Hackam [14] proposed a model 

capable of dealing with both static and dynamic 
modes of transmission planning, using non-linear 
programming. The cost function includes the 
investment and transmission loss cost. Again, this 
method requires long computation times and a 
large number of decision variables [15]. 
     El-Sobki et al [16] proposed a heuristic method 
which is a systematic procedure to cancel the 
ineffective lines from the network. The process is 
directed in a good manner such that the minimum 
cost network will be obtained containing the most 
effective routes with the best number of circuits. 
The DC-load flow model is used. The drawback of 
this method is that power losses are not taken into 
account. 
     Albuyeh and Skiles [17] presented a planning 
method involving three integral parts. The first is 
a network model using a fast decoupled load flow 
relating the changes in active and reactive powers 
to changes in bus angles and voltages, 
respectively. In the second part, a selection 
contingency analysis is employed to determine 
the maximum overload on each branch and the 
maximum voltage deviation for each bus. Finally, 
the line cost, maximum overload and a sensitivity 
matrix are combined into two formulae to 
determine the branch to be added and the 
susceptance of that branch. The procedure is 
repeated until the contingency analysis shows no 
overload. In this method losses have been 
included as a linear term. 
     Ekwue [18] proposed a method derived on the 
basis of a DC-load flow approach. The method 
determines the number of lines of each 
specification to be added to a network to eliminate 
system overloads at minimum cost. A static 
optimization procedure, based on the steepest-
descent algorithm, is then used to determine the 
new admittances to be implemented along these 
rights of way. In this method, the model is only 
applicable to already connected systems and not 
expansion as considered here. 
     In general, a characteristic of heuristic 
techniques is that strictly speaking an optimal 
solution is not sought; instead the goal is a “good” 
solution. Whilst this may be seen as an advantage 
from the practical point of view, it is a distinct 
disadvantage if there are good alternative 
techniques that target the optimal solution. 
     With the development of artificial intelligence 
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(AI) theory and techniques, some AI-based 
approaches to transmission network planning have 
been proposed in recent years. These include the 
use of expert systems [19] and artificial neural 
network (ANN) based [20] methods. The main 
advantage of the expert system based method lies 
in its ability to simulate the experience of planning 
experts in a formal way. However, knowledge 
acquisition is always a very difficult task in 
applying this method. Moreover, maintenance of 
the large knowledge base is very difficult. 
Research into the application of the ANN to the 
planning of transmission networks is in the 
preliminary stages, and much work remains to be 
done. The potential advantage of the ANN is its 
inherent parallel processing nature. 
     In recent years, there has been a lot of interest 
in the application of simulated annealing (SA) and 
tabu search (TS) to solving some difficult or poorly 
characterized optimization problems of a multi-
modal or combinatorial nature. SA is powerful in 
obtaining good solutions to large scale 
optimization problems and has been applied to the 
planning of transmission networks [21]. In this 
reference, the transmission network planning is 
first formulated as a mixed integer non-linear 
programming and then solved using SA. Cooling 
schedule could be important and neighborhood 
function is crucial to its effectiveness [21]. TS has 
emerged as a highly efficient, search paradigm for 
finding quickly high quality solutions to 
combinatorial problems [22-25]. It is characterized 
by gathering knowledge during the search, and 
subsequently profiting from this knowledge. TS 
has been applied successfully to many complicated 
combinatorial optimization problems in many 
areas including power systems [26-27], The 
drawback of this method is that its effectiveness 
depends very much on the strategy for tabu list 
manipulation. Obviously, how to specify the size 
of the tabu list in the searching process plays an 
important role in the search for good solutions. In 
general, the tabu list size should grow with the size 
of a given problem. 
     From the above review, in this paper, the 
application of a genetic algorithm and SA are 
proposed to solve the system network planning 
problem. 
     GA’s are based in concept natural genetic and 
evolutionary mechanisms working on populations 

of solutions in contrast to other search techniques 
that work on a single solution. Searching not on the 
real parameter solution space but on a bit string 
encoding of it, they mimic natural chromosome 
genetics by applying genetics-like operators in 
search of the global optimum. An important aspect 
of GA’s is that although they do not require any 
prior knowledge or any space limitations such as 
smoothness, convexity or uni-modality of the 
function to be optimized, they exhibit very good 
performance in the majority of applications [28]. 
They only require an evaluation function to assign 
a quality value (fitness value) to every solution 
produced. Another interesting feature is that they 
are inherently parallel (solutions are individuals 
unrelated with each other), therefore their 
implementation on parallel machines reduces 
significantly the CPU time required [28]. 
     Compared with other optimization methods, 
GA’s are suitable for traversing large search spaces 
since they can do this relatively rapidly and 
because the use of mutation diverts the method 
away from local minima, which will tend to 
become more common as the search space 
increases in size. GA’s give an excellent trade-off 
between solution quality and computing time and 
flexibility for taking into account specific 
constraints in real situations. 
 
 
 

2. FORMULATION OF THE SYSTEM 
PLANNING MODEL 
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Subject to: 
 
• The power balance constraint at bus-bar K = 1, 
2,…, NB-1 or the power flow conservation equation 
at each bus-bar upholding Kirchhoff’s First Law: 
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 (2) 
 
• The loop equation l  = 1, 2, ..., LBE, containing 
only existing lines, this constraint upholds 
Kirchhoff’s Second Law for existing lines: 
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• The loop equations for loop l  containing one 
proposed line i: 
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• The exclusivity constraint for each proposed 
line i. This constraint forces the program to select 
one state only for each proposed line, or delete all 
its states. The exclusivity constraints result from 
the fact that the capacity of any line can take on 
only one value. That value, however, may be any 
of the discrete capacities in the cost-capacity curve. 
The exclusivity constraints prevent the capacity 
from assuming more than one value. 
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• The overload constraint for each existing line i: 
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• The overload constraint for the state j of each 
proposed line i: 
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• The generator capacity limit at each bus-bar k: 
 

MkPGkP ≤  (9) 
 
• The availability constraint at each bus-bar k-
this controls the number of lines connected to each 
bus-bar according to parameter MPK: 
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The objective function Z consists of the capital 
investment cost in its discrete form, the cost of 
transmission losses and cost of generation. 
 
 
 

3. SYSTEM DESCRIPTION 
 
Using the 6 bus-bar system planning network 
introduced in reference 1, a single-stage 
transmission expansion problem is derived. 
     The network data is given in reference 1, where 
the capacity of each line is determined based on 
thermal limitations and stability purposed. Each 
circuit is limited thermally to 100 MW. The 
application of the developed method has been 
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made in the light of the following factors: 
 
• only one line type is assumed;  
• the maximum number of states = 4;  
• the cost of a circuit is proportional to the 

line length, therefore, the line length can 
be used to replace the cost in the 
comparison analysis. 

 
For this system the following additions have been 
made: four circuits for line (6,2), two circuits for 
line (6,4) and one circuit for line (3,5). 
 
 
 

4. GA APPLIED TO MIXED-INTEGER 
SYSTEM PLANNING 

 
The work presented here was carried out using the 
MicrosoftR ExcelTM spreadsheet and an add-in to 
provide the GA. This add-in is called EvolverTM 
and is developed and supplied by Axcelis [29]. The 
model of network planning developed in this 
research is built in ExcelTM using the spreadsheet's 
built-in functions. After building the model, the 
GA is run to optimize the network given an 
objective function. The fitness value and decision 
variables are passed back to the GA component 
which is independent of the spreadsheet model. At 
the end of the GA run, when the stopping criterion 
is met, the best network is presented in a tabular 
form in the spreadsheet. 
     The chromosome structure used to represent a 
particular set of possible transmission line power 
capacities, for the mixed-integer transmission 
network planning using GA has nine state 
variables. Each individual line capacity is encoded 
by sufficient bits to cover its allowable range of 
values. The initial population is generated 
randomly, that is, each bit in each chromosome is 
set randomly to either 1 or 0. Whenever a new 
chromosome is generated it is checked to see that 
in decoded form it produces valid values for the 
genes. When an invalid value is produced the 
chromosome is discarded and another one is 
generated. 
     The spreadsheet model is developed for solving 
this problem. In the next step for solving the 
system planning using a GA, Equation 2 as 
Kirchhoff’s First Law and Equations 7 to 11 must 

be satisfied. Equations 3-5 as Kirchhoff’s Second 
Law are used to penalize solutions in the cost 
function. 
     The final step in the implementation of the 
system planning using a GA is the fitness function. 
The fitness value of a chromosome is a measure of 
how well it meets the desired objective [30-32]. In 
this case the objective is the minimization of the 
network’s cost function. Choosing and formulating 
an appropriate objective function is crucial to the 
efficient solution of any given genetic algorithm 
problem. When designing an objective function for 
an optimization problem with constraints, penalty 
functions can be introduced and applied to 
individuals that violate the imposed constraints. 
The fitness function in Equation 1 with penalty 
functions is used to calculate the fitness value of 
each individual. 
     The following additions have occurred in the 
system planning: four circuits for line (6,2), two 
circuits for line (6,4) and one circuit for line (3,5). 
These additions are the same as those obtained 
with mixed-integer programming. 
     In the GA approach the parameters that 
influence its performance include population size, 
crossover rate and mutation rate. A population 
size of 50, crossover rate 0.5 and mutation 
rate 0.006 for the system network planning 
with and without the generation cost are used. 
Total unit costs are 153642.4 and 1642.35 for the 
transmission network planning with and without 
the generation cost respectively. These results are 
the same as those obtained with mixed-integer 
programming. Table 1 shows the total unit cost, 
iterations and the computational time using 
genetic algorithm. 
 
 
 
5. SIMULATED ANNEALING APPLIED TO 

MIXED - INTEGER SYSTEM  
PLANNING 

 
Simulated annealing is an intelligent approach 
designed to give a good though not necessarily 
optimal solution, within a reasonable computation 
time. The motivation for simulated annealing 
comes from an analogy between the physical 
annealing of solid materials and optimization 
problem. Simulated annealing considers the 
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TABLE 1. Total Unit Cost, Iterations and the Computational Time Using GA. 
 

Iterations 
without 

generation 
700 600 1300 1900 2000 1100 

Total Unit 1642.35 1642.35 1642.35 1642.35 1642.35 1642.35 

Average time 
(hours) 0.54 0.43 1.22 1.29 1.61 1.11 

Iterations with 
generation 2000 2020 2900 3000 3500 3900 

Total Unit 153642.4 153642.4 153642.4 153642.4 153642.4 153642.4 

Average time 
(hours) 1.52 1.40 1.43 1.63 1.70 1.88 

gradual cooling process of solid materials. 
However this analogy is limited to the physical 
movement of the molecules without involving 
complex thermodynamic systems. Physical annealing 
refers to the process of cooling a solid material so 
that it reaches a low energy state. Initially the solid 
is heated up to melting point. Then it is cooled 
very slowly, allowing it is to come to thermal 
equilibrium at each temperature. This process of 
slow cooling is called annealing. The goal is to find 
the best arrangement of molecules that minimizes the 
energy of the system, which is referred to as the 
ground state of the solid material. If the cooling 
process is fast, the solid will not attain the ground 
state, but a locally optimal structure. The analogy 
between physical annealing and simulated 
annealing can be summarized as follows: 
 
• The physical configurations or states of 

the molecules correspond to the 
optimization solution, 

• The energy of the molecules corresponds 
to the objective function or cost function,  

• A low energy sate corresponds to an 
optimal solution, 

• The cooling rate corresponds to the 
control parameter which will affect the 
acceptance probability. 

 
The algorithm consists of four main components: 

• Configurations, 
• Re-configuration technique, 
• Cost function and 
• Cooling schedule [33-40]. 
 
By using the Boltzmann distribution, the 
Metropolis algorithm was to accept uphill moves 
with a probability of: 
 

)
jKT

ΔE(exp]Accept[P −=  (13) 

 
Where 
 

iEjEΔE −=  

 
Temperature and continuing to run this algorithm, 
(change in energy after move i to j), k = Boltzmann 
constant, jT = current temperature. In practice, this 

probabilistic acceptance is achieved by generating 
a uniformly random number R in [0,1] and 
comparing it with P[Accept]. If pR  P[Accept], 
then the move is accepted, otherwise the move is 
rejected. By lowering the simulation of a solid 
material reaching equilibrium continues at each 
newly reduced temperature. Figures 1 and 2 
summarize the main step of local search method 
and of the basic simulated annealing method. 



IJE Transactions A: Basics Vol. 20, No. 1, February 2007 - 23 

The simulated annealing algorithm was employed 
to solve the problems of mixed-integer 
programming. The same nine state variables 
representation scheme applied in the case of the 
GA was implemented for simulate annealing 
because of its flexibility and ease of computation. 
The cost function for this problem is the objective 
function given in Equation 1. The annealing 
process stared at a high temperature, T = 1000 
units, so most of the moves were accepted. 
     The algorithm was implemented in Turbo C++. 
The initial stopping criterion was set at a total unit 
cost of the optimal solution found by the GA. 
Experiments were conducted again with a lowered 
stopping criterion. However no improvement was 
found even after 23.30 and 15 hours computation 
time for the transmission network planning with 
and without the generation cost respectively. Ten 
cooling rates were used (0.50, 0.60, 0.75, 0.78, 
0.80, 0.88, 0.93, 0.95, 0.97, 0.99). The final cost 
function is shown in Table 2 the maximum number 
of iterations was set at 3000 and 1900 for the 
transmission network planning with and without 
the generation cost respectively. Therefore the 
solution found by the GA was accepted as the 
optimal solution the final system planning is 
shown in Tables 2 and 3. 

6. CONCLUSIONS 
 
The basic model for system planning network has 
been described and formulated with mixed-integer 
programming and two meta-heuristic procedures 
(GA and SA) were introduced to solve it. The cost 
function of this problem consists of the capital 
investment cost in discrete form, the cost of 
transmission losses and the power generation 
costs. It is advantageous to use exact DC load 
flow constraint equations based on the modified 
form of Kirchhoff’s Second Law because the 
iterative process for line addition is not required. 
Hence, the computation time is decreased. To 
solve system planning for the 6 bus-bar system 
with the mixed-integer programming requires a 
large number of variables (zero-one and state 
variables) resulting in a large number of 

S, solution space; f, objective function to be 
minimised; 
     N, neighbourhood structure 
 
          1. Select a starting solution S0, S0 ∈ S. 
          2. REPEAT 
     Randomly select 'S  as new 

solution  
     );)0S(N'S( ∈  

                         IF )S(f)S(f 0
' p  THEN 

                                   ;'S0S =  
                          END 

               UNTIL )0(Sf)'(Sf f  for all )0S(N'S ∈

          3. 0S  is the optimal solution. 
 
Figure 1. Local search method.  

 
 
S, solution space; f, objective function to be 
minimised; 
     N, neighbourhood structure 
 
          1. Select a starting solution S0, S0 ∈ S; 
          2. Set an initial temperature, 0;0T f  
          3. Set a temperature reduction factor 

(cooling rate), λ; 
          4. REPEAT 
                            Randomly select );0S(N'S ∈  

                           );0S(f)'S(fEΔ −=  
                            IF 0ΔE p THEN 
                                  'S0S =  
                       ELSE 

                                IF f)
T
ΔEexp(−  Random (0,1)

                                                   THEN ;'S0S =  
                                          END 
                              END 
                              Set );T(λT =  
 
                 UNTIL stopping criterion. 
          5. S0 is the optimal solution 
 
Figure 2. Simulated annealing procedure. 



24 - Vol. 20, No. 1, February 2007 IJE Transactions A: Basics 

TABLE 2. Total Unit Cost and Iterations. 
 

Cooling 
Rate 0.50 0.60 0.75 0.78 0.80 0.88 0.93 0.95 0.97 0.99 

Iterations 
without 

generation 
1270 1310 1370 1500 1555 1459 1900 1900 1900 1900 

Total Unit 
Cost 

without 
generation 

1660.65 1670.66 1643.90 1642.35 1642.35 1642.35 1645.9 1659.70 1653.30 1677.6 

Iterations 
with 

generation 
2200 2410 2550 2566 2655 2459 3000 3000 3000 3000 

Total Unit 
Cost with 
generation 

153745.3 153659.9 153642.4 153642.4 153642.4 153642.4 153945.9 153648.9 154356.9 154044.5

 
 
 

TABLE 3. Total Unit Cost, Iterations and the Computational Time Using SA. 
 

Cooling Rate 0.78 0.8 0.88 

Iterations without generation 1500 1555 1459 

Total cost 1642.35 1642.35 1642.35 

Average time (hours) 2.30 2.37 2.11 

Iterations with generation 2566 2655 2459 

Total cost 153642.4 153642.4 153642.4 

Average time (hours) 3.11 3.30 2.97 
 

constraints which make the model very complex. 
However, the GA model is much simpler since 
only state variables are included in the 
chromosomes. Finally, in the performance of the 
GA it has been seen that when the number of state 
variables increases the number of generations 
required by the GA increases. In SA, the total unit 
costs were high at the initial generations, then 
reduced quickly to near the optimum level after 
relatively few generations. The results of the 
experiment have confirmed that the cooling rate 
determines the quality of the solutions. If the 
cooling rate is too low, the configuration can not 
achieve the optimal solution before it reaches the 
maximum number of iterations. If the cooling rate 

is too high, the process could become stuck at a 
local optimum. Overall simulated annealing 
needed longer computation times compared to the 
genetic algorithm. Meanwhile, Figure 3 shows the 
optimal solution for the system network planning 
using GA and SA. 
 
 
 

7. NOTATION USED IN THE MODEL 
 
CK Cost of generating a unit of power at 

bus-bar k. 
Cij Capital cost of state j of proposed line i. 
e(i) = K Set of lines that end at bus-bar k. 
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EMi Maximum power flow of existing line i. 
K A large positive integer number. 
LBE Number of basic loops containing 

existing lines only. 
LBP Number of basic loops containing 

existing lines plus one proposed line. 
LE )(l  Set of existing lines forming basic loop 

)(l  which contains existing lines only. 
Lij Linearized cost coefficient representing 

transmission losses cost of state j of 
proposed line i. 

LP )(l  Set of existing lines forming basic loop 
)(l  which contains one proposed line. 

MPK Minimum number of proposed line 
connected to bus-bar k. 

NB Number of bus-bars. 
NE Total number of existing lines. 
NG Set of generation bus-bars. 
NP  Total number of proposed lines. 
NS(i) Number of states of proposed line i. 
+
EiP  Oriented power flow on existing line I 

from its "start" to its "end". 
−
EiP  Oriented power flow on existing line I 

from its "end" to its "start". 
GkP  power generation at bus-bar k. 
+
ijP  Oriented power flow on state j of 

proposed line i from its "start" to its 
"end". 

−
ijP  Oriented power flow on state j of 

proposed line i from its "end" to its 
"start". 

PLK Load at bus-bar k. 
PMK Maximum power output of generator K. 
PMij Maximum power flow on state j of 

proposed line i. 
'
MijP  Minimum power flow on state j of 

proposed line i. 
SE(k)  Set of existing lines connected to bus-

bar k. 
Si Linearized cost coefficient representing 

transmission losses cost of existing line i. 
S(i) = k Set of lines that start form bus-bar k. 
SP(K) Set of proposed lines connected to bus-

bar k. 
XEi Reactance of existing line i. 
XPij Reactance of state j of proposed line i 
Z Total system cost (capital, transmission 

losses, and generation). 
+
ijZ  Zero-one integer variable assigned to 

state j of proposed line i from its "start" 
to its "end". 

−
ijZ  Zero-one integer variable assigned to 

state j  of proposed line i from its "end" 
to its "start". 
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