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Abstract

variables can be considered as continuous or discrete. The variables are chosen as sizing variables

This work presents a method for optimum design of structures, where the design

as well as coordinates of joints. The main 1dea is to reduce the number of structural analyses and
the overal cost of optimization. [n ¢ach design cycle, first the structural response quantities such as
forces, displacements, etc. are approximated as functions of the design variables or some
intermediate variables. By employing these approximated quantities, an explicit approximate prob-
lem will be available, which is in general a nonlinear programming problem. Now, this approxi-
mate design task is transformed into a number of second level approximation of separable froms,
each of which can be solved by a dual strategy with continuous or discrete variables. The objective
of the first level approximation is to reduce the number of structural anlyses required in the
optimization problem and that of the second level approximation is to reduce the computational
cost of the optimization technique. Two examples are offered to demonstrate the efficiency and
reliability of the proposed method.
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Optimum design of structures is achieved by com-
bining mathematical programming techniques and
finite element analysis. The objective function and
the constraint functions are first expressed as
functions of the design variables. Then by
employing numerical optimization methods, the
objective function, which is normally taken as the
weight of the structure, is minimized while the

constraints are satisfied. The constraints include
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ounds on member stresses, deflections,

In the process of optimiztion, because the con-
straint functions are implicit functions of the
design variables, their precise numerical
evaluation requires a complete finite element
analysis. In addition, since the solution
techniques are iterative, a large number of
structural analyses is required to obtain the
optimum solution.

In the past, to increase the efficiency of the
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method of optimiztion, some approximate
concepts have been introduced by Schmit and
Miura [1], Schmit and Fleury [2] and Salajegheh
[3]. the most attractive approach is to linearize
the functions under consideration and to solve a
sequence of linearized optimization problems.
The solution of each approximate problem does
not require the analysis of the structure. Some
other improvements such as design variable
linking, constraints deletion, etc. have increased
the robustness of the process.

A second generation approximation tech-
niques was developed by Salajegheh and
Vanderplaats [4] and Vanderplaats and
Salajegheh [5, 6] by which the highest quality
approximation can be achieved. The implicit
structural responses such as forces, displace-
ments, frequencies, etc., appearing in the
optimization problem, are first approximated. By
substituting these approximate functions into the
original problem, a nonlinear explicit problem is
created, the solution of which, often requires less
than 10 analyses of the structure. This method is
very robust and efficient for large structures,
where the computational cost of the analysis is
high.

Recently, the same approximate technique has
been applied by salajegheh and Vanderplaats [7]
to the design of structures, where some or all of
the design variables are chosen from a prescribed
set of values (discrete variables). The discrete
optimum design of structures is achieved by
combining the approximate techniques and
branch and bound method. For practical design
problems, where the design variables are linked
and the number of independent design variables
are chosen reasonably, the method can be
used efficiently.

The same approximation concepts are used by

Salajegheh and Vanderplaats [8] and Salajegheh [9]
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to achieve the optimum shape of the structures. In
addition to the sizing variables, the coordinates of
joints are also considered as design variables. In
this case, the numerical results also indicate that
the optimum configuration of the structures with
discrete shape variables, in conjunction with
response approximation, can be achieved at little
computational cost.

To further increase the efficiency of the
technique for problems with great number of
discrete variables, a dual strategy is used by
Vanderplaats and Salajegheh [10]. The discrete
variable optimization is achieved after the
completion of the continuous variable optimi-
zation.

In the present approach, a two level
approximation concept is used to solve the
continuous or discrete sizing and shape variable
problem in each design cycle. Ths first level is
the creation of a high quality explicit
approximate problem. In the second phase, this
problem is converted into a sequence of
problems, in separable froms, which can be
solved by dual methods. The solution of the
second level approximate problems, does not
require the analysis of the structure under

consideration.

PROBLEM FORMULATION

The general optimization problem involving
discrete variables, can be mathematically stated

as follows:

Minimize F (X) (1)
Subject to;
g X)<0 i=1,m 2)
X/ <X, <X} i=1n (3)
X; € D, 4)
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where F(X) and g;(X ) are the objective function
and constraints, respectively. X is the vector of
design variables which includes s sizing variables
and n - s shape variables where n is the total

number of variables as;
T
X ={X],XQ,.A.,X,',...,XS,XSH,...,X,,} (6)

m is The total number of constraints. Xil and X/ are
the lower and upper bounds (side constraints) on
the design variables respectively. D; is the set of
discrete values, which may be different for each
variable. Here, the objective function is taken to
be the structural weight and constraints include
stress, buckling and displacement limits.

The problem stated by Equations 1 to 3 is a
general nonlinear programming task, and a
variety of methods and softwares are available to
solve the problem. To solve the problem
efficiently, first all the structural responses are
approximated. Of course, the quality of
approximation can be increased if the responses
are approximated with respect to some intermedi-
ate variables. For example, in frame structures,
the intermediate variables can be chosen as the
cross-sectional properties (areas and moments of
inertia), while the design variables may be
selected as the physical member cross section
dimensions. The intermediate variables can be
easily obtained from design variables.

Let P represent the k-th structural response,
such as a component of intemal force in an
element in one of the loading conditions, and Z
represent the vector of intermediate variables,
then the following approximation relation can be

created:

AP (7
dZ

1

P(Z)=P(Z")+Y B, (6)
i=]

where

Journal of Engineering, Islamic Republic of Iran

0 . . .
Zi-Zi for direct approximation

Bi= ) 0
(z,-z, ) 20
Z;

for reciporcal approximation

0 . . . .
Z 1s the current initial vector of intermediate

0
variables and aﬁ(—z—) represents the gradient of

P with respect to Z,.

Usually, move limits are imposed to control
the quality of the approximation, although the
relations (6) and (7) represent an accurate
estimation of the responses.

Now, by substituting the approximate
relations into the original design problem, given
by Equations 1 to 4, an explicit nonlinear
problem is obtained which can be solved for the
values of the continuous or discrete variables,
subject to move limits. This is one design cycle,
which does not require the analyses of the
structure and of which the solution is a starting
point for the next design iteration.

To reduce the cost of gradient calculation in
each design cycle, as most constraints may be far
from critical, it is reasonable to ignore many of
the constraints for this cycle. The simplest
approach would be to just retain only those that
are critical or potentially critical for the current
design cycle. Thus, we first sort all constraints
and then retain all those that are within a
specified tolerence of being critical. Assuming all
constraints are normalized, we may retain those
with a numerical value greater than, say, -0.3.
Typically, the number of retained constraints may
be two to three times the number of independent
design variables.

Let g; represent the approximated form of the
jth constraint and J, indicate the set of retained
constraints. Then the general form of the

approximate problem, in each design cycle, can
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be expressed as;
Minimize F (X) (8)

Subject to;

GIX PrDI<0 jed, 9
X'< x; < xt i=1,n (10)
272" i=1,r (11)
X eD; (12)

where P, given by Equations 6 and 7 represents
any quantity which is the output of the structural
analysis. Z','zmdli-‘ are the current lower and upper
limits on Z; (move limits) and r is the number of
intermediate variables.

The explicit nonlinear problem given by
Equations 8 to 12 is again approximated, using
conservative approximation (Fleury and Braibant
(11]). In fact, a second level approximation is
used to convert the first level approximation into
a problem of separable form. Now the problem

can be stated as follows:

(13)

- n 0
Minimize F(X):F(X“)+23iaF(X )

=1 i

Subject to;

~ _ r9giX .
gj(X)zgj(XO)+zBﬁ 8¢ Q)SO JeJ, (14)
=1 i

X/<x,<x/! i=1,n (15)
XieDi (16)
where
X-x it x00F0 50
0 0
(X__"Xf )xf’ it x0 22D g
X X,
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and
) o7
X;-x! if x02%% )50
B;= dX, (18)
X x\.o . a7 (X"
(xr X ) X' i x°%% ) 20
X 0X,

The Lagrangian function can now be written

as follows:

LXN=FX)+ Y A,.%(X) (19)
Jed,

where A represents the vector of dual variables.

Using duality theory, L{(X, A) is minimized
with respect to X and then maximized with
respect to A, subject to non-negativity
constraints on the dual variabls. Noting that
L(X, A) after the substitution of F(X) and gj(X)
from Equations 13 and 14 is a separable
function in terms of X. Nothing further that
using the property that the minimums of a
separable function is the sum of the minimums
of the individual parts the minimization of
L(X,A) with respect to X is performed by
minimizing a number of one dimensional
functions of X, subject to side constraints. If
the variables are discrete, then minimization of
the one dimensional functions is carricd out
with discrete values. In fact, first the
continuous solution of the one dimensional
problems are obtained, then the next lower and
upper discrete values to the continuous solution
problems are obtained, then the next lower and
upper discrete values to the continuous solution
are found. Finally, whichever minimizes the
one dimensional function, will be the discrete
solution.

The main steps in the process of continuous or

discrete variable optimization using the duality
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theory can be summarized as follows:

1. At the current design point, establish the ap-
proximate rclations of the responses and
construct the first level approximation problem
with move limits.

2. Construct a separable problem, by re-
approximating the first level approximate
problem, and using a conservative type
approximation (second level approximation).

3. Solve this problem by the continuous (discrete)
dual method with move limits and repeat steps
2 and 3 to converge.

4. Check the overall convergence. If converged,

terminate; otherwise, repeat from step 1.

The method has been applied to a number of
problems for continuous and discrete sizing and
shape variable optimizations and the numerical
results indicate that the approach is very efficient
and the results are reasonable, compared with
those obtained by branch and bound with

approximation.
NUMERICAL RESULTS

Here two examples are offered to demonstrate the
reliability of the method. The DOT optimizer
[12] was used to maximize the dual problem. The
gradients of the retained responses are calculated
by finite difference, while gradients in the
approximate primal and dual problems are

calculated analytically.

Problem 1: 47-Bar Planar Tower

The 47-bar planar towar shown in Figure 1 is
designed for optimum geometry with continuous
and discrete sizing and shape variables, subject to

three independent load conditions and material
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properties given in Table 1.

Both member areas and coordinates are linked
such that the symmetry is maintained about the
vertical y-axis. Joints 15, 16, 17 and 22 are fixed
in space and joints 1 and 2 are required to lie on
the x-axis (y = 0). There are a total of 27
independent sizing variables and 17 independent
shape variables. The constraints include stress
and Euler buckling. The Euler buckling

compressive stress limit, o,; is taken as;

_-KiEi A

Oy 5
L;

where K is a constant determined from the cross-
sectional geometry and E; is the modulus of
elasticity. A; is the member area. L; is the member
length, which is a function of shape variables.

The set of available discrete values are:

Xi€{0.1,0.2,0.3,0.4, 0.5, ...} X 6.4516 (cm2), i=1, 27

TABLE 1. Load Conditions and Material Properties of
the Tower

(a) Load condition 1 (N):
Joint F, F,
17 26688.0 -62272.0
22 26688.0 -62272.0
{b) Load condition 2 (N):
Joint F. F,
17 26688.0 -62272.0
22 0.0 0.0
¢) Load condition 3 (N):
Joint F, F,
17 0.0 0.0
22 26688.0 -62272.0
(d) Material properties:
Modulus of elasticity 20.68E + 7 KPa
Allowable tensile stress +137,900 KPa
Allowable compressive stress  -103, 425 KPa
Weight density 0.008 kg/cm3
Minimum area 0.645 cm2
Buckling constant, K; 3.96

Vol. 7, No. 2, May 1994 - 89



Xi€{1.0,2.0,3.0,4.0,5.0, ...} x 2.54 (cm2), i =28, 44

A total of 10 analyses was used to obtain the
continuous and discrete solutions. The results are
presented in Table 2. The results are similar to
those of branch and bound method (Salajegheh
and Vanderplaats [8]). However, the computer
time required to complete the optimization
process was less than 1/10 of the time required by

branch and bound.
Problem 2: 25-Bar Space Truss

The 25-bar truss, shown in Figure 2, is

«— 5d—
«—3d —
d —» |<—

@ 23 25 27®26 @24
119 15 T

17@1165110 Iz@ _
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O @ —
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39 40
41
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47 ®
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T2d w247y
h=304.8
d= 76.2

INITIAL SHAPE

designed to support two independent load
conditions. The load conditions and material
properties are given in Table 3. The member
areas are linked in the following groups to
maintain symmetry: A/; A2 = A3 = A4 = AS;
A6 = A7 = A8 = A9; A10 = All; A12 = Al3;
Ald = AlS5 = A16 = Al7; Al18 = A19 = A20 =
A21 and A22 = A23 = A24 = A2S5. The
coordinate variables are also linked to maintain
symmetry. The independent shape variables are
the following coordinates: X4, Y4, Z4, X8 and
Y8. There arc then a total of eight independent
sizing variables and five independent shape

variables. The discrete values for the design

2h

0

cm
OPTIMUM SHAPE
cm

Figure 1. 47-bar planar tower
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TABLE 2. Reults for Tower (A: cm?; X, Y : cm)

Variable Variable Initial Continuous  Discrete
number value* solution* solution*
1 A3 3.8 2.61 2.7
2 A4 3.4 2.56 2.6
3 AS 0.8 0.69 0.7
4 AT 0.9 0.47 0.4
5 A8 0.9 0.80 0.8
6 Al0 1.8 1.13 1.2
7 Al2 2.1 1.71 1.7
8 Al4 1.2 0.77 0.8
9 AlS 1.6 1.09 1.1
10 Al8 2.1 1.34 14
11 A20 0.7 0.36 0.4
12 A22 0.9 0.97 1.0
13 A24 1.7 1.00 1.0
14 A26 1.7 1.03 1.1
15 A27 1.4 0.88 0.8
16 A28 0.9 0.55 0.6
17 A30 3.7 2.59 2.7
18 A31 1.5 0.84 09
19 A33 0.7 0.25 0.1
20 A35 2.9 2.86 2.9
21 A36 0.7 0.92 1.0
22 A38 1.6 0.67 0.5
23 A40 3.7 3.06 31
24 A4l 1.6 1.04 1.1
25 A43 0.7 0.10 0.1
26 A45 45 3.13 3.2
27 Ad6 1.6 1.12 1.1
28 X2 60.0 107.76 106.0
29 X4 60.0 89.15 89.0
30 Y4 120.0 137.98 136.0
31 X6 60.0 66.75 66.0
32 Y6 240.0 254.47 255.0
33 X8 60.0 57.38 57.0
34 Y8 360.0 342.16 342.0
35 X10 30.0 49 .85 50.0
36 Y10 420.0 417.17 415.0
37 X12 30.0 44.66 45.0
38 Y12 480.0 475.35 475.0
39 X14 30.0 41.09 40.0
40 Y14 540.0 513.15 513.0
41 X20 30.0 17.90 17.0
42 Y20 600.0 597.92 598.0
43 X21 90.0 93.54 93.0
44 Y21 600.0 623.94 624.0
Weight (kg) 1109.8 861.8 877.3

* Arcas should be multiplied by 6.4516.
* Coordinates should be multiplied by 2.54.

Journal of Engineering, Islamic Republic of Iran

Figure 2. 25-bar space truss

TABLE 3. Load Conditions and Material Properties for
25-Bar Truss

(a) Load condition 1 (1bs):
Joint F, Fy F,
1 0.0 20,000.0 -5000.0
2 0.0 -20,000.0  -5000.0
3 0.0 0.0 0.0
6 0.0 0.0 0.0
(b) Load condition 2 (1bs):
Joint F, Fy F,
1 1000.0 10,000.0  -5000.0
2 0.0 10,000.0  -5000.0
3 500.0 0.0 0.0
6 500.0 0.0 0.0
(c)Material properties:
Modulus of elasticity 1.0E+7
Allowable stress +40,000 psi
Weight density 0.1 Ib/in®
Buckling coefficient, K; 39.274
Minimum area 0.1 in®
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variables are considered to be:

X;€{0.1,0.2,03,04,0.5,...} i=1,8

X;€{0.1,0.2,0.3,04,0.5,...} i=9,13

This problem, converged with 7 analyses for
continuous design optimization. One extra
analysis was required to complete the discrete
variable problem, which was only used for
convergence check. The results are presented in
Table 4. Again the results are similar to those of
branch and bound with less computational

efforts.

CONCLUSIONS
The efficiency of a method of optimum design of
structures depends on the number of continuous

and discrete variables, number of constraints and

the number of structural analyses required in the

TABLE 4. Reults for 25-Bar Space Truss

Variable Variable Initial Continuous  Discrete
number value solution solution
1 Al 0.009 0.100* 0.1%
2 A2 0.782 0.434 0.5
3 A6 0.754 0.951 1.0
4 A10 0.001 0.100% 0.1%
5 Al2 0.130 0.100% 0.1¢
6 Al4 0.558 0.154 0.2
7 Al8 0.982 0.705 0.7
8 A22 0.801 0.544 0.6
9 X4 37.5 19.922 19.0
10 Y4 37.5 42.522 42.0
11 Z4 100.0 92.777 90.0
12 X8 100.0 13.239 10.0
13 Y8 100.0 79.057 76.0
Weight 229.41 130.76 140.20

L: Lower Bound
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process of optimization. To reduce the number of

analyses, all the quantities that are obtained from

the analysis are approximated as functions of the

design variables or some intermediate variables

in each design iteration. The idea of constraint

deletion is employed in each design cycle to

reduce the cost of gradient calculation. Finally,

the implementation of the dual methods in

conjunction with approximation concepts is very

effective in the design problems with great

number of variables. Thus, it is concluded that

the combination of response approximation,

constraint deletion and dual methods form the

basis of an efficient technique for optimum

design of practical problems.
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