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Abstract A new boundary-mtegral formulation 15 proposed 1o analyze the heat transfer in
zoned three-dimensional geometries. The proposed formufation couples the boundary formula, the
gradient of the boundary formula. and the externor formula. An advantage of this formulation over
the tradittonal methods 1s that any limear condition at the interface between subdomains may be
mcorporated mto the formulation at the outset. In addition, the new method provides a sparse and

well-conditioned matrix of coeflicients with a minimum number of equations.
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INTRODUCTION

The standard approach for-solving zoned problems
with the Boundary Element Method (BEM) s to
write the mtegral equations for cach zone, then
couple the zones through additional compatibility
and cquilibrium conditions [ 1], thus, for pertect-
contact interfaces (1.e., no resistance at the interface
between zones). a problem with M nodes on the
boundary and N nodes on the interfaces requires
simultancous solution of o system of M + 2N
cquations. Recently, an alternative method has been
suggested 120 3] which reduces the nuinber of
cquations by introducing the compatibility and

cquilibrium conditions in the integral formulation at

the outset. This direct approach leads to a system of

M + N cqutions, and 1t can greatly reduce the

operational cost during the formation of the matrix of

coctticients. However, the matrix generated by this
method is fully populated, whereas. through a

Judicious numbering scheme. the first method can
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provide a banded matrix. On the other hand, only the
latter method assures a well-conditioned matrix,
since the tormer method places large cocetlicients off
the diagonal. Both methods can only be applied to
perfect contact problems: nerther method is well
suited to problems with a more general condition on
the interface between subdomains.

A new formulation presented in this paper which
gencralizes the above methods while preserving the
advantages of cach. In this formulation, any lincar
condition at the interface betweenzones can be casily
imcorporated into the integral equations because the
vartables inthe mtegral equations are written interims
ol their sum and difference across the interface
boundarics. The formulation couples the boundary
formula, the gradient of the boundary formula, and
the extertor tormula. Combined with appropriate
mitial, boundary, and mterface conditions. (his
combination forms & well-posed boundary-value
problem and can be applied to problems with

piccewise homogencous domains. The resulting
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coefficient matrix is fully populated since the
formulation in effect couples the zones; however, an
additional operation can improve this undesirable
feature. In a previous publication {4], this author
presented a method for reducig the bandwidth of
BEM-generated matrices. That method, which is
most effective when the whole domain is coupled,
involves converting the fully populated system into a
banded system by lumping certain coefficients of the
matrix into fictitious nodes and then constraining
these nodes to accurately represent each coefficient.
The lumping procedure described in that paper is
written for homogeneous domains; its extension o
multidomain problems is straightforward and will be
discussed here. Theretore, the proposed method,
along with the application of lumping, provides a
general formulation for heterogencous problems
with arbitrary conditions at the interfaces and leads to
abanded, diagonally dominant matrix of coefficients
with a minimum number of equations.

The motivation for this work is the need to analyze
the steady-state thermal field in injection molds.
Often, these molds contain blocks of dissimilar
material for improved cooling. Also. blocks of
movable metal may be used as a means of ejecting
large parts from the mold. In this case the blocks of
mectal are similar, but the resistance at the interface
between them has a marked effect on the cooling (in
the area nearthe interface) and must be accounted for.
Hence, the formulation must be general enough to
apply to interfaces with and without gaps (i.e., with
and without resistance to flow of heat at the
interface) for similar as well as dissimilar materials.
The formulaton for each one of these cases is

provided below.
FORMULATION

Consider a three-dimensional region consisting of

two subdomains (zones) V| and V, such that the first
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subdomain is bounded by surfaces §' and §% and the
second subdomain is bounded by surfaces S, and §

; as shown in Figure 1. (For simplicity, the derivation
is given for two subdomains. The formulation will be
extended to an arbitrary number of subdomains later
in this section.) The conditions here are such tha
there is aresistance at the interface (represented in the
form of a gap here); thus there is a discontinuity in
temperature values on S5 and §;. Now let a
sufficiently smooth function T satisfy Laplace’s
equation within both V| and V,. Application ot
Green’s second identity leads to the integral

expressions [1]

f [K(P, Q) Tu(Q) - Ku(P, Q) TIQ)] dS(Q) = Ci (P) T(P)
5 (1)

and

[ K(P, Q) Ti(Q) - Ku(P. Q) T dS(Q) = C2 (P) T(P)

s )
where Sy =8, +57 .5, =5,+5;. P and Q are two point:
in space (the so-called source and observatior
points), T is the temperature, T#=E)T/8‘u,ﬁis the
outward unit normal at Q, K is the fundamenta

—_—
solution to Laplace’s equation — K=1/47#PQ

Z

Figure 1. An example of multidomain geometry
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K,=0K/du,and

[ 1 for Pe V,< Interior formula

C,(P)={0 for Pe V,< Exteriorformula (3)
\Cs for Pe S, Boundary formula

and

Jl for Pe V, & Interior formula

G,(P)={0 for P¢ V, « Exterior formula 4)

\CS for Pe S, < Boundary formuia

C. 1s proportional to the interior solid angle [5]. If ﬁ)
is continuous at P, then C (P) is simply 1/2
cverywhere on §, and S,. Now, multiply Equation 1
by k,, the thermal conductivity for zone 1, and
multiply Equation 2 by £,, the thermal conductivity
for zone 2. Add the two equations to get

KCUP)TI(P) + ko C(PYTHP) =

r

+ KIK(P, )TW(Q) - Ky (P, OYTQ) dS(Q)

ERAYE )

+| kKPP, QYO -K (P, 0HIOHISQ)

i
+| kIKWP.QITLQ7) - K P, QYHO)HUSQ)  (5)

JS

!

where, 1n the first integrad, & and g take the proper
subscript depending on the zone to which Q belongs.
Given appropriale boundary and interface condi-
tions, Equation 5, with 3 and 4, should provide a
solution to this problem. However, becziuse of the
closeness of surfaces S; and S;, the form of this
equation is inadequate for our problem [5]. The
following sections present the necessary

modifications to Equation 5.
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Case 1: Resistance at the Interface

If there is resistance to the flow of the heat across the
interface itself, then the temperature is not continu-
ous across the interface. However, it is valid to
assume that the flux i1s continuous, and thus the

compatibility conditions may be written as
kT, (07)+ kT, (Q7)=0 ()
where

Tu(Q+)=—ki[T(Q*7-T(Q')J (7
I
Onecan, forinstance, seth=k /b in which£_isthe thermal
conductivity of air (assuming that the resistance is caused
by a small air-filled gap) and b is the gap thickness.
Now, define the midsurface I" with two faces such
that the outward unit-normal vector at any point on
one face (to represent Si*) is opposite the outward
unit-normal at its image on the opposite face (to
respresent $7 ). The new configuration is shown in
Figure 2. Starting with the interior formula, first
shrink the surfaces St and S; onto T, then let P
approach T" from both sides [S]. After the limiting

operation, the kemels in Equation 5 are related by

K@P.QN)=KP.Q)and Ku(P.Q ) =-K(P.Q") (8)

where Q" and Q" are images of onc another on $iF and

Si, respectively. The negative sign leading K, in

Figure 2. Midsurface I representing the interface
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Equation 8 is caused by the opposing signs of

-

Hon Q+ and ¢". The sign convention adopted here 1s
= - -

such that g(Q™ )= u(Qr)and u(Q")=-1(Qr). Apply-

ing Equation 8 to Equation 5 after the limiting

operation results in the following integral formula,

ki CL(PY T (P) + kyCy(P) To(P) =

J kK (P, QT Q) - K, (P. Q)T Q)] dSWQD)
)

+] [K,(P,Q V) AKTONIAS(Q) 9
r

where AKT)=kTQ)-kT(Q7), and, as before, k
in the first integral takes on the proper subscript
according to the domain to which Q belongs. As
shown in [5], the limiting operation from the other
side results in an identical equation.

In Eugations 9, 3, and 4 the difficulties associated with
the integrations over closely-spaced surface have been
removed. Unfortunately, these new formules by
themselves are not very useful because they cannot be
combined with the usual set of boundary conditions to
form a well-posed boundary-value problem [5]. To
complete the set, an additional integral equation is
required. The following procedure may be used to obtain
thisequation. First, take the gradient of the interior formula
with respect to P. Next take the limit £ “rand perform
the dot product with the unit normal to I at P. Finally, use

the conditions at the interface defined above to obtain

AITPH)-TEHICETHI+CP )=

r

+| KK, (P, QT (Q)- K, (P. Q)] dS(Q)

JS

r

+| KW (P 0 AKT(Q)Ids( Q) (10

Jr
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where v is the outward unit normal at P, K =
IK /v, Kup= 0K JOvouL, and once again k and 4 in the
first integral take the proper subscript depending
on the zone to which @ belongs. An additional
simplification to this Equation is possible.
Reference 6 shows that C(P+)+ C(P ")=1; thus this
term can be removed from Equation 10 without
loss of generality.

With Equations 9, 3, 4, and 10, the interface
between zones can now be efficiently modeled. The
surfaces S and I' are meshed using standard elements
with the understanding that two degrees-of-freedom
(DOFs) are associated with every node on I'. Com-
pared to the standard procedures, the numerical
quadrature is a bit more involved here because of the
existance of weakly singular, singular, and
hypersingular integrands in Equations 9 and 10. One
ofseveral semi-analyticaland numerical procedures
may be used to reduce the orderof the singularity [7,
81. However, if piecewise-constant elements are
used for discretization, as is the case here, a much
simpler procedure may be used to obtain a closed-
from integration of the singular integrands (see [5]).

The generalization of these equations for
several zones is straightforward. For a set of M
inserts, with a total of N interfaces, the following

integral formula is used for all nodes

M
Y kGEPTP) =+ [ KIK(P, Q)T (Q) - K, (P, QYXQ)] dS(Q)
Is

i1
N
+2

=

[ -Ku(P.Q) KT (Q)) - kT (00 dS Q)

y

—

(1D

where Fj is the interface between subdomains j and j’,
and kj and kj, are the corresponding thermal conduc-
tivities. For nodes on the interfaces, another integral
formula is added to Equation 11 to complete the set.

For instance, when P is one interface I, which is the
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interface between zones [ and [, the additional

integral cquation is written as

AUTPY-Tp(PY =+ KIKAP, QTLQ) - Ko (P QYH)AS(Q)

§

+Z - Ko (P, Q) IKT(Q)) - kA(Q)) dS(Q)

(12)

In both equations, S is the sum of all surfaces minus
all the interfaces.

Note that even when the zones are all made of
the same material, the thermal conductivity connot
be factored out from the last equation. This is
because the thermal conductivity of the material
affects the amount of discontinuity in temperature

at the interface.
Case 2: No Resistance at the Interface

The equations provided in the previous section canbe
used for simpler cases. For instance, when there is
perfect contact at the interface between zones,
compatability and ecquilibrium conditions require
that

T@EH=TQ") and LTLQH+kTWEH=0  (13)

These conditions can be inserted mto Equation 11 1o

get

M
3 LCPYTHPY=+| KK(P.QTHQ) - Ku(P. QYO dS(Q)

i=l ¢
2| -KuP 0)K-k) TIQ) dS(O)

(14)

which is sufficicnt for obtaining the temperature

everywhere in the domain. (One cannot readily

obtain the fluxes at the interface from Equation 14.
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By differentiating the interior formula, however, it
is possible to obtain an integral equation for
temperature gradients across the interface.) Note
that for the case where all subdomains arc made of
the same material, the thermal conductivity, 4. can
be removed, and this integral formula is reduced to
the interior formula as expected. Also, normalizing
the thermal conductivity in the above integral
equations would make it possible to use the same

formulation tor zones made of the same material.
BANDWIDTH REDUCTION

As stated before, the above formulation couples the
zones leading to a system of equations with a fully
populated matrix of coefficients. This is a serious
drawback for large systems and must be addressed if
the present method is to have widespread
acceptability for analysis of realistic problems.

A novel approachto reduce the profile of matrices
generated by the Boundary Element Method was
presented in {4]. The method took advantage of the
fact that the kermel functions in the integral formulas
vary inversely with the distance between points inthe
domain, and thus certain contributions to the
system’s matrix are comparatively small and do not
play an important role in the solution of the systen,
Refercnce 4 points out that these small contributions
cannot be simply eliminated from the matrix
because, although the coefficients arc individually
small, their combined effect cannot be ignored. The
algorithm accounted for the combined effect of the
small coefficients by creating fictitious nodes which
represent the small coefficients in a lumped manner,
Additional constraints defined the relationship
between the real and fictitious unknowns. An
efficicnt minimization algorithm was used to
minimize the profile of the matrix, and an active
column block-solver was used to solve the resulting

system of equations. It was shown in (4] that the
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algorithm can reduce the rate of increase of solution
time ¢ of an n-degree-of-freedom problem from
{ «n3 to t o« n?. The lumping method has been in use
forseveral years [4], and its reliability and robustness
have been demonstrated through the successful solu-
tion of many large matrices. That method can be easily
extended to multidomain problems. The only major
modification to the procedure described in [4] is inclu-
sion of appropriate material properties in the identifi-
cation process for lumping. In other words, the deci-
sion-making process for lumping a cluster of elements
with respect to another cluster should include the
effects of differing thermal conductivities. Normaliz-
ing the thermal conductivities in the integral equations
can simplify the required modifications.

APPLICATION

Recall that the new approach couples the boundary and
the exterior integral formulas, which in trun couple the
subdomains. In certain cases, this integral equation is
by itself sufficient, while in other cases it has to be
accompanied by its gradient. With this formulation,
one can cfficiently and accurately model the interface
hetween similar and/or dissimilar materials with
perfect and/or imperfect contact conditions. To verify
the formulation, several examples are provided here
and the results from the numerical calculations are
compared with the exact analytical solution. The
problem chosen is steady-state heatflow in three zones
with a temperature of three at one end and zero at the
other end; adiabatic condition is applied to the other
four surfaces. The 2-D cross-section of the configu-
ration for this problem is shown in Figure 3. In all
problems, the thermal conductivity of the firstand the
third zones are assumed to be equal. This problem
was chosen because it was used in Reference 3;
however, the exact solution provided there is
incorrect. The correct solution for steady-state heat

transfer in three zones with no resistance to the flow
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Figure 3. Configuration for steary-state heat transfer in
three zones

of heat at the interfaces is [9]

3 (x-p-2)  for 0<x<1

w+2

T={ B _(ux-2u-1) for 1<x<2
n+2

3 (x-3) for 2<x<3

n+2

where u = k,/k,. The exact solution to this problem
can be generalized by including the resistance to the

flow of heat at the interfaces between zones, i.e.,

— 3  (x-p-a-p-2) for 0<x<1
2+Hi+a +f

T={ —3  (ux-2u-B-1) for 1<x<2
2+ +f
—_—3 (x-3) for 2<x<3
2+ut+a+f

where pg=ki/ky, x=ki/h,B=ki/h, hi is the
conductance (inverse of the resistance) at the
interface between the first and the second zones, and
h, is the conductance at the interface between the
second and the third zones. As expectd, the previous
solution is recovered when there is no resistance at
the interfaces (i.e., when a=f=0).

A total of 256 “‘piecewise-constant” rectangular ¢le-

ments were used to discretize the exterior surface and
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the two interfaces leading to a total of 288 DOFs for the
>ase of resistance at the interface and 256 DOFs when
nterfaces are in perfect contact. The resistance at the
nterface between subdomains is defined to be
yroportional to the thickness of plate elements which are
1sed to model the interface between subdomains (a zero
slate thickness indicates perfect contact between
ubdomains). This resistance is computed by dividing
he thickness by the thermal conductivity of the gases
vhich fill the gap. Only the mid-plane of the gap between

ubdomains is modeled (recall that elements on the

interface have two faces). The connectivity tables and a
simplified ray-tracing procedure are used to determine
the orientation and the corresponding material on either
side of the elements on this mid-plane.

In the first example, u = 10 and the resistance at the
interfaces between zones requires two DOFs at each
node there, with =4 and f=4. In the second examplc,
# =1 (ie., similar materials in all three zones), the
resistance at the interfaces is maintained, with o and 3
having the same values as in the first example. The

results are shown in Figures 4 and 5, respectively. The

T
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T L 1. L

ey

o.n 1.0

Figure 4. Temperature variation in three zones:
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Resistance at the interface between dissimilar materials (u =10, @ =4, and f§ = 4)
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igure 5. Temperature variation in three zones: Resistance at the interface between identical materials (=1, & =4, and 3 = 4)
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Figure 6. Temperature variation in three zones: Resistance at only one interface between dissimilar materials (=10, =4, and f=0)

final example illustrates the mixture of gap an no-gap
element formulations by allowing resistance at only one
of the two interfaces. (Only one degree-of-freedom is
required at cach node on the perfect-contact
interface.) The results are shown in Figure 6. It is
observed that analytical and numerical results for all
four problems are in excellent agreement even
though a piecewise-constant approximation was

used to generate the numerical results.
CONCLUSIONS

The formulation presented here has combined the
boundary formula, its gradient, and the exterior
formula to solve steady-state heat transfer problems
in piecewise homogencous domains with general
conditions at the interfaces between subdomains.
The resulting integral equations lead to a sparse
and well-conditioned matrix of coefficients with the
minimum number of equations. A major advantage
of this formulation over the existing methods is that
any linear relationship for the conditions at the
interface can be built into the integral equations at the
outset, which allows generalizing the application of
the Boundary Element Method for zoned problems.

Another advantage its that the elements on the
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interface between subdomains may be oriented in an
arbitrary manner since the direction of the normal at
any point on the interface is built into the integral
equations. Also, no special numbering technique is
required to obtain a banded system even though the
matrix generated with the new algorithm is sparse.
Finally, the modeling of the interfaces is simplified
since only the midplane surface at an interface is
discretized and the elements on this interface can
have arbitrary orientation.

The formulation presented here has been
validated as part of I-DEAS Mold Cooling, a
commercial software program. (I-DEAS Mold
Cooling is a trademark of Structural Dynamics
Research Corporation.) Special formulations and
procedures have enabled us to analyze efficiently
and accurately the cooling cycle in injection molds

madc of several materials.,
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