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Abstract    In the design of a cellular manufacturing system (CMS), one of the important problems 
is the cell formation in the form of machine grouping and parts family. This paper investigates an 
allocation of parts to common and specific cells; in such a way that each common cell is able to 
process all required parts. Further, this paper presents a mathematical programming model comprising 
constraints such as available time for common and special cells in each time horizon, and variables 
such as excess time required by each cell to process parts in each period. The main objective of the 
model is maximize cell efficiency by minimizing the total tardiness in production of goods and the 
sum of idle times of machines in each cell as well as by minimizing the maximum tardiness and idle 
times. To obtain good solutions, a simulated annealing (SA) method has been used. To verify the 
quality and efficiency of the SA algorithm, a number of test problems with different sizes are solved 
to show the efficiency of the proposed algorithm. Finally, the results are compared with solutions 
obtained by Lingo 6 in terms of objective function values and computational time.  
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بنـدی    باشد، که هـدف اصـلی آن دسـته           مي  توليد  نوين هاي شاز رو  يكي   (CMS) توليد سلولي  سيستم   چكيده

 .باشد  سازی نقل و انتقالات درون کارگاهی مواد می         ها بر اساس يك معيار مشخص جهت کمينه         قطعات و ماشين  
ايـده اصـلی عبـارت       .دهـد   قرار مـی   بررسي    را مورد  تشكيل سلول مساله    با نگاهی مبتني بر زمانبندی؛     اين مقاله، 
 قادر به پردازش    سلول عمومی كه هر    بنحوي   ، و اختصاصی  هاي عمومي  سلولها به دو نوع       سيم سلول است از تق  

در هـر دوره    . توانـد پـردازش کنـد       بوده و هر سلول اختصاصی تنها برخی از قطعات را مـی           قطعات  انواع  تمامي  
تواند زمان    ورت نياز می  ريزی، هر سلول زمان محدودی را جهت پردازش قطعات در اختيار داشته و در ص                برنامه

ريزی و همچنين تحمـل يـك هزينـه اضـافی      بيشتری را با رعايت محدوديت كل زمان در دسترس در افق برنامه    
ای اسـت كـه زمـان         هدف ايجاد خانواده قطعـات بگونـه      . باشد  زمان تحويل هر قطعه مشخص می     . استفاده نمايد 

مساله فوق بـا  . ها حداكثر استفاده صورت گيرد دمان سلولبيكاری و تأخير در تحويل قطعات كمينه شده و از ران      
بـه دليـل    . گيـرد    مورد بررسی قرار مـی     Lingo 6ارايه يك مدل عدد صحيح غيرخطی و حل آن توسط نرم افزار             

  هزينـه  هـای بـزرگ مـستلزم        در اندازه  متداولهای   ردكتوسط روي  حل آن    ،پيچيدگي مدل رياضي پيشنهادي   
در اين مقالـه از الگـوريتم        .ابتكاری اجتناب ناپذير است     های فرا   تيجه استفاده از روش   بوده و در ن   زمانی بالا   

Simulated Annealing (SA)برای حل مسأله در ابعاد بزرگ استفاده شده است .  
 
 
 

1. INTRODUCTION 
 
According to the literature survey, one of the 
significant criteria applied to machine scheduling 
is to minimize delay in getting a product to the 
customer and to maximize machine efficiency. A 
product is considered to be delayed or behind the 
schedule, when its production and completion time 

is greater than its due date or delivery time. Delay 
time (known as tardy) of jobs or products does not 
necessarily determine the number of the delayed 
jobs. This paper specifically deals with the 
minimization of the tardy jobs as well as 
maximization of machine efficiency. 
     By increasing worldwide competition, most 
companies must be able to improve the quality of 



382 - Vol. 17, No. 4, December 2004  IJE Transactions B: Applications 

their products and services significantly. 
Furthermore, the penalty costs should be reduced 
and customers should also be kept content by 
offering products of superior quality and by paying 
costs for elimination of delay. Thus, minimization 
of delay times and/or maximization of machine 
efficiency are vital in an increasing competitive 
world [1]. In recent decades, the use of cellular 
manufacturing systems (CMS) has been used 
significantly. Although, little attention has been 
paid to group technology concepts including CMS, 
it has come into focus only in recent decades as a 
competitive tool for which many success reports 
have been written.  
     In this paper, attempt is made to deal with 
minimization of delay time and maximization of 
machine efficiency by using the concept of cellular 
manufacturing system, in which the planning 
horizon consists of more than one period [2]. 
Nowadays, companies observing principles of 
CMS have to pay attention to other aspects of the 
problem in order to come closer to their goals and 
ideals. Loading and time scheduling of cells 
consist of some of these aspects, which are 
allocation of parts to specific and common cells in 
order to minimize tardiness and idleness (see 
Figures 1 and 2). 

2. LITERATURE REVIEW 
 
Lawler [3] has indicated that the sum of weighted 
delays (i.e., Σ Wi × Ti) have to be minimized 
belonging to the class of NP-Hard problems. He 
presented a polynomial algorithm to solve the sum 
of weighted delays problem. Furthermore, various 
methods have been presented to investigated for 
each solution, for both weighted and non-weighted 
kinds of problems. Emmons [4] has presented 
various important rules for limiting the search area 
to find an optimum solution. His rules are used in 
two algorithms of the branch-and-bound and 
dynamic programming. Fisher [5], Potts and Van 
Wassenhove [6,7], and Rinnooy et al. [8] have 
improved upon Emmons’s rules to cover weighted 
delay problems. Rachomadugu [9] has discovered 
a situation in which adjacent jobs are placed in an 
optimum arrangement for the solution of a 
weighted tardiness problem. Chambers et al. [10] 
have also presented main rules for flexible 
decomposition heuristic. 
     Accurate methods to solve a weighted tardiness 
problem have been investigated and tested by 
Abdul-Razaq et al. [11]. They also applied 
Emmons’s main rules to form a preference graph, 
which is capable of finding upper and lower 
bounds. They found that the best lower bound for 
quality solution time is linear. This bound is 
obtained by Lagrangian elimination of machine 
capacity limit. Hoogveen and Van Develde [12] 
have reformulated the problem by the use of extra 
variables. In this manner, the best lower 
Lagrangian limit is obtained. Szwarc and Liu [13] 
have proved the presence of a special arrangement 
for a problem of the earliest-tardiness (E/T) type in 
an individual machine with independent penalty of 
jobs in which the sequence of two adjacent jobs in 
an optimum succession depends on the starting 
time. They have also presented a two-stage 
decomposition method for solution of a sum of the 
weighted tardiness problem (Σ Wi × Ti) in which 
the tardiness penalty is proportional to the 
processing time. 
     Akturk and Yildrims [2] have shown the 
important rule of the relative limit in the weighted 
tardiness problem in which it is possible to provide 
sufficient conditions for finding a local solution. 
Few researches have reported on scheduling 
problems for an individual machine with two goals 

          Cells 
Parts 1 2 3 4 5 

1 1  1  1 
2  1 1  1 
3 1  1  1 
4  1 1  1 
5 1 1  1 1 

 
Figure 1. Feasible cells for processing parts. 
 
 
 
 Period 1 Period 2 
Cell 1    
Cell 2    
Cell 3    
Cell 4    
Cell 5    
Cell 6    
 
Figure 2. Current loads on special cells. 
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of minimizing the number of the delayed jobs and 
also total delays. Suer et al. [14] have suggested 
the use of a heuristic method in which the number 
of the delayed jobs comes as the first goal and total 
delays as the second one. Lee and Rairaktarakis 
[15] have suggested a branch-and-bound method to 
develop an optimum solution for such problems. A 
similar research by Shanthikumar [16] has taken 
up the goal of minimizing the maximum tardiness 
as the second objective. He has also suggested a 
branch-and-bound method for finding an optimum 
solution. 
     There are various cellular loading problems to 
allocate parts to cells. In contrast to parallel 
machines scheduling, cells cannot process all 
available parts. In fact, in many instances, 
economically, it has neither been feasible nor 
required to create such flexibility in the design of 
cellular systems. There is another difference 
between these two in parallel machines; processing 
times are used as a base for scheduling problems. 
Whereas, in cellular loading, the production rate is 
calculated on the basis of sequences, processing 
times, and so on before handling cellular loading. 
     In the literature concerned, very little has been 
said about cellular loading. Green and Sadowski 
[17], and Green and Cleary [18] have worked on 
such subjects as scheduling, benefits, losses, and 
system’s change in cell manufacturing 
environments. Suer and Saiz [19] have suggested 
a simple classification design to deal with cellular 
loading problems. Suer et al. [20] have studied in 
detail loading rules and connected cells 
algorithms and also has presented an applied 
example in a real production environment. A 
heuristic algorithm based on simulated annealing 
(SA) has been recognized as a significant 
stochastic search technique. This algorithm is a 
calculating process that attempts to solve 
complicated combinatorial optimization 
problems, by random ordering and controlling of 
feasible or infeasible solutions. Krikpatrick et al. 
[21] has first suggested the solution of the process 
based on the work by Metropolis et al. [22] in 
statistical mechanisms. SA method has 
successfully been applied in such research areas 
as production control, super-computer design, 
manpower scheduling, parallel processors, work 
shop production, installations design and graph 
theory [23]. 

3. PROBLEM FORMULATION 
 
A cellular manufacturing system (CMS) model 
attempts to minimize the delay of product delivery 
to the costumer and to minimize machine idle time. 
In contrast to other problems related to cell 
formation, here it is assumed that the processing 
capability of the products in cells are known in 
advance in a zero-one matrix. Thus, by knowing 
demand for products in different time periods, and 
by having the given production capability of each 
cell, the number of cells required to satisfy 
demands is calculated. In order to have an 
appropriate scheduling, some cells named common 
cells have been allotted being capable of 
processing all types of products. Because of their 
high cost, a number of these types of cells are 
limited in case of delivery time delay and a waiting 
time for costumers.  
     The use of the cell capacity can be put off to a 
late time delay, which is only not permissible at the 
end of the time horizon and the end period. In case, 
there is not delay in products completion, machines 
will be in an idle position in cells at any point in 
time horizon. To introduce this factor in 
calculations, an attempt has been made of slack 
variables trying to keep the amount of these 
variables as low as possible. To keep the amount of 
delays and idleness of machine in a reasonable 
range, i.e., to level down the maximum delay and 
maximum idleness of machines, the objective 
function has been formulated as shown in Equation 
1. In other word, at the end, the goal of the above 
problem is to load cells as far as possible based on 
the time available for product processing, without 
any delay, and within the time limit. 
 

{ } { }  MaxMin     and     MaxMin  
11 i

n

ii

n

i
ST
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 (1) 

 
3.1. Assumptions of the Model   Following 
assumptions have adopted for the model. 
1- Time horizon is known and is comprised of 

more than one period. 
2- Delay in the product completion is permissible 

and the customer may remain in waiting for 
some specific time. 

3- In case of contingencies and based on the 
factory’s policies, machines and installation in 
cells may remain idle if the costs accrued are 
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below a certain accepted level. 
4- Time required for the processing of parts in 

given amount or at a certain production rate is 
considered as an input into the model. 

5- Parts to be produced in each period are also 
considered as an input to the model. 

6- Number of cells, common or specific, is known 
and is constant at any period. 

7- Efficiency of machines and production is 100 
% during the production processing. 

8- The set up time of machines to produce other 
products than the present one is zero. 

     Figure 1 illustrates a typical example problem 
that five parts have to be processed on five special 
cells. The element of the matrix is one if a part is 
processed on the assigned cell. Figure 2 depicts the 
current loads on five cells within each period. 
 

3.2. Model’s Objective and Constraints   
Model’s objective function minimizes the total 
delivery delay of the product to customers on one 
hand and minimizes the maximum of these delays 
on the other hand. In the second part of this 
objective function, the time which machines 
remain idle, either in common and/or specific cells 
is minimized. In another word the objective is to 
load and allocate products to cells in as much 
amounts as possible while not transgressing the 
available time during the specified period and 
while the idle times are kept within a reasonable 
range. Like before, variables of the idle time are 
leveled out by minimizing the maximum of these 
times. 
     Input to the model is presented in a matrix, i.e. 
feasibility of different products in each cell is 
expressed by numbers 0 and 1. Number 1 signifies 
the possibility of the process of a certain product in 
a cell, while number 0 implies otherwise. In 
additional matrices, the time dimension of products 
processing is given in batches based the production 
capacity of each cell. By knowing demand for 
products and the production rate, the number of 
cells required to be allocated for a certain 
production is obtained. Further, by considering 
number of periods and the length of the time 
horizon, the time constraint is worked out. This 
time constraint is included by slack variables and 
also by accepting some degrees of freedom to 
depart from the available time either in a negative 
or positive way (- and/or +). 

3.3 The Mathematical Model   To build the 
model, the following symbols are used. 
 
3.3.1. Indices 
p: different  parts (p = 1,2,…,P) 
h: different periods  (h = 1,2,…,H) 
c: production cells (specific) (c = 1,2,…,C) 
k: production cells (common) (k = 1,2,…,K) 
 
3.3.2.  Input Symbols 
tpc: production duration of part p based on the 

production capacity of the specific cell c. 
tpk: production duration of part p based on the 

production capacity of the common cell k. 
Apc: equal to 1 if product p is processed in 

common cell c, otherwise 0. 
AT: time available in each period 
 
3.3.3. Decision Variables 
Tch: Additional time a specific cell c in period h 

requires completing its product (delay time). 
Tkh: Additional time a common cell k in period h 

requires completing its product (delay time). 
Sch: Time slack variable in period h for specific 

cell c. 
Skh: Time slack variable in period h for common 

cell k. 
xpch: Equal to 1, if part p is assigned to specific 

cell c in period h, otherwise 0. 
ypkh: Equal to 1, if part p is assigned to common 

cell k in period h, otherwise 0. 
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0                             ,  ;  ch chS T c h h H× = ∀ < (7a) 
 

0                             ,  ;  kh khS T c h h H× = ∀ < (7b) 
 

                             ,  ;  chT AT c h h H≤ ∀ <  (8a) 
 

                             ,  ;  khT AT c h h H≤ ∀ <  (8b) 
 

{ }, 0,1 , , , , 0pch pch ch ch kh khx y S T S T∈ ≥  (9) 
 
     The objective Function 2 is to minimize sum of 
the delays in completion of the product, to 
minimize idleness of cells in all time periods, and 
to minimize the maximum of the above-mentioned 
variables. Equation 3 indicates the feasibility of 
processing product p in cell c. Equations 4a, 4b 
and 4c satisfy time available for processing 
products and also degrees of freedom to deviate 
from time (slack variables and delay variables) for 
specific cells in each time periods. Equations 5a, 
5b and 5c are similar to previous equations, except 
that a specific cell is replaced by a common cell. 
Equation 6 explains the number of cells required 
for the process of part p in period h. Equations 7a 
and 7b make sure that at least one of the variables, 
idleness time, or delay time for all time periods in 
each cell is zero. Equations 8a and 8b express the 
upper limit of delay times to deliver products to the 
customers for all time periods and all cells. 

4. THE PROPOSED ALGORITHM 
 

The developed model falls in a class of NP-Hard 
problems. In another word, to find a final optimum 
solution at these conditions and constraints 
becomes difficult or even impossible in action or in 
a reasonable amount of computational time. Thus, 
the use of various algorithms is suggested where 
the structure and performance of which is similar 
to physical and natural phenomena. For instance, 
one can refer to neural network (NNs), genetic 
algorithms (GAs), tabu search (TS), and simulated 
annealing (SA) methods. In this paper, SA 
algorithm has been used and designed to solve the 
proposed model. 
 

4.1.   Simulated Annealing Algorithm 
Kirkpatrick et al. [21] have introduced the concept 
of the simulated annealing algorithm. This 
algorithm is a procedure for solving large 
combinatorial optimization problems that are 
similar to the physical annealing process of solids. 
Solutions in a combinatorial problem are 
equivalent to states of a physical system, and the 
cost of a solution is equivalent to the energy of a 
state. In the searching process, the simulated 
annealing algorithm accepts not only better but 
also worse neighboring with a certain probability. 
This means that the simulated annealing algorithm 
has the ability to escape from the local minima. 
Therefore, it can find high quality solutions that do 
not strongly depend upon the choice of the initial 
solution compared to local search algorithms. In 
other words, the algorithm is effective and robust. 
Furthermore, it has been proven that the 
computation time of this algorithm has a 
polynomial upper bound. The simulated annealing 
procedure includes four basic components [24, 25]. 
(i) Configurations: all of the possible solutions 

for the combinatorial problem, i.e. the states; 
(ii) Move set: a set of allowable transitions. These 

transitions must be capable of reaching all of 
the configurations; 

(iii) Cost function: a measure of how good any 
given configuration is; 

(iv) Cooling schedule: the annealing of the 
problem from a random to a good, frozen 
solution. Note that the cooling schedule 
determines the initial temperature, the rule of 
decreasing the value of temperature, the 
number of iterations for searching better 
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configurations at each temperature, and the 
time at which annealing should be stopped. 

     Generally, one can use the annealing procedure 
as shown in steps 1 to 4 to obtain the best solution: 
 
1. Generate an initial configuration S. 
2. Get an initial temperature T > 0. 
3. While not yet satisfies the stop criterion. 
   3.1. Perform the following loop L times: 
      3.1.1. Pick a random neighbor S’ of S. 
      3.1.2. Let ∆ = cost (S’)-cost (S). 
      3.1.3. If ∆ ≤ 0 then set S = S’. 
      3.1.4. If ∆ >0 then set S = S’ with probability  

e(-∆/T). 
   3.2. Set T = r × T, where r is a control parameter 

small but close to 1.  
4. Return S. 
 
     Step 3.1.1 is known as the generation 
mechanism of the neighboring configurations. In 
this paper, generation mechanism focuses on 
transferring and allocating products to other cells 
or on substituting these products, generally two 
products. This procedure continues until the 
stopping condition is satisfied. 
 
4.2 Cooling Schedule 
 
4.2.1 Initial Temperature   In physical analogy, 
the initial temperature should be large enough to 
heat up the solid until all particles are randomly 
arranged in the liquid phase. This means that in the 
beginning, the temperature of the annealing 
process must be high enough to make sure that the 
system can be shifted to all possible states. By this 
property, the algorithm can find a solution that 
does not strongly depend upon the initial 
configuration. Since the probability to accept 
worse solutions is p0, the initial temperature T0 can 
be determined by means of the cost-increasing 
transitions, which would be accepted in the 
beginning of the annealing process with a 
probability p. Pilot runs are performed, and the 
mean cost increasing ∆&&&  of the cost-increasing 
transitions is then computed. In the calculation, T0 
is calculated as follows: 
 ...

0 1
0ln( )

T
p−

∆
≈

 

4.2.2. Number of Iterations   The annealing 
process transfers from one configuration to one of 
its neighbors with a certain probability, this is 
equivalent to a Markov chain. Thus, we have to 
determine the upper bound of the Markov chain 
length or the number of iterations at each 
temperature. The upper bound can be a proportion 
of the size of the neighborhood. According to the 
generation mechanism, the size of the 
neighborhood is the order of p. 
 
4.2.3. Rule of Decreasing the Temperature   For 
a certain value of temperature, the temperature is 
reduced when the numbers of transitions reach the 
upper bound of the Markov chain length. The 
control parameter, i.e. the reduction ratio of 
temperature, usually is chosen for small 
temperature changes. The Markov chain more 
easily leads to an equilibrium state if the 
temperature change is small. Hence, we use the 
decrement rule as follows: 
 
Tk = r × Tk-1 k = 1, 2, … 
 
     The control parameter r is small but close to 1. 
 
4.2.4. Stopping Condition   The annealing process 
is terminated when the system is frozen, i.e. the 
value of the cost function of the solution does not 
improve after a certain number of consecutive 
Markov chains. In this paper, the annealing process 
is terminated if the current best configuration 
remains unchanged for ln|Θ| number of 
temperature reduction steps. Aarts and Korst [26] 
have proven that the upper bound of the total 
number of temperature reduction steps (i.e. the 
number of Markov chains) is proportional to ln|Θ|; 
Θ is the solution space that denotes the finite set of 
all possible solutions. In this paper, Θ is equivalent 
to the factorial of p. However, most of the 
elements in Θ are infeasible solution because there 
are too many zoning constraints, so we use ln|Θ| as 
the upper bound of the number of markov chains. 
 
 
 

5. COMPUTATIONAL RESULTS 
 
To obtain the best parameters of the suggested 
algorithm, a test example was worked out. Then, 
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through repetition the SA parameters were given as 
follows: 
a) the rate of cooling: 0.05 
b) equilibrium control: 0.05 
c) freezing control: 0.05 
d) maximum number of accepted solutions for 

each temperature: 100 
e) starting temperature: 5 
f) minimum number of accepted solutions for 

each temperature: 50 
     All computations are programmed in the Visual 
Basic language to be run in windows 98, Pentium 4 
system. 

     To confirm the solution quality of the simulated 
annealing algorithm, twelve problems with 
different size are tested and evaluated. The results 
are compared with solution obtained by using 
Lingo. Table 1 shows the comparison between 
optimum and SA solution and computation time. 
Results reveal that by increasing the number of 
period, SA requires longer CPU time, but the 
solution quality increases. It is worth to mention 
that solution obtained by SA algorithm is close to 
optimum solution. The mean different between 
optimum and SA solution is 6.6 percent obtained 
from Table 1. In this table, while the problem size 
increases, the solution time to run SA algorithm 
becomes smaller. Moreover, the CPU time for 
optimum solutions is severely sensitive to available 
time (AT) value. By decreasing AT, the CPU time 
for optimum solutions increases progressively. 
CPU time takes more than 30 minutes to find the 
optimum solution, whereas it takes about 9 minutes 
to find the best solution. 
     Figure 3 shows the SA convergence process for 
a high dimension problem of 50 parts, 10 special 
cells, 2 common cells, 3 periods and AT = 100. 
Most of decrease accomplished in the first 263 
seconds. The best solution obtained by SA is 6954. 
However, the best solution obtained by branch and 
bound is 6912.  

 
 
 

6. CONCLUSION 
 
In this paper, a mathematical model is developed 
and proposed to work out a cellular manufacturing 

TABLE 1. Computational Results Obtained From Optimal 
Solution and Simulated Annealing. 
 

No. (P × C × H) AT Optimum SA Gap (%)
1 5 × 2 × 2 10 14 14 0 
2 5 × 2 × 3 9 18 18 0 
3 5 × 2 × 3 10 16 16 0 
4 6 × 3 × 2 12 42 45 7.1 
5 7 × 3 × 2 10 12 12 0 
6 7 × 3 × 4 11 19 21 10.5 
7 8 × 3 × 2 11 16 20 25 
8 8 × 3 × 4 10 36* 44 22.2 
9 8 × 3 × 4 14 119 126 5.8 

10 9 × 4 × 2 10 37 40 8.1 
11 9 × 4 × 3 10 64 64 0 
12 9 × 4 × 4 11 148 149 0.6 

 
* The best integer programming (BIP) solution obtained by 
branch-and-bound method found in Lingo’s documents. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. SA convergence process for 50 × 10 × 3 with two common cells and AT=100. 

             263    2230 
Time (sec) 

Objective Value 

8000 

7000 

6000 

6990 6954 
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system (CMS) problem. The objective function is 
to minimize delivery time to the customers and 
also to minimize the idle time of machine in 
common and special cells. To make the model 
workable for real time problems, a few constraints 
are included in the model. Since the model is a 
complicated one, conventional and traditional 
optimization methods cannot be utilized in 
reasonable time. Hence, a meta-heuristic efficient 
algorithm known as simulated annealing (SA) is 
used and designed to solve the mathematical 
model. At the end, some problems of different 
sizes of number of parts, number of common and 
specific cells, number of periods and available time 
in periods are tested and solved. This is done to 
show the ability and efficiency of the proposed 
algorithm. 
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