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Abstract Considering a kinematical velocity admissible field, the upper bound method has been
used for predicting the amount of pressure in hydroforming of sheet metals. The effects of work
hardening, friction and blank size have been considered in pressure prediction. Also the effect of
sheet thickness variation has been considered in the present work formulations. The relation between
pressure and punch stroke has been obtained and optimized by changing the selective parameters in
the velocity components. The results for cylindrical and hemispheric parts have been obtained and
compared with the published experimental results. The effects of work hardening, friction and blank
size on hydroforming pressure have been examined on an elliptical part. Good agreement was found
between the experimental and numerical results.

Key Words Hydroforming, Sheet Metals, Upper Bound, 3D Strain, Work Hardening, Thickness
Variation
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1. INTRODUCTION

Nowadays hydroforming is an efficient process in
metal forming. As regards uniform thickness
distribution in this process, it uses specially in
forming of airplane parts. J.Tirosh et al. [1] found
an appropriate relationship for punch stroke vs.
fluid pressure in order to obtain uniform sheet
thickness in axisymmetric hydroforming. They also
studied the effects of workhardening exponent,
friction coefficient and blank size.

For hydroforming of general noncircular cups
there has been no analytic and systematic method
to study pressure vs. punch stroke curve.

Recently, analyses have been proposed for
hydroforming of prismatic and longitudinally
curved boxes with regular polygonal cross-section
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based on the assumption of uniform thickness [2, 3].

T.S.Noh et al. [4] also found an appropriate
relationship for punch stroke vs. fluid pressure in
order to obtain uniform sheet thickness in parts
with general shapes.

In the present work, an investigation has been
made on predicting of hydroforming pressure in
general shaped parts with analytic punch surface.
The bases of formulation are similar to formulations
used by T.S.Noh et al. [4]. They assumed the sheet
thickness does not vary during the hydroforming
process. However, in this work, this variation has
been considered in the formulation. Therefore, in
the present work the strain components are
considered three dimensionally. The results for
cylindrical and hemi-spherical parts have been
obtained and compared with the published experimental
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Figure 1. Surface of velocity discontinuity.

results. Analysis has also been performed on an elliptic
part and the results have qualitatively been investigated.

2. BASIC GEOMETRICAL AND
KINEMATICAL FORMULATION

In order to analyze hydroforming, some simplifying
assumptions are considered. a) The sheet material

390 - Vol. 17, No. 4, December 2004

in contact with the punch is assumed to be rigid,
1.e., to undergo no plastic deformation. In fact, due
to very high fluid pressure, it can be assumed that
material sticks to the punch and no plastic flow
takes place. b) At any stage of punch movement, in
analysis, the flat sheet that located on blank holder
intersects the punch as a sharp edge which is called
the boundary of velocity discontinuity (see Figures
1 and 2).

Assume that the punch surface or sheet surface is
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Figure 2. Hydroforming Geometry.

expressed generally in the cylindrical coordinates
in the following analytical form:

F(r,8,2) =0 (1)

The unit normal vector at the punch surface is
given by:

OF - 16F~ OF -
—€r +— €g +—e€;

OF _ o ro@ az

OF| [0F,  10F,

oF J(a> £ 2+
r 0z

A normal vector, n, which is projection of n, on
the flange surface at z=h defines as follow:

np, =

2)

OF - 16F~
—e€r t——¢€sp

or r 00
oF , 10F,
\/ (E) ( 7)

n, is perpendicular to the edge of velocity

discontinuity and located on the flange surface:
Figure 2 shows the geometrical relationship

between n, and n. let us ¢ be an angle between the

punch surface (as represented by an intersection
curve between the punch surface and the plane
composed of two normal vectors n, and n) and the
plane of the flange at z=h. Then the angle ¢ is

n-=

3)

IJE Transactions B: Applications

related with n;, and n as follows:

Singp= Cos((p—]—-[) = ﬁpﬁ =

10F,
\/() +( ae)

F, 10F, OF,
\/(ar) (*f) (E)

“

With use of trigonometric relations, the slope of
the surface of velocity discontinuity at the angular
position 0 against the plane of flange z=h is
determined as follows. (See Appendix A):

tan((—p) _ /I—Cos((p) _ Sin@
2 1+Cos(@p) 1+ Cos@

\/<6F)2 (o2

r 69
OF » 10F ) OF > OF
\/(dr) (r 69) (62) 0z

)

In order to consider effects of thickness variation,
the inclination angle of velocity field to punch
surface (see figure 1) is determined as follows:

Sin(n) =

Uy

(6)

u, is a component of velocity that is in direction of
thickness decrement and increases with increasing
of inclination angle (the condition of u,=0 is
studied in ref. 4). The kinematical compatibility
condition in surface of velocity discontinuity
requires the equality of normal velocity components
on both sides of surface of velocity discontinuity.
This condition leads to the following relation (See
Appendix B):

-V
u, = : (7)

tan((zp)Cosr] —Sinn

On the other hand u, can again be expressed by
considering the velocity components in the plane

Vol. 17, No. 4, December 2004 - 391



which is normal to flange surface and also
perpendicular to the edge of velocity discontinuity
(Consider Equation 2):

GF L 1OF OF
+

AL r 9 uz
__0Or r69 az )

Uy
SO O %y
T

Then the velocity boundary conditions at the
internal boundary of velocity discontinuity are
given as (See Appendix C):

OF +16F OF
—u ——1u —u =
or ' rae 9 97 Z
10F o OF »
(*) +(— ae) (a*)
T V4
- . )
tan(f)
2

<\/(uz -Vp)? #ugan? ()

At: F(r,0,2)=0
The incompressibility condition is given
generally by the following equation:

auf +lur +lau_9+a&:0 (1())
or r r 006 0z

The general form of solution for Equation 9 is
given as (See Appendix D):

© a. o b
L= < + '21 (") Cos(i0) + _z 1(r)Sin(iG)
roi= =
_wdb, (1) Sin(ie) - da da, (r) Cos(iB)
o= ) —— ——
& dr 1 & dr 1
00 dai(r) db. (r)
u, =-5 z(——— )Cos(iB) +

i=1 rdr rdr
o da.(r) db.(r)
Z(—1

32— " )Sin(i6) +a, (B)b,, (r)

(1D

With consideration of the velocity boundary
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conditions of Equation 9, C, can be determined.
Here, linear terms are taken for a;(r) and b;(r). Then
the velocity components of Equation 11 are
rewritten as:

u, = E + Z a,Cos(i0) + Z b, Sin(i0)

e Sln(19 - Cos(19)
72 2
00 . .
u, =-5 z( S 1)Cos(ie) +
1=1 r
S 21 i Sinie) +a b, 0
V4 mq(1 a T
igl r 070

(12)

Now, this velocity field can be applied to
hydroforming of three-dimensional parts with
arbitrary shapes, if surface of the punch is
described in the analytic form. When the reference
axis (0=0) of the punch shape has an axis of
symmetry, the odd function should vanish due to
symmetric properties. The choice of terms should
be considered in the velocity field where there are
multiple axes of symmetry. Equations 12 satisfy
the incompressibility and all the velocity boundary
conditions. Therefore, Equations.12 are kinematically
admissible. The strain rate components can also be
given from derived velocity field:

*

du,

€ =
dr

. * u

go = — (13)
r

C du,
d(thickness)

3. UPPER BOUND

Using the upper bound theorem [6], the required
forming pressure is:

P(h)=[ J:G; & dv+ [iBu*ds J/[(A, =A, )V, -1 Iu*dsf]
S; sf

(14)
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Figure 3. Measured [1] and calculated result for cylindrical
part.

where,IG : € dv is the strain energy dissipation
A%

outside the punch, the second integral is the shear
deformation energy due to velocity discontinuity

and |.1‘[u*dsf is the waste of frictional energy
S¢

under the blank holder surface. The surfaces
subjected to blank holder pressure and fluid
pressures are displayed in Figure 1. The surface
of discontinuity can also be observed in the same
Figure 1. The parameters, a; and b;, are subjected
to optimization velocity so as to minimize the
total power consumption. Velocity discontinuity
component is obtained as follows (See Appendix
E):

Cos’n—Cos’ (%p)

Au’ = uf+ué+u§ +ui( v )
Cos* (=
(2)
(15)

Also surface element at the surface of velocity
discontinuity is obtained as follows [4]:

a
m }
g
] 0
E.
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Figure 4. Measured [1] and calculated result for hemispheric
part.

Vau. B-2F B
ds = 92 49 (16)

©[oF,  10F,
(g) "‘(;%)

where:

B=(C" +(

1O 4 Oy (17)
r 00 0z

In solving of Equations four-point Gauss-Legendre
integration [5] method has been used. Also in
minimization of total power Nelder-Mead [5]
method has been used. Appendix F displays the
logic diagram of computations.

4. RESULTS

To evaluate the accuracy of the formulations, three
types of shapes; consist of hemispheric, cylindrical
and elliptic-circular boxes were studied. Table 1
reveals the information about the hemispheric and
cylindrical parts [1]. The numerical and experimental
results related to cylindrical part are given in
Figure 3. In the figure, the pressure is normalized

TABLE 1. Conditions of Hemispheric and Cylindrical Parts [1].

Stress-Strain relation Friction Drawine ratio Initial Blank radius Initial Thickness
(kg/cm?) Coefficient & (mm) (mm)
3200¢°*° 0.4 124 1.00
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Figure 5. Schematic of Elliptic-circular part [4].

with respect to yield stress (op), punch radius (ra)
and thickness (t) respectively. Also the stroke is
normalized with respect the instantaneous punch
radius ().

Also results of hemispheric part are given in
Figure 4. General shape of an elliptic-circular box is
given in Figure 5. The elliptic cross-section of this
part is linearly converted to the circle form. Analytic
shape of this part can be shown as follows [4]:

e 20%27.5
J(20C0s6)* +(27.5SinB)’

(1-2)+352 (18)
25 25
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Figure 6. Effect of workhardening Exponent for elliptic-
circular part.
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Figure 7. Effect of drawing ratio for elliptic-circular part.
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Figure 8. Effect of friction coefficient for elliptic-circular
part.

Table 2 shows the information about this part.
Figures 6 to 8 show the effects of work hardening,
size of blank and friction coefficient on pressure
for elliptic-circular box. In these figures r, denotes
the equivalent radius of a circle having the same
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TABLE 2. Conditions of Elliptic-Circular Part [4].

Stress-Strain relation(MPa) Drawing ratio Initial Blank radius(mm) Initial ("ll;llﬁlc)kness

619 % (£ +0.008)"* 1.65 57.75 0.8

619% (g +0.008)" 1.75 62.25 0.8

619% (£ +0.008)" 1.85 64.75 0.8
5 7 increases. In fact, in the present work, the material
g I =08 is less constrained just because of inclusion of u,in

1 rbira=1.6 . . . .

g s / p=0.4 the velocity formulations in Equations 11. It must
g 4 A — 014 be mentioned that application of more than three
% s _ terms of Fourier series (Equations 12) does not
T ] have significant effect on the results. As a
§ 1 comment we can consider nonlinear terms for a;(r)
2o ‘ and bi(r). Also we can consider the boundary of

© 010203 040850607 08 velocity discontinuity as a region, such as a

Punch Stroke hir . .
triangle region, not only a sharp edge.

Figure 9. 2D [4] and 3D (present work) calculated results for
elliptic-circular part.

cross-sectional area as that of the punch neck.
Figure 6 show that the metal with lower work
hardening requires more pressure. In other word
the metal that has been annealed requires less
pressure to be formed. Figure 7 shows the effect of
drawing ratio, which is reasonable [6]. Figure 8
reveals the effect of friction coefficient. It can be
seen that hydroforming process in high friction is
more difficult. In Figure 9 the results of Ref. [4]
and present work are compared.

5. DISCUSSIONS

As expected the results obtained by the upper
bound is larger than the experimental ones. The
trends of pressure variations are very similar in
both numerical and experimental results. Figure 9
shows the effect of inclusion of thickness variations
on prediction of the hydroforming pressure.
Compared with 2D analysis (non varying thickness
in reference 4), the present work predicts less
forming pressure in the process. This difference
becomes more significant when the stroke
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6. CONCLUSION

An upper bound based formulation has been
developed for prediction of the relation between
the pressure and punch stroke in the hydroforming
process. Compared with the previous works, the
effect of thickness variation has been included in
the present formulations. Three parts with different
types of geometry have been analyzed and
examined with this procedure. The effects of
friction and Work hardening have also been
considered. Compared with the published
experimental results, good agreement was found
between the experimental and numerical results.
The results also show that consideration of thickness
variation causes to predict less forming pressure.

7. NOMENCLATURE

a;, b;  optimization parameters relating to the
velocity field

A,, A, projected areas of the workpiece and the
punch, respectively

e, €y, €, Uunit vectors in the cylindrical coordinates
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F, punch force
F(r, 6, z) punch profile function for a general
curved punch shape

h punch stroke

k yield shear stress

n,, n  unit vectors defined in Figure 1
P fluid pressure

1,0,z cylindrical coordinates

I, Iy  equivalent radii of circle having the same
cross-section area as that of the punch neck
and the initial workpiece, respectively

S;, S, surfaces subjected to friction and pressure,

respectively

t thickness of workpiece

U* kinematically admissible velocity field

U, Projection of the velocity vector on the
flange zone

Uy inclination component of velocity

u, Up, u, radial, circumferential and perpendicular
to sheet surface, velocity component,
respectively

U tangential component of velocity to edge
of velocity discontinuity located on plane
of flange

Um, Uy the normal and tangential components of
velocity on the flange area, respectively
(See Figure 1)

Au*  velocity discontinuity

\Y volume of workpiece

v, punch velocity

Vi, Ve the normal and tangential components of
velocity on the punch area, respectively
(See Figure 1)

Gji true stress tensor

o stress tensor corresponding to U*

€; strain tensor corresponding to U*

€.,€4,€, Strain rate components in the cylindrical
coordinates

1l Coulomb coefficient of friction

()] Angle between the punch surface and the flange

v, Angles between velocity components defined
in Figure 1

APPENDIX A

Derivation of Equation 5 Referring to Figure 2,
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Tt
we have 5 <P<TI, so:

cos=—1- sin2 ¢=

OF » 10F
C7+C
or r 06

)2+ (
r 0z

)2

- 1_
oF2, 1OF

oF
()" +( -
or

)2

OF
- _ 0z ’6_F>0

LR}

oF 1 OF OF 0
J%>2+<)2+<)2 ’
T

r 00 0z

® 1-Cos(@) Sin@
tan(—) = =
2 1+Cos(@) 1+Cos@
JWZ 10F

e
O o

(A.1)

or r 06 0z 0z
(A.2)

APPENDIX B
Derivation of Equation 7 Referring to Figure 1:

u,,.(volume) ==V _ .(volume)l u, ==V

(B.1)
unn =uk.COS(l.IJ +r]) (B2)
Vi = Vp.cos(%p) (B.3)

Referring to Equations (B.1),(B.2),(B.3):

¢ ¢
—Vp.cos(g) ) —Vp.cos(g)

cos(Y+n) " cos P.cosn —sin Y.sinn
(B.4)
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According to relation = , finally uy is

N[ o
N -8

given as follows:

¢
B -V, .cos(E)

u, —

sin((zp).cos n- cos((zp).sin n

— Vp

tan((zp).cos n-sinn

(B.5)

APPENDIX C

Derivation of Equation 9 Equating Equation 7
and Equation 8:

oF 1 OF OF
+

i - +
o 1o a7 _ -V,
OF , 10F, 0F, . @~
i P el AN el an(—)Cosn — Sinn
\/(6r) (r 69) (62) 2
(C.1)

Considering Equations 6, 8 and noting that
cosn =+/1-sin’ n lead to:
OF 1 OF oF

—up+t——ug+—u, =

or r 06 0z

ok 10k 0F
_\/(ar) +(r09) +(OZ)

tan( 9)
2

<\/(uz -Vp)? #ugan? ()

(C.2)

APPENDIX D

Derivation of Equation 11 Considering Equation
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10, there exist three variables as u,, ug, u,. By
performing Fourier series it can be written:

C o a.(r) o b. (1)
up =—+ 3 —1—Cos(i0) + 3 —1—Sin(iB)
r i=l r 1=l r

_ < dby(1) Sin(i8) , & da, (r) Cos(i6)

]

=) dr 1 =1 dr 1
00 dai(r) dbi(r) Cos(i6
tz iglZ rdr rdr Cos(i6)
o da.(r) db.(r)
L ——L )Sin(iB) + a4 (B)b, (r
A

(D.1)

APPENDIX E

Derivation of Equation 15  The velocity
discontinuity Au’ is represented as follows:

Au” =\/uf +(u, +th)2 (E.1)

According to Figure 1:

u, =u,.sin(+n) (E.2)
Vp.cos((zp)
T oos@en) =
V, =V sin(%p) (E4)
-n_9
b= (E.5)
Then:

V,. cos(czp). sin(y +n)
T cosy)

(E.6)

nt
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—>[ Assign a; & b; ]

I
[ Evaluating Velocity ]
d S

iscontinuity component

I
[ Evaluating the energy ]

from Equation 14

Minimum
energy

Figure F.1. Logic diagram of solving equations and
minimization of total power consumption.

Save data

2
. cos
Au” = |u; +ui.—n (E.7)

2@
cos (2)

Noting to relation u; +u; =u. +u, +u_, the
velocity discontinuity Au” is represented as
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follows:

Cos’n—Cos’ ((5[))

- 2 2 2 2
Au = |u; +ug+u, +u,(

)
Cos’ (‘5")

(E.8)

APPENDIX F

Logic diagram of solving equations and minimization
of total power consumption is given in Figure F.1.
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