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Abstract   This paper proposes a new approach for calibration of dead reckoning process. Using the 
well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable 
calibration of dead reckoning. Besides, existing calibration methods usually require explicit 
measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long 
range finder sensors such as ultrasonic or laser range finders for automatic calibration. Manual 
measurement is necessary in the case of the robots that are not equipped with long-range detectors or 
such smart encoder trailer. Our proposed approach uses an environment map that is created by fusion 
of proximity data, in order to calibrate the odometry error automatically. In the new approach, the 
systematic part of the error is adaptively estimated and compensated by an efficient and incremental 
maximum likelihood algorithm. Actually, environment map data are fused with the odometry and 
current sensory data in order to acquire the maximum likelihood estimation. The advantages of the 
proposed approach are demonstrated in some experiments with Khepera robot. It is shown that the 
amount of pose estimation error is reduced by a percentage of more than 80%. 
 
Key Words   Sensor Data Fusion, Pose Estimation, Dead Reckoning Calibration, Occupancy Grids, 
Maximum Likelihood, Map Building 

 
براي خودمكان يابي ربات       DEAD RECKONING اين مقاله روش جديدي براي كاليبره كردن خطاي موجود در فرايند           در     چكيدهچكيدهچكيدهچكيده

 سنج حاصل شده    در اين روش از يك نگاشت محيط كه از تركيب اطلاعات سنسورهاي فاصله             . متحرك پيشنهاد شده است   
در واقع بخش سيستماتيك خطاي ادومتري بشكلي تطبيقي          . است، براي انجام اين كاليبراسيون اتوماتيك استفاده مي شود         

در حين اين كاليبراسيون، مكان محاسبه شده را         . گردد  جبران سازي مي   ،تخمين زده شده با يك تخمينگر حداكثر شباهت         
مزاياي اين كاليبراسيون   . ات ادومتري و اطلاعات سنسورهاي فاصله ياب محسوب نمود         مي توان بعنوان نتيجه تركيب اطلاع    

مشاهده مي گردد كه ميزان     .  بخوبي نشان داده شده اند     KHEPERAاتوماتيك در دو آزمايش انجام شده با ربات متحرك             
 .يابدكاهش مي هشتاد درصد س از بكارگيري روش پيشنهادي بيش از پخطاي تخمين موقعيت ربات، 

 
 
 

1. INTRODUCTION 
 
Almost, sufficient knowledge about the robot's 
pose (consisting of its position and the direction 
angle of its motion) is essential in every mobile 
robotic application. Usually the wheels of the robot 
are equipped with some motion encoders and a 

pose estimation is achieved by the data, provided 
by these encoders. But this estimation requires 
some calibration because there are several sources 
of errors in the robot's pose, estimated by wheel 
encoders. For example, wear and tear can change 
the diameter of wheels or loosen belts may cause 
odometry error and so on. Such effects can introduce 
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significant systematic errors into the robot's 
odometry. The requirement for such calibration is 
as old as the field of robotics itself and the 
literature of methods for calibrating robots (for 
example see [1-5]). Well-nigh, all of the exiting 
calibration methods have certain disadvantages. 
Many existing calibration methods call for human 
intercession i.e. in order to calibrate a mobile 
robot's odometry, a person (or some external agent 
or device) has to measure the exact position and 
direction angle of the robot, and deduce the physical 
model from these measurements. Because of two 
reasons, such approaches are unsuitable. Firstly a 
considerable amount of endeavor is involved in 
calibration process of the robot that normally cuts 
it off from its continuous operation. Secondly and 
more importantly, the physical characteristics of 
the mobile robot and the environment around it 
changes. For robot arms, robotic platforms and 
many other stationary devices, the environment is 
mainly static. In addition, the odometry error of the 
robot arm joint is strictly internal to the joint and is 
not deviated due to most changes of the environment. 
     On the other side, a mobile robot's odometry 
depends on the kind of surface that the robot is 
traveling on it. If the surface varies (e.g. from 
carpet to tile), then the calibration parameters 
change. Therefore, calibration process for such a 
robot, must be adaptive and in addition to pose 
estimation by dead-reckoning, mobile robot must 
fuse odometry data with a feedback from the 
environment. Normally, such a feedback is generated 
by sensory data. Existence of a rich chronicle of 
using multi sensor data fusion methods in mobile 
robotic applications (see [6,7,8,9] as some examples) 
enthuses us to fuse the sensory data with odometry 
data in order to compensate the errors and predict 
parameter variations. In such a localization process, 
robot's pose is estimated by utilizing both uncalibrated 
odometry and sensory data e.g. from a laser range 
finder sensor. Thus, the demand for a model of the 
odometry error is extinguished [10]. Thrun, has 
done a wide research in this area [11,12]. In his 
recent work [5], he implemented his algorithm on a 
mobile robot, that was equipped with long range 
finder sensors. He used a mathematical sensor 
model in his algorithm, that was based on ray 
tracing. In this method, the likelihood of a ``hit" 
depends on the occupancy probability of the grid 
cell that is being traced [13]. 

     In our map building and navigation experiments, 
we used a simple Khepera robot. This robot is 
equipped only with infra-red proximity detectors 
[14]. The data, provided with such sensors, are 
appropriate for short distances only. Besides, there 
is no exact model to convert the proximity values 
to distance values and applying the ray tracing 
approach. In this paper, a new approach is introduced 
for compensation of the systematic part of the error 
that exists in odometry data. In our approach, a 
new maximum likelihood method is applied to 
estimate the parameters. In the process of 
approximating the likelihood ratio, the local maps 
that are extracted from a previously created global 
map, are compared with the local map that is 
developed by the current values of the infra-red 
sensors of the robot. Actually, the extracted local 
map, depends on both the global map data and the 
estimation of the robot's pose. Thus, corresponding 
to each dead reckoning parameter values, there is a 
different extracted map. In our method, we seek for 
the parameter values, corresponding to an extracted 
local map, that is best fitted with the local map, 
generated from current sensory data. 
     In the second section, probabilistic formulation 
of pose estimation by dead reckoning (using 
odometry data) is briefly reviewed. Then, the new 
method for maximum likelihood estimation, is 
introduced in the third section. Experimental results 
will be given in the fourth section. Finally, we will 
give conclusions in the last section. 

 
 

2. ODOMETRY PARAMETERS: 
A BRIEF REVIEW 

 
Robot motion is probabilistically modeled in our 
calibration method. More distinctly,  let  

T),y,x( θ=π denotes the robot's pose in a two 
dimensional space ( θ  is the robot's heading 
direction). Robot motion is modeled by the 
conditional probability distribution )d,|'(P ππ  
where π is the robot's pose before executing an 
action, d is the displacement measured by the 
robot's odometry, and 'π  is the pose after 
executing the action. Assume that )k(dtrans  and 

)k(drot  are the estimated values of translational 
and rotational displacements in kth iteration and 
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)k(Dtrans  and )k(Drot  are their real values 
respectively. If | l | is the distance, traveled between 
the two iterations, then our probabilistic model will 
be expressed as below: 
 

rotrotrotrot

transtranstranstrans

e|l|)k(d)k(D
e|l|)k(d)k(D

+×α+=
+×α+=

 (1) 

 
where the terms |l|)k(trans ×α  and |l|)k(rot ×α  
stand for the systematic error and transe  and rote  
are zero-mean random variables and stand for the 
non-systematic error (refer to [3] for more details 
on systematic and non-systematic errors of 
odometry data). Calibration of the robot's pose 
estimation is defined by estimating transα  and rotα . 
     As (1) indicates, our model presumes that 
both errors increase linearly with the distance 
 
 

Figure 1. Robot’s kinematics, based on the values of 
rotational and translational displacements, estimated by dead 
reckoning. 

traveled. In practice, it has been found that this 
model is superior over other various choices, 
including models with more parameters [5]. 
Figure 1 shows a typical robot's kinematics. As it 
is demonstrated in the figure, robot's pose state 
transition can be expressed by the following 
equation: 
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3. PARAMETER ESTIMATION 
 

We estimate the parameters transα  and rotα  by 
using the sensory data and odometry data that have 
been gathered during robot motion, gradually. 
Actually, it is a maximum likelihood estimation 
problem and we search for the parameters that 
appear most plausible under the existing sensory 
and odometry data. This estimation is formulated 
as below: 
 

)S,Q|,(Pmaxarg),( 1kkrottrans
,

T*
rot

*
trans

rottrans

+
αα

αα=αα

(3) 
 

where 1kS +  means the sensory data (e.g. infra-red 
proximity or laser or ultrasonic range finder sensors or 
any other source of information related to 
environment perception) in the thk  iteration and 

kQ  is the collection of the whole odometry and 
sensory information that is gathered in thk  
iteration or was stored before. More specifically, it 
can be defined by: 
 

{ }kk2211k O,S,,O,S,O,SQ L=  
 
where iO  is the odometry data that is/was gathered 
in thi  iteration i.e. the erroneous measured values 
of translational and rotational displacements 

)i(dtrans  and )i(drot . 
     If the data set is large, then the maximum 
likelihood estimation problem is mathematically 
intractable (see [5]). We have made the whole 
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algorithm simpler and adaptive. In order to consider 
the variations of parameters and contribute 
adaptation to the estimation algorithm, a local 
maximum likelihood estimator as below estimates 
parameter values in each iteration: 
 

)S,Q|,(Pmaxarg),( 1iirottrans
,

T)i*(
rot

)i*(
trans

rottrans

+
αα

αα=αα  (4) 

 
and then, they are adapted by the following rule: 
 

T*
rot

*
trans

T)i*(
rot

)i*(
trans

T*
rot

*
trans

),(

),()1(),(

αα

→αα×γ−+αα×γ
 (5) 

 
Here 1≤γ  is an exponential forgetting factor, 
which decays the weight of measurements over 
time. It is usually selected near to 1 and was 0.9 in 
our experiments. 

 
 

4. LIKELIHOOD FUNCTION 
 

The only thing that is remained to be computed or 
approximated is the parameter likelihood function 

)S,Q|,(P 1iirottrans +αα  in (4). According to 
Bayesian rule, this value can be expressed as 
follows: 
 

)Q|,(P),,Q|S(P
)S,Q|,(P

irottransrottransi1i

1iirottrans

αα×αα×ς
=αα

+

+  (6) 

 
where 1

i1i )Q|S(P −
+=ς  is a normalizing factor 

and can be ignored during the maximization process. 
The knowledge in iO  without knowing about 1iS + , 

contains no information related to )i*(
transα  and )i*(

rotα . 
So ),(P)Q|,(P rottransirottrans αα=αα  and this is a 
priori probability that may also be discarded while 
maximization. It remains to calculate or 
approximate the term ),,Q|S(P rottransi1i αα+ . 
We call this term sensation likelihood. 

 
 

5. ESTIMATION OF THE SENSATION 
LIKELIHOOD 

 
Assume that W is the world and π∆  is the relative 

displacement between the robot's poses 1+iπ  and 

iπ . According to the theorem of total probability, 
sensation likelihood can be calculated by: 
 

π∆ααπ∆

×ααπ∆

=αα

+

+
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ddW),,Q|,W(P

),,Q,,W|S(P

),,Q|S(P

rottransi
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           (7) 

 
Since the sensor data 1iS +  is independent from iQ  
and transα , rotα  and the world W and the 
displacement data π∆  are independent from each 
other, (7) can be expressed by: 
 

π∆ααπ∆×

αα×π∆

=αα

+

+
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ddW),,Q|(P
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 (8) 

 
Besides, we know that W is independent of the 
motion data and parameters. Also π∆  depends 
only on the recent motion data iO  and the α  
parameters. Thus (8) can be more simplified as 
follows: 
 

π∆ααπ∆×

×π∆

=αα

+

+
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 (9) 

 
 
     Of course, integrating over all possible worlds 
W and all displacements π∆  is infeasible. We can 
approximate the sensation likelihood by 
substituting the integrals in (9) with their expected 
values. They are much easier to calculate. Finally 
the following expression, is proposed as a close 
approximation for the sensation likelihood: 
 

[ ](
[ ])rottransi
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where E[.] is an indication of the conditional 
expected quantity of a random variable. 

 
 

6. CALCULATION OF THE EXPECTATIONS 
AND THE APPROXIMATED LIKELIHOOD 

 
In this subsection, it is explained that how the 
two expected values and the approximated 
likelihood in (10) are calculated in our approach. 
The first term, [ ]i21 S,...,S,S|WE  is considered 
as a global occupancy grids map of the environment, 
that has been generated up to the thi  iteration. 
There is a large set of methods for creation of such 
a map. It can be generated by Bayesian fusion of 
sensory data [15,16] or by a more intelligent 
neural-Bayesian approach [9] or by our new 
method, called pseudo information fusion 
[17,18]. Although there are several approaches 
for environment mapping in mobile robotics, 
occupancy grids has been selected (See [11] for 
more information about mapping methods and map 
learning). That is because a grid-based map can be 
easily created, handled and applied to the likelihood 
estimation, as it will be shown later in this 
subsection. The second expectation term 

[ ]rottransi ,,Q|E ααπ∆  is an expected displacement 
vector, denoted by 
 

[ ]rottransi
T ,,Q|),y,x(E ααθ∆∆∆  

 
where T

rottransi |)l|,d,d(O =  is the recent 
movement information that is obtained by using 
the wheel encoders data. Equations 1 and 2 can be 
utilized to calculate the expected value of π∆ , 
knowing the above information. But the non-
systematic error term in (1) must be ignored 
because there exist no information about its value. 
     The final term that is remained to be 
calculated is the sensation likelihood itself, i.e. 

),W|S(P 1i π∆+ . This is the likelihood of the 
scan, recorded in the final position. If the 
sensors are long distance range finders (e.g. 
laser or ultrasonic sensors), then the likelihood 
value may be obtained by a simple ray tracing. 
In that case, the likelihood of a “hit” depends 
on the occupancy of the grid cell that is being 

traced. Consequently, sensor measurements that 
are more fitted to the occupancy grids map will get 
a higher likelihood value, while measurements that 
contradict the map, will be assigned a lower 
likelihood. See [5,13] for more details. 
     If the robot is not equipped with long range 
finder sensors, but only with some proximity 
range detectors (e.g. infra-red proximity 
detectors in the case of a Khepera miniature 
robot), then ray tracing cannot be applied to the 
likelihood estimation problem. In such a case, 
we may use the idea of local map matching. It 
is based on the fact that any sensor scan is 
uniquely corresponded to a local map around 
the robot. More specifically, there is a 
transformation T that transforms a sensor scan 

1+iS  to a local map Γ , i.e. )( 1+Τ=Γ iS . In our 
experiments with Khepera, this transformation 
has been implemented by using a feed forward 
neural network (multi-layered perceptron). We 
will discuss it in the next section. It is assumed 
that this transformation is a one-to-one 
correspondence (i.e. two different sensor 
measurements are transformed to two different 
local maps around the robot). This assumption 
is practically valid. So, the sensation likelihood 
may be expressed as below: 
 

),W|(PK),W|S(P 1i π∆Γ×=π∆+  (11) 
 
where K is a factor that can be ignored during 
maximization. Knowing a global map of the 
environment (or the world model W) and an 
estimated location of the robot in this map 
(calculated by the information in π∆ ), one can 
easily extract a previously known local map 
around the robot called 'Γ . We interpret the 
conditional probability ),W|(P π∆Γ  as a 
judgment about the existing fitness between 
these two local maps. This fitness is formulated 
by the following equation: 
 

2/I'2/I
'

1)',(f
−Γ+−Γ

Γ−Γ
−=ΓΓ  (12) 

 
where I is a matrix of the same size as Γ  and 'Γ  
with all elements equal to 1 and || . || is matrix 
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norm, defined by: 
 

∑∑=
i j

ijaA ||||||  (13) 

 
     This fitness measure is normalized to [0,1] 
interval. In an ideal case, where Γ  and 'Γ  are 
absolutely matched, this factor becomes 1. In the 
worst case, where the two maps are contradicting 
completely i.e. 1'ijij =γ+γ  the fraction part of the 
expression will have a numerator equal to its 
denominator and so, this factor will be zero. 
     Actually, only if there is sufficient occupied 
area around the robot, then (12) is a valid measure 
for the fitness between the two local maps. A 
threshold, minµ , is introduced for the total existing 
occupancy in both of the local maps. Parameter 
calibration by maximum likelihood will take place 
if the following occupancy condition is true: 
 

min' µ≥Γ+Γ  (14) 
 
     As a simple example, two typical local maps 
around the robot are shown in Figures 2 and 3. 
They have been extracted from a global map, 
corresponding with the same location of the robot 
while it acquires a sensor scan. The difference is 
that no calibration has been applied to pose 
estimation in Figure 2 while utilization of the 

 
Figure 3. A local map extracted from a global occupancy 
grids map. Calibration of pose estimation, has led to some 
rotational and translational displacement in the extracted map. 
 
 
adapted values of transα  and rotα  in calibration of 
dead reckoning in (1) has led to some rotational 
and translational displacements θ∆  and L∆  in the 
extracted local map in Figure 3. By the way, any of 
the two maps, can play the role of 'Γ  in (12) and 
be compared to the local map, generated from the 
recent sensor scan. 

 
 

7. STEP-BY-STEP ALGORITHM 
 

Figure 4 demonstrates a step-by-step algorithm of 
our calibrated pose estimation method while the 
robot is exploring and mapping the environment 
around itself. It acquires a sensor scan iS  at the thi  
iteration. By using the recently obtained sensory 
data it updates a global occupancy grids map, that 
has been gradually created by employing a map 
building method e.g. Bayesian method [15,16], 
Dempster-Shafer reasoning [19] method or pseudo 
information method [17,18]. The robot moves to 
a new location in the next step ( th1i + iteration). It 
acquires the odometry data iO  and gets a new 
sensor scan 1iS + . The robot is able to create a local 
map, merely by the new sensory data (without 
requiring any positional information). On the other 
hand, it estimates its new location, by making use 

 
 
Figure 2. A local map extracted from a global occupancy 
grids map. No calibration has been applied to the robot's pose 
estimation process in this case. 
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of the odometry data and calibrating its estimate by 
the current dead reckoning parameters transα  and 

rotα . It uses Equation 1 without the non-systematic 
error terms and Equation 2 in this step. Now a 
local map can be extracted from the occupancy 
grids that are centered at the estimated position of 
the robot. This map is calculated in the same size 
of the local map that is generated from sensory 
data. In the next step, the two maps are checked if 
they satisfy the sufficient occupancy criterion. If 
they do not, algorithm skips to the next iteration by 
setting 1ii SS +=  and updating the map etc. 

Otherwise, for each possible ( )T)i(*
rot

)i(*
trans ,αα  value, 

the new robot's pose is re-estimated and the 
corresponding local map is re-extracted and the 
fitness measure ( )',f ΓΓ  is calculated by (12). The 
parameter values, which lead to maximum fitness 
and hence to maximum likelihood, are chosen as 

)i*(
rot

)i*(
trans ,αα  and applied to Equation 5 to adapt transα  

and rotα  values in the next step. Finally, the next 
iteration is started by replacing iS  with 1iS +  and 
updating the map etc. 

 
 

8. EXPERIMENTS 
 

Khepera miniature mobile robot has been applied 
to exploration, localization and map building 
experiments. In these experiments, the data provided 
by 8 infrared sensors around Khepera, were the 
only sources of information (See  [14] or [20] for 
more details on Khepera sensors and structure). 
There is no accurate inverse model for the infrared 
proximity detectors, like the model for ultrasonic 
range finders [21]. We trained a feed-forward 
multi-layered perceptron to implement an inverse 
model for the sensors. The inputs of the network 
are the eight proximity values, and the local 
coordinates of a cell in the occupancy grids map 
around the robot. The output of the network is the 
occupancy probability value of the cell. 
     The architecture of the neural network is shown 
in Figure 5. This output value is fused with the 
associated occupancy probability value of the same 
cell in a global map of the environment. This 
global map has been calculated based upon 

 
Figure 4. Our proposed step-by-step algorithm of calibrated 
pose estimation for a mobile robot, while it is exploring and 
mapping the environment around itself. 

 
 
resulting probability is applied to improve the 
global map. In other words, during exploration of 
the environment by the reactive obstacle avoidance 
method of Braitenberg [22], Khepera creates a 
local occupancy grids map in every sensing 
iteration. These local maps are integrated with an 
initially blank global map and it improves 
gradually. Another more intelligent alternative for 
obstacle avoidance is our newly introduced method 
of fuzzy rule-based command fusion [23]. 
     Figure 6, shows the typical environment in which  
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Figure 5. The feed-forward perceptron that was trained for 
local map building, by using proximity data, provided by 
Khepera's infrared sensors. 
 
 

 
 
Figure 6. A photo of khepera and the environment, in our 
experiments. 
 
 
our experiments have been done. The well-known 
UMBmark (University of Michigan Benchmark) 
was tried in the first experiment. The robot travels 
a square path with a perimeter of 200cm length, 16 

times in clockwise and 16 times in counterclockwise 
direction. 
     Figure 7 shows the occupancy grids map, created 
by pseudo information fusion, and the square path 
inside it. Practically, the robot does not travel the exact 
square path in each round, because the motion 
control commands are created based on the robot's 
pose information, acquired from the erroneous 
odometry data. It causes the robot not to return to 
its initial starting point in each round. This 
deviation of the location of the robot with respect 
to the original point of motion starting was 
manually measured. In the first trial of 32 rounds, 
their mean values were 5.35x =∆ mm and 

3.26=∆y mm, equivalent to a relative error of 
2.21%. This relative error is computed by 

( ) ( )L4yx%100
22

∆+∆×  where 50L = mm is 
the side length of the square path. The UMBmark 
calibration parameters were calculated to be 

9991.0Ed =  and 9953.0Eb = . They are some 
correction factors for wheel diameter and 
wheelbase, respectively. They were computed, 
based on the results that were obtained in the 
first trial, in order to decrease the systematic 
odometry error (Refer to [3] for more details on 
UMBmark basics and formulation). In the second 
trial, the calibrated values of the wheel diameter 
and base were applied to odometry and motion 
command generation process. This calibration 
caused a lower average deviation of 3.15=∆x mm 
and 8.12=∆y mm, or in other words a relative 
error of 0.99%. In the third trial, we applied our 
proposed calibration method to the pose estimation 
and motion commands generation. It was observed 
that the robot traverses the square path more 
accurately and the average position deviation was 
measured as 2.3x =∆ mm and 6.1y =∆ mm. This 
is equivalent to a relative error of 0.178%. It is 
seen that relative estimation error has decreased by 
82%. 
     In the second experiment, the robot was moved 
from a start point to an end point in a specific 
route. Two routes are shown in Figure 8. The 
actual path and the path that was estimated to be 
traversed by the robot are depicted by solid and 
dash line respectively. It is observed that the 
estimated route deviates gradually. Finally, the end 
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Figure 7. The square path, traveled by the robot in our 
UMBmark experiment. 
 
 
point that was actually reached by the robot is 
located in a far distance from the estimated end point 
and following errors were measured: 
 

mm168|yy||y|

mm269|xx||x|

PathEstimatedEnd

PathEstimatedEnd

=−=∆

=−=∆
 

 
At the same experiment, the same odometry data 
were applied to our proposed calibrated version of 
dead reckoning method and another estimation for 
the path was obtained. Both the actual and the new 
estimated paths are depicted in Figure 9. In 
contrast with the previous case, it is observed that 
the estimated path is much closer to the real one. 
That is because of the efficient calibration of 
systematic error of odometry data by using the 
adapting parameters *

transα  and *
rotα . Indeed, end 

position estimation errors were measured as below: 
 

mm38|yy||'y|

mm25|xx||'x|

PathEstimatedEnd

PathEstimatedEnd

=−=∆

=−=∆
 

 
Thus, estimation error has been reduced by: 

 
 
Figure 8. Solid and dash lines show the real and the estimated 
paths, traversed by the robot respectively. 
 
 

 
Figure 9. Solid and dash lines show the real and the estimated 
paths, traversed by the robot respectively. In this case, our 
proposed calibration method has been applied to the pose 
estimation to generate the estimated path. That is why it is 
much closer to the actual path. 
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Table 1 shows the summary of the experimental results. 

 
 

9. CONCLUSIONS 
 

A new approach for calibration of dead reckoning 
process in pose estimation of mobile robots was 
proposed in this paper. We attempted to model 
the systematic part of the error, existing in 
odometry data, by introducing two calibration 

parameters and estimating them adaptively. It 
was suggested to fuse the current sensory and 
odometry information with the information that 
had been obtained previously. The local map, 
generated by current sensory data, is integrated 
with a local map that is extracted from a global 
occupancy grids map of environment. Actually, 
the most desired parameters are those, which 
lead to a mostly fitted version of an extracted 
local map. It was shown that the proposed 
approach gives a maximum likelihood estimation 
of the parameters. The most important advantages 
of the method are its simplicity and its 
applicability to the cases where the robot is 
equipped with short-range distance sensors 

TABLE 1. Summary of the Experimental Results. 
 

Experiment Title 
 

x∆  
Final Estimated Error 

of x-coordinate  

y∆  
Final Estimated Error 

of y-coordinate 

22
yxl ∆+∆=∆  

Final Estimation Error of 
travelled distance 

Square Path Without 
Calibration 35.5mm 26.3mm 44.18mm 

Square Path With UMB 
Calibration 15.3mm 12.8mm 19.95mm 

Squared Path With the 
Proposed Cal. Method 3.2mm 1.6mm 3.58mm 

Comlex Cureved Path With 
UMB Calibration 269mm 168mm 317.15mm 

Comlex Cureved Path With 
the proposed Cal. 25mm 38mm 45.49mm 

 



IJE Transactions B: Applications Vol. 15, No. 2, July 2002 - 155 

(proximity detectors). In our experiments, 
Khepera robot was utilized to examine the 
performance of the method for reduction of 
pose estimation error. The proximity data, 
provided by the infrared sensors of the robot 
and the odometry data, provided by wheel 
encoders, were the only sources of information in 
these experiments. Results show that our approach 
causes a reduction of more than 80% in pose 
estimation error. Besides, the proposed approach 
is applicable in an online case. It means that 
the robot may calibrate its position by this 
method, while it is exploring the environment 
around itself and mapping it. In this case, the 
important difference is the fact that there is 
no previously created global map for extraction 
of local maps. But it seems very probable 
that a partially generated map can be useful 
to be applied in our method. 
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