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Abstract   Considering a kinematical velocity admissible field, the upper bound method has been 
used for predicting the amount of pressure in hydroforming of sheet metals. The effects of work 
hardening, friction and blank size have been considered in pressure prediction. Also the effect of 
sheet thickness variation has been considered in the present work formulations. The relation between 
pressure and punch stroke has been obtained and optimized by changing the selective parameters in 
the velocity components. The results for cylindrical and hemispheric parts have been obtained and 
compared with the published experimental results. The effects of work hardening, friction and blank 
size on hydroforming pressure have been examined on an elliptical part. Good agreement was found 
between the experimental and numerical results. 
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   در فرايند هيدروفرمينگ ورقهای فلزی با در نظر گرفتن يک ميدان سرعت سازگار، از روش کران بالا                     چکيدهچکيدهچکيدهچکيده
اثر پارامترهای مختلف نظير نمای کار سختی، قطر بلانک اوليه و  .برای تخمين فشار مورد نياز استفاده شده است

اثر تغيير ضخامت در حين فرمدهی در        همچنين  . ضريب اصطکاک در محاسبات فشار در نظر گرفته شده اند           
رابطه بين فشار شكل دهی و جابجايي پانچ با توجه به کمينه سازی             . محاسبات کرنش  در نظر گرفته شده است       

در محاسبات فشار در    .  در مولفه هاي سرعت بدست آمده است         خابیـانرژی مصـرفی توسـط پارامترهای انت    
هر . ج حاصل شده با نتايج تجربي موجود در مراجع مقايسه گرديده است            نتاي  قطعات استوانه اي و نيم كره اي      

اثر پارامترهای کار سختی، قطر بلانک اوليه و          . دو نتايج تجربی و عددی مطابقت خوبی را نشان مي دهند             
 .ضريب اصطکاک در محاسبات فشار در يك قطعه بيضوي مورد بررسي قرار گرفته شدند 

 
 
 

1. INTRODUCTION 
 
Nowadays hydroforming is an efficient process in 
metal forming. As regards uniform thickness 
distribution in this process, it uses specially in 
forming of airplane parts. J.Tirosh et al. [1] found 
an appropriate relationship for punch stroke vs. 
fluid pressure in order to obtain uniform sheet 
thickness in axisymmetric hydroforming. They also 
studied the effects of workhardening exponent, 
friction coefficient and blank size. 
     For hydroforming of general noncircular cups 
there has been no analytic and systematic method 
to study pressure vs. punch stroke curve. 
     Recently, analyses have been proposed for 
hydroforming of prismatic and longitudinally 
curved boxes with regular polygonal cross-section 

based on the assumption of uniform thickness [2, 3]. 
     T.S.Noh et al. [4] also found an appropriate 
relationship for punch stroke vs. fluid pressure in 
order to obtain uniform sheet thickness in parts 
with general shapes.  
     In the present work, an investigation has been 
made on predicting of hydroforming pressure in 
general shaped parts with analytic punch surface. 
The bases of formulation are similar to formulations 
used by T.S.Noh et al. [4]. They assumed the sheet 
thickness does not vary during the hydroforming 
process. However, in this work, this variation has 
been considered in the formulation. Therefore, in 
the present work the strain components are 
considered three dimensionally. The results for 
cylindrical and hemi-spherical parts have been 
obtained and compared with the published experimental  
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results. Analysis has also been performed on an elliptic 
part and the results have qualitatively been investigated. 
 
 
 

2. BASIC GEOMETRICAL AND 
KINEMATICAL FORMULATION 

 
In order to analyze hydroforming, some simplifying 
assumptions are considered. a) The sheet material 

in contact with the punch is assumed to be rigid, 
i.e., to undergo no plastic deformation. In fact, due 
to very high fluid pressure, it can be assumed that 
material sticks to the punch and no plastic flow 
takes place. b) At any stage of punch movement, in 
analysis, the flat sheet that located on blank holder 
intersects the punch as a sharp edge which is called 
the boundary of velocity discontinuity (see Figures 
1 and 2).  
     Assume that the punch surface or sheet surface is  
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Figure 1. Surface of velocity discontinuity. 
 
 
 



IJE Transactions B: Applications Vol. 17, No. 4, December 2004 - 391 

expressed generally in the cylindrical coordinates 
in the following analytical form: 
 

0)z,,r(F =θ  (1) 
 
     The unit normal vector at the punch surface is 
given by: 
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     A normal vector, n, which is projection of np on 
the flange surface at z=h defines as follow: 
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n, is perpendicular to the edge of velocity 
discontinuity and located on the flange surface: 
     Figure 2 shows the geometrical relationship 
between np and n. let us φ  be an angle between the 
punch surface (as represented by an intersection 
curve between the punch surface and the plane 
composed of two normal vectors np and n) and the 
plane of the flange at z=h. Then the angle φ  is 

related with np and n as follows: 
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 (4) 
 
     With use of trigonometric relations, the slope of 
the surface of velocity discontinuity at the angular 
position θ against the plane of flange z=h is 
determined as follows. (See Appendix A): 
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 (5) 
 
In order to consider effects of thickness variation, 
the inclination angle of velocity field to punch 
surface (see figure 1) is determined as follows: 
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uz is a component of velocity that is in direction of 
thickness decrement and increases with increasing 
of inclination angle (the condition of uz=0 is 
studied in ref. 4). The kinematical compatibility 
condition in surface of velocity discontinuity 
requires the equality of normal velocity components 
on both sides of surface of velocity discontinuity. 
This condition leads to the following relation (See 
Appendix B): 
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On the other hand uk can again be expressed by 
considering the velocity components in the plane 
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Figure 2. Hydroforming Geometry. 
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which is normal to flange surface and also 
perpendicular to the edge of velocity discontinuity 
(Consider Equation 2): 
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     Then the velocity boundary conditions at the 
internal boundary of velocity discontinuity are 
given as (See Appendix C): 
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At:   0),,( =zrF θ  
     The incompressibility condition is given 
generally by the following equation: 
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     The general form of solution for Equation 9 is 
given as (See Appendix D): 
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     With consideration of the velocity boundary 

conditions of Equation 9, C, can be determined. 
Here, linear terms are taken for ai(r) and bi(r). Then 
the velocity components of Equation 11 are 
rewritten as: 
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Now, this velocity field can be applied to 
hydroforming of three-dimensional parts with 
arbitrary shapes, if surface of the punch is 
described in the analytic form. When the reference 
axis (θ=0) of the punch shape has an axis of 
symmetry, the odd function should vanish due to 
symmetric properties. The choice of terms should 
be considered in the velocity field where there are 
multiple axes of symmetry. Equations 12 satisfy 
the incompressibility and all the velocity boundary 
conditions. Therefore, Equations.12 are kinematically 
admissible. The strain rate components can also be 
given from derived velocity field: 
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3. UPPER BOUND 
 
Using the upper bound theorem [6], the required 
forming pressure is: 
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where, dv*
ij

.

V

*
ij εσ∫  is the strain energy dissipation 

outside the punch, the second integral is the shear 
deformation energy due to velocity discontinuity 
and f

S

*dsu
f

∫µ  is the waste of frictional energy 

under the blank holder surface. The surfaces 
subjected to blank holder pressure and fluid 
pressures are displayed in Figure 1. The surface 
of discontinuity can also be observed in the same 
Figure 1. The parameters, ai and bi, are subjected 
to optimization velocity so as to minimize the 
total power consumption. Velocity discontinuity 
component is obtained as follows (See Appendix 
E): 
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     Also surface element at the surface of velocity 
discontinuity is obtained as follows [4]: 
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In solving of Equations four-point Gauss-Legendre 
integration [5] method has been used. Also in 
minimization of total power Nelder-Mead [5] 
method has been used. Appendix F displays the 
logic diagram of computations. 
 
 
 

4. RESULTS 
 
To evaluate the accuracy of the formulations, three 
types of shapes; consist of hemispheric, cylindrical 
and elliptic-circular boxes were studied. Table 1 
reveals the information about the hemispheric and 
cylindrical parts [1]. The numerical and experimental 
results related to cylindrical part are given in 
Figure 3. In the figure, the pressure is normalized  

 
Figure 3. Measured [1] and calculated result for cylindrical 
part. 
 
 
 

 
Figure 4. Measured [1] and calculated result for hemispheric 
part. 
 
 
 

TABLE 1. Conditions of Hemispheric and Cylindrical Parts [1]. 
 

Stress-Strain relation 
(kg/cm2) 

Friction 
Coefficient Drawing ratio Initial Blank radius 

(mm) 
Initial Thickness 

(mm) 

3200ε0.15 0.4 1.65 124 1.00 
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with respect to yield stress (σ0), punch radius (ra) 
and thickness (t) respectively. Also the stroke is 
normalized with respect the instantaneous punch 
radius (r). 
     Also results of hemispheric part are given in 
Figure 4. General shape of an elliptic-circular box is 
given in Figure 5. The elliptic cross-section of this 
part is linearly converted to the circle form. Analytic 
shape of this part can be shown as follows [4]: 
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Table 2 shows the information about this part. 
Figures 6 to 8 show the effects of work hardening, 
size of blank and friction coefficient on pressure 
for elliptic-circular box. In these figures ra denotes 
the equivalent radius of a circle having the same  

 
Figure 5. Schematic of Elliptic-circular part [4]. 
 
 
 

 
Figure 6. Effect of workhardening Exponent for elliptic-
circular part. 
 
 

Figure 7. Effect of drawing ratio for elliptic-circular part. 
 
 

Figure 8. Effect of friction coefficient for elliptic-circular
part. 
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cross-sectional area as that of the punch neck. 
Figure 6 show that the metal with lower work 
hardening requires more pressure. In other word 
the metal that has been annealed requires less 
pressure to be formed. Figure 7 shows the effect of 
drawing ratio, which is reasonable [6]. Figure 8 
reveals the effect of friction coefficient. It can be 
seen that hydroforming process in high friction is 
more difficult. In Figure 9 the results of Ref. [4] 
and present work are compared. 
 
 
 

5. DISCUSSIONS 
 
As expected the results obtained by the upper 
bound is larger than the experimental ones. The 
trends of pressure variations are very similar in 
both numerical and experimental results. Figure 9 
shows the effect of inclusion of thickness variations 
on prediction of the hydroforming pressure. 
Compared with 2D analysis (non varying thickness 
in reference 4), the present work predicts less 
forming pressure in the process. This difference 
becomes more significant when the stroke 

increases. In fact, in the present work, the material 
is less constrained just because of inclusion of uz in 
the velocity formulations in Equations 11. It must 
be mentioned that application of more than three 
terms of Fourier series (Equations 12) does not 
have significant effect on the results. As a 
comment we can consider nonlinear terms for ai(r) 
and bi(r). Also we can consider the boundary of 
velocity discontinuity as a region, such as a 
triangle region, not only a sharp edge. 
 
 
 

6. CONCLUSION 
 
An upper bound based formulation has been 
developed for prediction of the relation between 
the pressure and punch stroke in the hydroforming 
process. Compared with the previous works, the 
effect of thickness variation has been included in 
the present formulations. Three parts with different 
types of geometry have been analyzed and 
examined with this procedure. The effects of 
friction and Work hardening have also been 
considered. Compared with the published 
experimental results, good agreement was found 
between the experimental and numerical results. 
The results also show that consideration of thickness 
variation causes to predict less forming pressure. 
 
 
 

7. NOMENCLATURE 
 
ai, bi  optimization parameters relating to the 

velocity field 
An, Ap  projected areas of the workpiece and the 
 punch, respectively 
er, eθ, ez   unit vectors in the cylindrical coordinates 

TABLE 2. Conditions of Elliptic-Circular Part [4]. 
 

Stress-Strain relation(MPa) Drawing ratio Initial Blank radius(mm) Initial Thickness 
(mm) 

28.0)008.0(619 +× ε  1.65 57.75 0.8 

28.0)008.0(619 +× ε  1.75 62.25 0.8 

28.0)008.0(619 +× ε  1.85 64.75 0.8 
 
 

 
 
Figure 9. 2D [4] and 3D (present work) calculated results for 
elliptic-circular part. 
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Fp punch force 
F(r, θ, z)  punch profile function for a general 

curved punch shape 
h punch stroke 
k yield shear stress 
np, n unit vectors defined in Figure 1 
P fluid pressure 
r, θ, z cylindrical coordinates 
ra, rb  equivalent radii of circle having the same 

cross-section area as that of the punch neck 
and the initial workpiece, respectively 

Sf, Sr surfaces subjected to friction and pressure, 
respectively 

t thickness of workpiece 
U* kinematically admissible velocity field 
Un Projection of the velocity vector on the 

flange zone 
Uk inclination component of velocity 
ur, uθ, uz    radial, circumferential and perpendicular 

to sheet surface, velocity component, 
respectively 

ut tangential component of velocity to edge 
of velocity discontinuity located on plane 
of flange 

Unn, Unt  the normal and tangential components of 
velocity on the flange area, respectively 
(See Figure 1) 

∆u* velocity discontinuity 
V volume of workpiece 
Vp punch velocity 
Vpn, Vpt   the normal and tangential components of 

velocity on the punch area, respectively 
(See Figure 1) 

σij true stress tensor  
σij

* stress tensor corresponding to U* 
*

ijε&  strain tensor corresponding to U* 

zr ,, εεε θ &&&   Strain rate components in the cylindrical 
coordinates 
µ  Coulomb coefficient of friction 
φ Angle between the punch surface and the flange 
ψ, η Angles between velocity components defined 

in Figure 1 
 
 
 

APPENDIX A 
 

Derivation of Equation 5   Referring to Figure 2, 
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APPENDIX B 
 
Derivation of Equation 7   Referring to Figure 1: 
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Referring to Equations (B.1),(B.2),(B.3): 
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According to relation 
22
φ−π=ψ , finally uk is 

given as follows: 
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APPENDIX C 
 
Derivation of Equation 9   Equating Equation 7 
and Equation 8: 
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Considering Equations 6, 8 and noting that 

η−=η 2sin1cos  lead to: 
 

))
2

(2tan2
zu2)pVzu((

.
)

2
tan(

2)
z

F
(2)

F

r

1
(2)

r

F
(

zu
z

F
u

F

r

1
ru

r

F

φ
+−

φ
∂

∂
+

θ∂

∂
+

∂

∂

−

=
∂

∂
+θθ∂

∂
+

∂

∂

 

 (C.2) 
 
 
 

APPENDIX D 
 
Derivation of Equation 11   Considering Equation 

10, there exist three variables as ur, uθ, uz. By 
performing Fourier series it can be written: 
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APPENDIX E 
 
Derivation of Equation 15   The velocity 
discontinuity ∆u* is represented as follows: 
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velocity discontinuity ∆u* is represented as  

follows: 
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APPENDIX F 
 
Logic diagram of solving equations and minimization 
of total power consumption is given in Figure F.1. 
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Figure F.1. Logic diagram of solving equations and 
minimization of total power consumption. 


