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Abstract This investigation deals with M/M/R/N machine repair problem with R non-reliable
service stations which are subjected to unpredictable breakdown. There is provision of an
additional server to reduce backlog in the case of heavy load of failed machines. The permanent
service stations repair the failed machines at an identical rate (4 and switch to faster repair rate
My when all service stations are busy. By using matrix geometric theory, the formulae for
obtaining the optimal number of service stations is derived.
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INTRODUCTION

The machine repair problem has been studied
in many frame works over the past three
decades. Feller [1] introduced M/M/R/N
machine-repair problems and obtained analytic
steady-state solution. Many researchers from
have occasionally studied the server breakdown
Jain [3]
investigated diffusion approximation for G*/G/r

machine-repair systems [cf. 2,3,4]
machine interference problem with spares.
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Sztrik and Bunday [6] analyzed the asymptotic
behavior of the machine interference problem
with machines and a single operator. Jain and
Premlata [7] investigated M/M/R machine
repair problem with reneging and obtained
some measures of effectiveness.

In some queueing systems it is feasible to
introduce the additional servers in order to
reduce the waiting time of customers as well as
system cost. The queueing systems with
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additional servers have been rarely studied.
Murari [8] developed bulk service finite
queueing system with a special additional
channel. Mukaddis and Zaki [9] studied M/M/I
queueing system with additional servers for a
long queue. Varshney et al. [10] investigated
M/M/m/K queueing system with additional
servers. Recently Jain and Ghimire [11]
developed nopassing M/M/m/K queue having
additional servers for a longer queue.

In many real life situations service stations to
which failed machines as taken to be repaired
may be subject to unpredictable breakdown.
Such a service station is termed as "non-reliable"
service station. Several researchers have
investigated machine-repair problems with
non-reliable service stations. Avi-itzhak and
Naor [12] first introduced the M/M/I queueing
system with non-reliable service station. Neuts
and Lucantoni [13] studied infinite source
Markovian M/M/N queueing system with
N-non-reliable service stations. Recently Wang
and Hsu [14] developed the cost model to
obtain the optimal number of non-reliable
service stations.

In many day-to-day advanced technology of
machining systems, from the optimization
standpoint, the service rate may be speeded up
or slowed down in order to reduce the cost
associated with service. In this investigation we
study M/M/R/N machine-repair system with R
non-reliable service stations where the server
switches to faster service rate when all service
stations are busy. The model under study has its
wide spread applications in real life situations
such as in production systems in textile
windings, for mathematical description of terminal
computer systems, pilotless aircraft systems etc.
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MATHEMATICAL MODEL AND ANALYSIS

We study the M/M/R/N machine-repair
problem with N identical operating machines
and R non-reliable service stations. The failure
time of each machine is assumed to be
exponential distributed with mean rate A . The
service stations repair the failed machines
exponentially with rate y and switch to fast rate
My (>u) when all the service stations are busy in
providing service to failed machines. The service
stations may breakdown in Poisson fashion with
rate @ and are repaired exponentially with
service rate f . An additional server having
service rate y, is provided when number of
failed machines equal to N; The rate
dependent failure and repair rates are
respectively given by

By = {(N—n),l , osn<N

@] otherwise
and .
nu, 1<sn<R-(i+1)
fn = (R—i)ﬂf, (R-i)<sn<N,-1

(R~I'),uf +ug, Nl <n<N

We denote P, (n) as the probability that there
are 1 broken service stations and n failed
machines.

The steady-state equations for P; (n) are:

(D =0
(NA+Ra)py(O)=upy (1) +pp,(0), n=0 (1)

[ (N-n) a+Ra+nu] po(n)= (N-n+1) ip,y (n-1)
+8p; (1) + (n+1) upy (n+1)
1<n<R-1 (2)

[ (N-n) a+Ra+Ryfjp0(n)= (N-n-1) op, (n-1)
+Bp; (1D +R,4fp0 (n+1)
R<n<N,-1 3)
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(Ra+Rup+ua) po [N1] =pg [N1-1] +8py (Ny]
n=N1 (4)

[ [N-n]) a+Ru+uq] py(r)= (N-n+1)ipg (n-1)
+ppy MO + (Ru+pg) pg (r+1)

Nj+1<n < N-1 5
(Ra+Rug +ua) po (N) =ipy (N-1) +ppy (N,
n=N (6)
(i) 1<i.<R-1

[Na- (R-1] a+13] p; (0) = (R-1+1) ap;_; (0)
+up; (1) + (131} pp; 4 (0) n=0
(7
[ (N-n) a+ [R-1) a+A+nu+ip] p; (n) =

(N-n+1)ap; (n-1) + (n+1]) up; (n+1)
+ (R-i+1)ap, ; > + [i+1]pp; 4 0
l<n <R-(i+1) (8)

[[N—n] 2+ (R-i) a+ [R-i] #fﬂﬂpi ny =
(N-n+1]ap; (n-1) + [R+i “4P; (n+1)

+ [R-i+1)ap, > + (i+1] pp; 4 0
R-i<n <N,-1 9)

[(N-Ny)i+ (R-i]a+ [R-i] /tf+p¢a+iﬁ]
Pyl )=WN-N;+1pp(N;-1)+(R-i+1)

ap, ((Ny)+ (i+1)pp, {(N;)  n=N, (10
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HNJZ] A+ (R—l] a+ [R—l] u Fugt
i,@}pl. > = (N-n+1)ap, (n-1)
+ [R-i+1}ap; | > + (i+1])pp; 4 (1O

i+1

N;+1<n <N-1 (11)

((R-1) a+ (R-i) yf+/4a+iﬁ] p; (N) =ip; (N-1)
+ (R-i+1)ap; | (N) + (i+1) gp; .4 (N] n=N

(12)
(iii) i=R

(Ni+Rg) pr (0) =apgp_, (0], n =0 (13)

[(N-n)i+Rp] pp (nd = (N-n+1]ipp (n-1) +

app 4 (), s n <N;-1 (14)

[[N-Ny) i+ (w+Re) | pg [Ny) = [N-Ny+1]2
+Pg (N1-1]) +apg 4 [Nq), n=N;

(15)

[(N-n)a+ (va+Ra)] PR (M = (N-n+1) ipg (n-1)

J +apg_; (0, Ny+lsnsN-1..

(16)
(#va+RB) Py (N) =ipp (N-1) +apy 4 (N),

n=N (17)

Solving equation (13) to (17) recursively for pr

(n) in terms of pR-1(n) we have

P (0] :[—NA:R—IQ)PRJ (0) (18a)
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n-N,
H NN—1+1

P nd == 1— y+
]‘[ { (N-Ny-i]) +ua+Rp}
i=0
n-N |
a [[ (N-Ny-i-1)2
=0 L PR—'I (Nl_lj

{(N-Ny+1)a+Rg} [[ {(N-N,-i] A+ua+R8}
i—-0

n-N,
n-N H [’V*leﬂ-l] A
[ =y
. ;n:;\/2+1 T PR'I
Tl {(N-Nyi+l) dsugRE)

i—s

(s+N-1]

. Pp_y
{(N-n) a+ug+Rp}

l<n <N (18b)

Ny-1
Ny-1 H (N-r+1) 4

y=
where Y = Z = ]
1

j=1 H {(N-r+1) 2+Rp}

l<n <N,-1 77

PR_1 U_lj

MATRIX GEOMETRIC SOLUTIONS

Using matrix-geometric theory (See Neuts[13])
to find the steady-state probabilities, we have
transition rate matrix A in tridiagonal form:

Y, Z,
X1 4
X, Y, Z,
i : B
Xpa Yroa Zpoy
Xro1 Yro1r Zra
XR YR (19)

where each element of this matrix is a square
matrix of order N+1 and given as follows.
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X=- (R-i+1)d , 1<i<R (20

- (i+1) 8L, 1<i <R (21)

I being a square unit matrix of order N+1 and

Yoi 2o |
Xy Yi, Zy;
Xo; Yy Zg;
Y& : H ; |
X!\’-Z.z YN-Z,( ZN»'Z,I' 1
Xy Yvog Zvovg
Xyi Yail
(22)
The elements of Yi for 0<i <R are
X, ;=- (N-n+1] 2 0<n <N
(N-n) A+ (R-i) a+ip+nu 1sn<R- (i+1)
= (N-n) a2+ [R-i) a+ip++ [R—i]‘uf :R-i<ns<N;-1
(N-n)a+ (R-i) a+ip+ (R-i)ug :N;<nsN
-(n+1)u; 1<n<R-(i+1)
ni= (R—i)uf; (R-i)sn<N;-1
(R—i)yf +ug; N{<n<N
steady-state probability vector of A and

P.= {Pi(o),Pi(l),

1

Pi(N)} for 0<i<R  the

steady-state equation PA=0 can be expressed as

PoYy-Rap,=0 (23)
ipp; g ~PiYy+ (R-i]ap,1=0, (24)
Repp 1 -PrYg =0 (25)

Performing successive substitutions, we have

p=Rap,Y;’ (26)
and
n=(R-1)apy (YY) . (27)
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. -1 . .
p= [R—L] P, q {Yi_YO,i—l} ,2<i<R-i (28)

-1
Py |Yp-Rap{¥Yg_1-Yop3) " | =0 (29)
where
Y, o=RasY;' (30)
and

. . -1
Yy, 1= (R-i-1] a (i8] {Yi—l_Y(),i—2} €2

P, obtained from equation (29) and P, P, , ...
, PR, obtained from equations (26)-(28) can

also be determined by normalizing condition
R

Z P,B =1, where B is the unit column vector.
i=0

STEADY-STATE CHARACTERISTICS OF
THE SYSTEM

System characteristics and their expressions are
obtained as follows:

L, = The expected number of failed
machines when all the service stations are
operative.
N
= Z np; (n)
n=1
L, =The expected number of failed

machines in the system when i service stations
are broken down

N
= Z np, (n) , 1<i<R
n=1
L. = The expected total number of failed
machines in the system

N

Z np; (n)
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Lq = The expected total number of failed
machines in the queue

R N

YooY [®-ip )]

i=0 n=R-1

E(O) = The expected number of operative
machines in the system

R
=N-) L
_ N—Lz=0

E(D) = The expected number of defective
(broken) service stations

R N
= Z Z ip; (n)
i=1n=0
E(I) = The expected number of idle service
stations in the system

R-1 R-i

=) L |[R-)-n]pm)
i=0 n=0
E(B) = The expected number of busy service
stations
= R-E(D)-E(I)

M.A. = Machine availability

R
Li

N N

O.U. = Operative utilization (the fraction of
busy service stations)

- E(B)

R

DISCUSSION

Machines repair problem under study is of
immense importance due to its specific
applications in textile production system, in
mathematical description of terminal computer
system and in pilotless aircraft systems for the
military use. The provision of additional server
and heterogeneous service discipline are common
in various machining system of day-to-day
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increasing complex technology world. Several
performance characteristics obtained may be
helpful to determine optimal operating policies
for system designers.
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