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Abstract This paper presents a simple and computationally-efficient algorithm for solving steady two-
diemensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive
viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer
approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial
differential equations. The resulting system of partial differential equations is then solved using an
efficient implicit finite difference scheme. A nonuniform mesh is used and the eddy viscosity concept
models the turbulent Reynolds stress terms. The solution for the steady subsonic and transonic Euler
equations is obtained using an upwind finite-volume scheme. The scheme is based on artificial viscosity
in the governing equations to provide the necessary dissipation for numerical stability. The system of
equations is linearized by a Newton method and the resulting fully coupled system of algebraic equations
is solved. Convergence of the method is demonstrated to be robust, taking very few iterations to reach
machine accuracy. Shock-Capturing methods extends the applicability of the scheme to situations with
shocks. The two schemes are coupled and an iterative procedure is used to link the results of the inviscid
and viscous flow fields. Computations are made for a series of flows. Results for NACA 0012 airfoil flows
are presented and compared with experimental data and other computational results.
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INTRODUCTION dynamics over the last 20 years toward the develop-
ment of algorithms for flows over lifting bodies. It is
Much progress has been made in computational fluid the goal of computational fluid dynamics to eco-
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nomically predict the viscous flow about three-di-
mensional bodies. Indoing so, twodistinct approaches
have evolved. One approach has to do with solving
fhe Reynolds-averaged Navier-Stokes equations over
the entire flow. In the other approach the boundary-
layer equations along with an inviscid system simul-
taneously describe the viscous-inviscid interactions.
Currently, the Navier-Stokes approach offers the
advantage of being more general, while the viscous-
inviscid interaction approach can be computationally
more efficient Investigations conducted by Cebeci et
al. [1] has shown an efficient prediction of the incom-
pressible flow over the airfoils at high and low
Reynolds number using a viscous-inviscid iterative
procedure.

In body fitted coordinates, the boundary-layer
approach removes the tangential stress term and
neglects the normal component of momentum equa-
tion. To retain a second order accurate solution, one
must independently prescribe the distribution of pres-
sure over the edge of the boundary-layer.

The inviscid steady subsonic and transonic flow
over the boundary layer is solved using an upwind
finite-volume scheme of the Euler equations. The
resultant distribution of the pressure is then used
interactively for describing the pressure distribution
within the boundary layer.

The following outlines the methodology used in
obtaining the interactive solution of the flow field
using the transonic inviscid-viscous interactive shock-
capturing method.

Viscous Flow Field

The boundary-layer flow for steady, two-dimen-
sional, compressible coupled flow over a two-di-
mensional body is govemed by the following

equations:

9 ou+ - EW=0 )
ox oy
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subject to boundary conditions:
y=0,u=v=0, (5!{—) =0 C)
aylw

y=8 u=ue (x), H=He

The above conservation equations writteninterms
of the Falkner-Skan variables, along with an eddy-
viscosity formulation for the-transition and turbulent
regions of the flow yield a system of differential
equations. As equation 2 demonstrates, the velocity
profile at the outer edge of the viscous-layer needs to
be defined . This is obtained by solving the inviscid
flow-field, as described in the next section.

Here a mixing-length and eddy-viscosity formu-
lation based on that developed by Cebeci and Smith
[2] are used to model the Reynolds shear-stress
terms.

The solution of the resulting equations is obtained
using the Keller’s two-point, finite-difference method
described in Reference 3. In this method after trans-
forming the equations 1-3 into a system of first-order
differential equations, the derivatives are approxi-
mated by centered difference quotients and averages
centered at the midpoints of the calculation cells. In
this way, with the use of nonuniform meshes, second
order accuarcy of the solution is obtained. The non-
linear system of algebraic equation is then linearized
by Newton’s method and solved using an efficient
block-tridiagonal factorization technique.

Inviscid Flow Field

The inviscid flow is governed by the Euler equation,
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which in its two dimensional form is;
S 0% o8- &)

Here Qis the vector of unknown variables, E is the
flux vector of variables in the x-direction and F is the

flux vector in y-direction, given as follows:

P
_|pu

Q= ov ©)
pe

E= @)

pv

F= puv ®)

pvi+P
(mt'.'P) \J

Solution of the above equations starts by trans-
forming the physical coordinates to the computa-
tional domain. The equations in their transformed
form are:

__ +__+ —_— ®

C=C(x,y)
n=nx.y)

(10)

and
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0= 11
Q ; amn
E=§-[QE+§yFJ (12)
1_==}-[an +,F] (13)

In which, J is Jacobian of the transformation. Using
an algebraic mapping of the outer flow field enables
us to solve the above system of equations in the
transformed geometry.

The coordinates of the transformed domian is:

C:X/L (14)
=Y-yux) 15)
T-yux)

Where y, (x) describes the physical geometry of the
airfoil and L and T are the length and height of the
computation zone, respectively.

NUMERICAL METHOD OF SOLUTION

Here a quasi-second order upwind finite-volume
method is used to numerically solve the inviscid flow
field. This method has the advantages of providing
stability for the explicit scheme used, which in addi-
tion dampens the dispersion of the numerically gen-
erated errors, notably those at the shock zone.

Utilizing this method of solution, changes the
transformed equation to:

& + Aa_6_+ Ba_6_=0 (16)

a1 af an

Where:

a=2E 3 an
9Q aQ
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In this finite difference form, the above equation becomes:

“~n+l ==n

Qij -Qu , (AFmi+AFxp  (B'Fluxy+BFluxy)
At AL AM

(18)
where A*, A", B*, B, Flux{, Fluxy, Flux;, and Flux; are
defined as follows;

_ XaDaX2a +Xa IDaIXA

A > (19)

A= XaDaX2 - Xa IDa XA 20)
2

p* X8DBX3 + X5 D5 |X5 @1
2

B XB;'BXBI-E(BIDBIXE @2)

tht=A*(6i+%.j 61%1) (23)

Fluxi=A (6i+%,j -ai-;,j) 24)

Fuxi =B"(Qijo1 -Qijl) (25)

Fux; =B (Qije -Qii- ) (26)

D, and D, are the diagonal matrices and X, and X
are the characteristic vectors of matrices A and B,
respectively. Also Qi +%,,' and Q;. %_,- represent the
vector of unknown variables on two sides of cell (i, j).
Similarly, 6i,j+% and (_2,-,,:% are the values on the top and
bottom surfaces of the calculation cell (i, j). To assure
astable solution, the time step is chosen according to;

e 80 (an)
A"“‘[m’u—w] .
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whereA__ is the maximum characteristic of matrices
A and B. Also, superscripts ‘+’ and ‘-’ denote the
direction of the characteristic vectors.

The finite volume approach assures aconservative
form of solution for the transonic inviscid flow field
equations. This provides us with the ability to capture
shock as it happens and where it happens. The integ-
rity of the isentropic flow solution is checked by
examining the value of the total enthalpy of the
inviscid flow field.

The parameterof interest is the velocity distribution
over the outer edge of the boundary layer.

RESULTS AND DISCUSSION

Solution of the compressible Navier-Stokes equa-
tions using the thin-layer approximation near the
surface of the airfoil requires the specification of the
velocity profile on the exterior of the viscous layer.
This is obtained by solving the Euler equation (5).
After constructing the mesh through an algebraic
formulation around the airfoil NACA 0012, the in-
viscid flow field is numerically solved by obtaining
afinite-volume approximation of the governing equa-
tions. Figure 1 shows the calculated Mach contours atM_=
0.85 and at azero angle of attack. The Figure indicates there
exists a shock away from the leading edge of the airfoil.
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Figure 1. Computed Mach contours on aNACA-0012 wing with
zero angle of attack and M_= 0. 85
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A comparison between the calculated CP values
and the results of Reference 4 is shown in Figure 2. It
should be mentioned that the results of Reference 4 is
obtained for a grid system of 190 x 30, while the
present results is for a grid system of 60x20 mesh.

The results confirm the correctness of the numeri-
cal scheme used for the solution of the inviscid flow
field. In order to obtain the thin-layer results one
needs to specify the inviscid velocity profile over the
outer edge of the viscous layer. Figure 3 shows the
calculated inviscid velocity profile using the above
mentioneal transonic finite-volume approach. This
result serves as a means for defining the pressure
distribution inside the boundary layer.

The interaction between the results of the inviscid
code and the boundary layer calculation is through
the displacement thickness and the induced blowing
velocity onthe upper edge of the boundary layer. The
following describes the iterative procedure for ob-
.taining the coupled inviscid-viscous results;

The calculation first starts by specifying the lower
boundary condition over the surface of the rigid
airfoil. The inviscid Euler equations are solved for
the velocity distribution over the surface of the air-
foil. Then the boundary layerequations 1-3 are solved,

T T
—==%— Calculated Results
—=¢— NASA Results

i
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Figure 2. Comparison of the calculated values of CP with those
of Reference 4 for flow over a NACA-0012 wing of Figure 1.
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Figure 3. Computed velocity profile on the outer edge of the
boundary layer over a NACA-0012 wing of Figure 1.

which-in tum calculate the velocity and boundary
layer profile over the airfoil. The calculated bound-
ary layer thickness is then used for specifying the
"new" airfoil geometry and along with the injected
velocity profile is used as the lower boundary condi-
tion for the next iteration of the inviscid transonic
code. The above procedure is repeated until a conver-
gence between the two flow-field results is obtained.
Figure 4 shows the calculated boundary layer thick-
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Figure 4. Computed displacement thickness on a NACA-0012
wing with zero angle-of attack and M_= 0.85
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Figure 5. Computed values of C, for flow over a NACA-0012
wing of Figure 1.

ness. It indicates that after the first few cells, due to
the amount of turbulence, the thickness of the bound-
ary layer enlarges, until the flow separation happens.
The calculated values of C, are shown in Figure 5.
Here we seé an expected trend for the calculated
values of C..

CONCLUSIONS

The computational results of subsonic-transonic flow
over aR airfoil are presented in this paper. An explicit
upwind finite-volume scheme solves the conservative
Euler equation for determining the velocity (or
pressure) distribution over the outer edge of the
viscous boundary layer. This result is coupled with
the solution of the boundary-layer equations using an
ihcompressible, two-dimensional, implicit finite-
difference code. An iterative procedure matches the
results of the two procedures, until convergence of
the calculated values of two schemes is obtained on
the edge of the boundary-layer. The calculated values
of the pressure distribution exhibits an excellent
compan’sbn with the results available in the literature.
The computational results show reasonable values
and an expected trend for the calculated values inside
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the boundary-layer.
NOMENCLATURE

p: Density

u: x-component of velocity

v: y-component of velocity

pv: averaged value of pv

C; specific heat

Pr; turbulent prandtle number

g _: eddy viscosity

K: thermal conductivity

p,: density of inviscid flow

u_: x- component of inviscid velocity
H: total enthalpy

8: boundary layer thickness

e, total energy

P: static pressure

€,n: computational domain coordinates
J: jacobian of coordinate transformation
_(i transformed form of Q matrix

E: transformed form of E matrix

F: transformed form of F matrix

L: length of body

Y, (x): curve of body as a function of x

t : transformed form of time

Flux{*: net flux at right boundary of a finite volume cell

Flux{: net flux at left boundary of a finite volume cell

Flux*: net flux at top boundary of a finite volume cell

Fluxg, 7: net flux at bottom boundary of a finite volume
cell

At: time step

AC: p v step

An: m step

A: jacobian matrix of E with respect to 6

B: jacobian matrix of F with respect toa

A*: computed A at the right boundary of a finite volume cell

A": computed B at the top boundary of a finite volume cell

B*: computed B at the top boundary of a fnite volume cell

B-: computed B at the bottom boundary of a finite volume
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cell
D,: a diagonal matrix whose elements are eigenvalues of
A
D, : a diagonal matrix whose elements are eigenvalues of B
X, : matrix of eigenvectors of A
X_: matrix of eigenvectors of B
Xg: inverse matrix of X,
Xa: inverse matrix of X
X : inverse matrix of X,
Amazs: Maximum of eigenvalues of A
Amarg: maximum of eigenvalues of B

M_: mach number of free stream
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