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Abstract   This paper poses two magnetostatic problems in cylindrical coordinates with 
different permeabilities for each region. In the first problem the boundary condition of the 
second kind is used while in the second one, the boundary condition of the third kind is utilized. 
These problems are solved using the finite element and finite difference methods. In second 
problem, the results of the finite difference method show low magnetic vector potential as well 
as the magnetic field density when compared to the finite element results and in the linear case, 
to the analytical solution. This paper investigates the reason behind the low magnetostatic field 
computation in cylindrical coordinates using the finite difference method when boundary 
condition of the third kind is used. It then, presents a technique to overcome the problem of low 
magnetic field calculation using the finite difference method. The results obtained by the new 
technique are in close agreement with the finite element method as well as the analytical 
solution. Finally, it analyzes the possible source of error in modeling magnetostatic boundary 
conditions in finite difference formulation of vector Poisson or Laplace’s equation in cylindrical 
coordinates. 
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نشان . در اين مقاله مساله مگنتواستاتيك استوانه اي با تراوايي متفاوت در دو ناحيه بررسي شده است                   چکيدهچکيدهچکيدهچکيده
داده شده است كه با شرايط مرزي نوع دوم، پاسخ روش تفاضل محدود با پاسخ روش اجزاء محدود براي                        

رط مرزي از نوع سوم است،       اما در حالتي كه ش    .  اچ يكسان مي باشد    -نواحي خطي و غير خطي منحني بي         
پاسخ تفاوتهاي محدود براي پتانسيل مغناطيسي و چگالي شار مغناطيسي در مقايسه با پاسخ اجزاء محدود،                     

در اين مقاله، روشي براي     . اختلاف قابل ملاحظه اي دارد و خطاي موجود در روش تفاوت محدود زياد است              
نتايج اين روش به پاسخ شيوه اجزاي محدود بسيار         . ه است اصلاح خطاي ياد شده در ميدان مغناطيسي ارائه شد        
در نهايت منبع احتمالي خطا در مدلسازي شرايط مرزي          . نزديك بوده و با جوابهاي تحليلي نيز مطابقت دارد          

مگنتواستاتيكي با فرمولبندي تفاوت محدود در معادله برداري پواسون و لاپلاس در مختصات استوانه اي تحليل                
 .شده است

 
 
 

1. INTRODUCTION 
 

In this paper, the nonlinear magnetic field calculation 

has been investigated in two magnetostatic field 
problems applying the finite element and the finite 
difference techniques and then, the reason behind 
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the inadequacy in the finite difference method is 
outlined. Afjei and Rashed have addressed the 
problem of inadequacies in finite difference solution 
of magnetic field in [1] for a linear case and outlined 
a procedure to fix this problem. The comparison of 
the first-order finite element and finite difference 
algorithms for the analysis of the magnetic field 
problems has been mentioned in [2-3]. The 
computation of magnetostatic field problems using 
the finite element technique as well as the finite 
difference method in Cartesian coordinates can be 
found immensely in the literature [4-7]. Now days 
computer packages using the finite element methods 
are available in the market which computes the 

magnetic field problems in all sorts of shape and 
geometry[8]. In this paper two case studies have 
been discussed. In the first case, a long current 
carrying conductor is considered with a relatively 
high permeable material (M-19: USS Transformer 
72 ... 29 gage) surrounding the conductor where 
the boundary conditions are of the second kind. 
The second case considers a long core having the 
same high permeable material as problem one, 
with a coil wrapped around it. In this case the 
boundary conditions are of the third kind. These 
problems are solved by two different methods 
namely the finite element method and the finite 
difference technique and the results of both problems 
are then compared. 
 
 
 
2. CALCULATION OF B-FIELD IN THREE 

CONCENTRIC CIRCLES 
 
Consider a long current carrying conductor with 
a high permeable material surrounding the 
conductor. A cut view of the current carrying 
conductor and it’s surrounding plus the 
corresponding cross section of the geometry is 
shown in Figure 1. 
     There are three concentric circles with different 
relative permeabilities. The center circle, which is 
a conductor, has a radius of ra =1 Cm, the relative 
permeability of this region is one with a current 
density, Jz. Region two, which is made up of high 
permeable magnetic material (M-19: USS Transformer 
72 ... 29 gage), has a radius of rb = 3Cm. with the 
B-H curve shown in Figure 2. 
     Region 3, the surrounding medium, is the free 
space having a radius of rc  = 6 Cm. 
      In order to analyze the magnetic field in these 
regions, recognizing the low frequency nature of 
the problem, static field calculation has been 
performed. The static B-H curve has been broken 
into 5 different second order polynomials for the 
analysis. The corresponding vector potential equation 
is [9]; 
 

J)A(
)B(

=
µ

×∇×∇  (1) 

 
where, µ( B )  is the permeability of the region at some  

 
 
Figure 1. A cut view of the current carrying conductor and its 
surrounding. 
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Figure 2. Static B-H curve for M-19 steel. 
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radius, r. 
     Due to symmetrical nature of the magnetic 
field, this problem can be simplified to a one-
dimensional problem by realizing ∂Az / ∂θ and ∂Az 
/ ∂z are all zeroes. 
     Since the current is z-directed, Equation 1 becomes 
a scalar Poisson's equation in z-direction and, in 
cylindrical coordinate can be written as [10]; 

J))
r

A(r1(
rr

1 z

B

−=
∂

∂
µ∂

∂  (2) 

 

We seek the solution to the Poisson's equation in 
region one and the Laplace's Equation is solved 
for regions two and three along with the appropriate 
boundary conditions. The appropriate boundary 
condition in terms of the vector potential results  

 
Figure 3. Magnetic field density versus radius for different current magnitudes (Finite Element). 

 
 
 

 
Figure 4. Relative permeability versus radius for different current magnitudes (Finite Element). 
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from the continuity of the tangential component of 
magnetic field strength: 
 

.
r
A1 = 

r
A1 z

2

z
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∂
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µ
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∂
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µ
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The above boundary condition is used at the 
interface of the first and the second regions, as well 
as the second and third regions. The outer boundary 
condition is 

Az Irmax = 0 (4) 
 
This technique results in a solution for the vector 
potential, Az. The magnetic flux density, B, then 
can be calculated by, 
 

A x= B ∇  (5) 
 
In the finite element technique, the variational 
method (Ritz) is employed to solve the cylindrical  
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Figure 5. Magnetic field density vs. radius for different current magnitudes (Finite Difference). 
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Figure 6. Magnetic vector potential vs. radius for different current magnitudes (Finite Difference). 
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form of vector Poisson's equation shown in 2. In 
the variational method, the solution to the partial 
differential Equation 2 obtained in r-direction by 
minimizing the following functional [10-11]; 
 

∫∫ −













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
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µ
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dAr

2
1)A(F z

2

)B(

 (6) 

 
The corresponding elemental stiffness matrix as 
well as the force vector for each element can be 
written as ; 
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In order to solve this problem, a constant µ (B) from 
the linear part of the B-H curve is chosen for the 
core material and sets of simultaneous algebraic 
equations are formed by utilizing Equation 7 for all 
elements. The sets are then solved and from the 
solution new µ (B) calculated. The new µ (B) inserted 
into Equation 7 and other sets are formed, solved 
and a newer µ (B) computed. This process repeated 
until the difference in µ (B) from the last iteration 

with the one before that is less than some acceptable 
tolerance. It is noteworthy to mention that, the 
static B-H curve has been broken into 5 different 
second order polynomials for the analysis and used 
in the computation. 
     The plots of the magnetic field density, B, using 
the finite element technique as well as, the 
corresponding relative permeability for different 
current magnitudes from linear to fully non-linear 
cases are shown in Figure 3 and 4, respectively. 
     As seen from the above Figures, the plots are 
linear for 1A of current, then there is local 
saturation in the steel for 10A case, and finally for 
100A study, the steel part of the medium has gone 
into full saturation. The results obtained for the 
magnetic field density and the magnetic vector 
potential from the finite difference method are 
shown in Figures 5 and 6, respectively. 
     A comparison of these results obtained by the 
finite difference and the finite element methods 
show very close agreement. 
 
 
 
3. CALCULATION OF B-FIELD IN A LONG 

STATOR CORE 
 
Consider a long cylindrical steel core with a coil 
wrapped around it. A cut view of the coil, direction 
of the current in the coil, and the it’s surrounding is 
shown in Figure 7. 
     This problem consists of 3 regions. Region 1, 
which is made of high permeable magnetic material 
(M-19: USS Transformer 72 ... 29 gage), has a 
radius of  ra = 2Cm. with the B-H curve shown in 
Figure 2. Region 2 is a coil and has a current 
density only in θ direction (rc =4 Cm, Jθ≠0, µr=1). 
Finally, region 3 is the surrounding medium, air 
and has a radius of rb  = 6 Cm. Since this problem 
is symmetric in θ-direction the vector potential has 
one component in this direction, and the problem 
can be solved in 1-dimension only. The cylindrical 
form of vector Poisson's equation, 1 is; 
 

J))]rA(
r
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r
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r )B(
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 (8) 

 
with the following boundary conditions in terms of 
the vector potential in the cylindrical coordinate 
system; 

 
 
Figure 7. A cut view of the steel core with core wrapped 
around it and its surrounding. 
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The above boundary condition is known as the 
boundary condition of the third kind in which it 
involves the Aθ/r term. In the finite element 
technique, the variational method (Ritz) is 
employed to solve the cylindrical form of vector 
Poisson's equation shown in 8. 
     In the variational method, the solution to the 

partial differential Equation 8 obtained in r 
direction by minimizing the following functional 
[10-11]; 
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The corresponding elemental stiffness matrix as 
well as the force vector for each element can be 
written as; 
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Figure 8. Magnetic field density versus radius for different current magnitudes (Finite Element). 
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Figure 9. Relative permeability  versus radius for different current magnitudes (Finite Element). 
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The magnetic field, Bz, is given by 

r
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r
A=Bz ∂

∂ θθ  (12) 

 
The plots of the magnetic field density, B, using 
the finite element technique as well as, the 
corresponding relative permeability for different 
current magnitudes from linear to fully non-linear 
cases are shown in Figures 8 and 9, respectively. 
     As shown in the Figure 8 the magnetic field in  
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Figure 10. Magnetic field density versus radius (Finite difference). 
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Figure 11. Magnetic vector potential versus radius. 
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the core builds up to the maximum value and stays 
constant there. In Figure 9 the relative permeability 
has also stayed constant in the core and reduced to 
smaller values as the current magnitude increased. 
The number of turns is 5, therefore the corresponding 
current density for 1 A current is 3125 A/m2. 
     The result of magnetic field density and the 
magnetic vector potential using the finite difference 
technique for different current magnitudes and sixty 
nodal points are shown in Figures 10 and 11, 

respectively. 
     Comparing the plots in Figures 8 and 10 show 
different results for the finite element and finite 
difference solutions. 
     The discrepancy in the two results drastically 
increases when the relative permeability increases. 
It seems that the finite difference results are 
inaccurate when the relative permeability of the 
two media changes abruptly over the boundary. 
Now the number of grid points increased from 60 
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Figure 12. Magnetic field density versus radius for 120 points (Finite difference). 
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Figure 13. Magnetic vector potential versus radius for 120 points (Finite difference). 
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to 120 in the finite difference method and the 
magnetic field calculated again. Here are the 
results of magnetic field density and the magnetic 
vector potential. 
     The new calculation of the fields with 120 grid 
points shows closer results to the finite element 
method (but not accurate yet) when compared to 
the 60 grid points, therefore the error decreases as 
the grid point increases. 
     In order to verify the validity of the results, a 
comparison with the analytical solution should be 
performed. 
 
 
 

4. ANALYTICAL SOLUTION 
 
Since the permeability of the core stays at some 
constant value throughout the core region even in 
saturation then, Equation 8, can be transformed to 
a second order Cauchy-Euler equation and the 
analytical solution is 
 

Rr 0for      r ]J )R-R(2
[=A aac

core ≤≤µ
θ  (13) 

 

R r   Rfor    

   r3
RJ 

+
2

R R J-R J )R-R(2

+ 
3
rJ -r  

2
RJ

 = A

ca

1-a
3

coila
2

cair
a

2
ac

core

2
cair

≤≤








 µµµ

µ




µ

θ

 

 

r r for     

r )3
R J  

+
2

R R j-R J )R-R(2

+ 
3

RJ 
 -R 2

RJ 
 ( = A

c

1-a
3

coila
2

cair
a

2
ac

core

c
3

coil
c
2cair

≥








 µµµ








µ




µ

θ

 

 
where Ra is the radius of core, and Rc is the radius 
of coil. 
     The only problem here is that, the value of µcore 
is not known and cannot be calculated analytically. 
The magnetic field is then obtained using 
 

r
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r
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z ∂
∂ θθ  (14) 

can be written as; 
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The plots of the magnetic vector potential and the 
magnetic field density cannot be shown unless the 
value of permeability of the core material is known 
but the general shape of the curves is the same as 
the finite element method for any relative permeability 
value chosen from Figure 9. In the linear case, the 
relative permeability of the core is known to be 
6500. This value is substituted in the analytical 
solution; the shapes of the magnetic field density 
and the magnetic vector potential obtained are 
exactly the same as the finite element method but 
with a drastic drop in magnitude for the finite 
different technique. Hence, the numerical results 
obtained employing the finite difference method is 
not reliable.  
     In order to investigate the problem, the analytical 
solution is inserted in the finite difference 
representation of the boundary condition. 
 
 
 

5. FINITE DIFFERENCE APPROXIMATION 
OF MAGNETOSTATIC FIELD 

 
This section analyzes a possible source of error in 
modeling magnetostatic boundary conditions in a 
finite difference formulation of vector Poisson or 
Laplace Equation in cylindrical coordinates. 
     It was shown in section 3 that when magnetic 
fields are approximated from the vector potential 
using the first-order differences at the boundary, 
the results are in error. The error is proportional to 
the relative permeability of the two materials 
constituting the boundary. Only using an extremely 
fine mesh can minimize the error. The use of 
higher order differences can alleviate the problem, 
but yet the error remains proportional to relative 
permeability. An alternate formulation of the vector 
potential, in the one-dimensional case, is to make 
the error independent of the relative permeability 
of the two materials.  
     Now consider the problem in section 2, which 
requires the solution of the magnetic field density 
in and around an infinitely long solenoid. The interfacial  
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condition between core and coil implies 
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at the boundary. Here µr = µcore / µ0 is the relative 
permeability. In order to analyze the behavior of 
Equation 16, the discritization of the exact analytical 

solution at the boundary is examined. Without loss 
of generality, assume a constant value for the 
permeability of the magnetic material and a 
uniform grid size, d meter. 
     The (1/r) terms in Aθ do not contribute to flux 
density but arises from the requirement that Aθ is 
continuous. It should be noted that in the coil 
region the (1/r) term dominates since µcore is large. 
Using first order differences on either side of the 
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Figure 14. Magnetic vector potential versus radius  (Finite difference). 
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Figure 15. Magnetic Field Density Versus Radius. 
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boundary, the approximation to 16 becomes 
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Now substituting the analytical solution for Aθ in 
17 and simplifying it, yields; 
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where k1, and k2 are constants. 
In another words, expression in 18 can be written 
as; 
 

ε+µ≈µ corecore  (19) 
 
where, the error is directly proportional to µcore and 
incremental distance d 
     It is observed that for a practical range of interest 
the error caused by high value of µr is substantial. 
Recognizing that the dominant (1/r) term is the one 
causing the error then, a new variable A'θ is chosen 
such that A'θ = r Aθ. The new formulation for the 
boundary condition and Laplace equations with 
this new variable are; 
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The general solution to the Equation 21 employing 
boundary Equation 20 is 
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where C’s are all constants 
Using first order differences on either side of the 
boundary, the approximation to the new boundary 

Equation 20 is; 
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Where, in the right hand side of the Equation 23 
the independency on the µcore has been eliminated, 
therefore the dominant error in this problem is just 
a function of d. 
 

)d(f=ε  (24) 
 
As shown in the above Equations 23 and 24 the 
independency of the error on the µcore has been 
eliminated. This approach should perform very 
well with a coarse grid too. 
     Comparing the new boundary condition with 
the previous one in 9, shows a simpler boundary 
equation and of the second kind. Equations 20 and 
21 are solved using the finite difference method 
and results of the vector potential and magnetic 
field density are exactly the same as the one found 
by the finite element approach. These plots are 
shown in Figures 14 and 15, respectively. 
     As shown above, the problem of low magnetic 
field calculation is now fixed by changing the 
variable Aθ to the new variable A΄

θ. The results 
obtained with the new variable using the finite 
difference method are the same as the result found 
by the finite element method. 
 
 
 

6. CONCLUSIONS 
 
In this paper two numerical techniques are used to 
calculate the non-linear magnetic field density for 
two different problems in cylindrical coordinates. 
It was found that, low magnetic field build up is 
being exhibited when the finite difference scheme 
in conjunction with the boundary condition of the 
third kind are used. 
     The problem of low magnetic field build up 
does not appear in the finite element method since 
the boundary conditions are satisfied naturally and 
are not forced, as in the finite difference technique. 
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     It then continues with finding the cause error 
and hence demonstrating successfully a new 
method to change the boundary condition from the 
third kind to the second kind.  Using this method, 
the independency of errors on relative permeability 
of high magnetic martial for the linear and non-
linear B-H curve which caused the low field build 
up in finite difference technique has been eliminated. 
The results obtained are within less than 1% of the 
actual values. 
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