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Abstract A multilaminate based model capable of predicting the behavior of granular material on
the basis of sliding mechanisms and elastic behavior of particles is presented. The capability of the model
to predict the behavior of sand under arbitrary stress paths is examined. The influences of rotation of the
direction of principal stress axes and induced anisotropy are included in a rational way without any
additional hypotheses. The predicted numerical results of sand specimens in hollow cylindrical and true
triaxial tests and also under undrained conditions are presented.

_ PERRLRILIVE PR B P VSR IS 1 FREANLT EFIE JUTSPNUIYY- DU TS PRSI F VI VPP R PTE-GPL VA I 0K

- A ]

B\.L:‘):.lL‘J.Tnl);!J)‘_’—.:-S‘ShJ:Mdwlwbb)m)&;:ﬁ)éduba1k:..:l{u.w‘tud‘;‘)‘yd}w')uj
O;_"S))_’;):c.‘..nb-u:)‘,-.qL;,_-awl-Liwﬁﬁy):wgéwu;ﬁkidu)w#ﬁ)ul |
‘_'Jls,s,.u._J...,:Jls-;_..&-oL:iL‘jljaub‘sud,.s,l:s,dauL}:l,.:@u Sdilaag AL el 3 00 Jus

INTRODUCTION

“For a granular mass such as sand that supports overall
applied loads through contact friction, the overall me-
chanical response ideally may be described on the basis of
micro-mechanical behavior of grains interconnections.
Naturally, this requires the description of overall stress,
characterization of fabric, representation of kinematics,
development of local rate constitutive relations and evalu-
ation of the overall differential constitutive relations in
terms of the local quantities,

The task of representing the overall stress tensor in
terms of micro-level stresses and the condition, number
and magnitude of contact forces has long been the aim of
numerous researchers [1-3].

In recent years, another class of models called
‘multilaminate model’ was developed by Zienkiewics and
Pande [4] for jointed rock masses and by Pande and
Sharma [3] for clays. Bazant and Oh [6] have developed a
similar model for fracture analysis of concrete under the
name 'microplane model'.

Aneleastoplastic model, 'reflecting surface model' was
developed by Pande and Pietruszczak [7] and used to
predict cyclic loading behavior of normally consolidated
and lightly over-consolidated clays. Shiomi et al. [8] used
this model for the prediction of liquefaction of sand layers.

This paper presents a multilaminate model capable of
predicting the behavior of granular material under mono-
tonic, cyclic loading and other respectively complex stress
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‘paths.

The concept of the proposed model is natural, physi-
cally meaningful and extremely simple. According to this
formulation, which is based on a simple numerical integra-
tion, an appropriate connection between averaged micro
and macro-mechanical behavior of material has been pre-
sented. The inclusion of the rotation of principal stress and
strain axes, induced anisotropy and the possibility of
supervising and even controlling any variation through the
medium are the significant features of the model.

'BASIC ASSUMPTIONS AND
DISCUSSIONS

‘Multilaminate framework, by defining the small con-

tinuum structural units as an assemblage of particles and
voids which fill infinite spaces between the sampling
planes, has appropriately justified the contribution of
interconnection forces in overall macro-mechanics. Plas-
tic deformations are assumed to occur due to sliding,
separation/closing of the boundaries; and elastic deforma-
tions are the overall responses of structural unit bodics.
Therefore, the overall deformation of any small part of the
medium is composed of total elastic reponse and an appro-
priate summation of sliding, separation/closing phenom-
enon under the current effective normat and shear stresses
on sampling planes.

According to these assumptions overall sliding, sepa-
ration/closing of intergranular points of grains included in
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one structural unit are summed up and contributed as the
result of sliding, separation/closing surrounding boundary
planes. This simply implies yielding/failure or even ill-
conditioning and bifurcation response to be possible over
any of the randomly oriented sampling planes. Conse-
guently, plasticity control such as yielding should be
checked at each of the planes and those of the planes which
are sliding will contribute to plastic deformation. There-
fore, the granular material mass has an infinite number of
yield functions usually one for each of the planes in the
physical space.

‘The Constitutive Equations of Multilaminate Model

“The classical decomposition of strain increments under the
concept of elasto-plasticity in elastic and plastic parts are
schematically written as follows:

de=de +de (1)

The increment of elastic strain (d€° ) is related to the
increments of effective stress (dg) by :

dee=C".do (2

where, C is elastic compliance matrix, usually assumed as

linear. Conceptually, it is possible to compute g’ by using

the multilaminate framework. However, if the single struc-
tural units are assumed o be elastically isotropic, using a
common elasticity tensor, then trivially, the overall elastic
response of the collective system will be isotropic, having
the same elasticity tensor. Clearly, in this case, computing
C° by using multilaminate framework is not fruitful. When
single structural unit constituents are anisotropic, then,
whether or not the overall elastic response will be isotropic
depends on the distribution of the single structural units.
For a random distribution, the overall response will he
isotropic, whereas this response will be anisotropic if the
distribution of particle orientations is biased by prior
plastic deformation.

For the soil mass, the overall stress-strain increments
relation, to obtain plastic strain increments (deP), j5 ex-
pressed as:

“deP=CP.dg’ ?3)

where, (¥ is the plastic compliance matrix,

Clearly, it is expected that all the effects of plastic
behavior be included in C*. To find C, the constitutive
equations for a typical slip plane must be considered in the
calculations. Consequenily, the appropriate summation of
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all provided compliance matrices corresponding to con-

sidered slip planes yields overall CF.

‘Constitutive Equations for a Sampling Plane

As already defined, plastic strain is calculated from the

study of the glide motion over an individual sampling
plane. To explain the plasticity constitutive law for a
sampling plane, the main features of plasticity law (i.e.
yield criterion, plastic potential function, flow rule and
hardening rule) must also be considered.

"Yield Criterion

In this constitutive formulation, the yield criterion is

defined by the ratio of the shear stress (1) to the
normat effective stress(o, )onl sampling plane. The
simplest form of yield function i.c. a straight line on T
VErsus G, space is adopted. As the ratio T/0nincreases, the
yield surface represented by the straight line rotates
anticlockwise due to hardening and approaches Mohr-
Coulomb's failure line and finally failure on the corre-
sponding plane takes place.

The equation of yield function is formulated as follows:

E(®.0,M)=T,- Oy @)

“where, T); =tan (0;) is ahardening parameter and assumed as

a hyperbolic function of plastic shear strain on the i plan.
a;is the slope of yield line.

To provide elastic behavior of cohesionless material at
the start of stress increment or whenever the direction of
stress path changes, a small elastic domain (defined by
angle J.) is considered. This domain as shown in Figure
1 is small and negligible. Therefore, the value of & for all
sands is assumed to be the same. However, the minimum
valueof n;1s tan({Z, ) at the first loading process.

PLASTIC POTENTIAL FUNCTION

‘Feda {9] derived the plastic potential function which is

used in this research. Thls function is stated in terms of Ti
and o ; for the T versus O, space as follows:

YT 6,) =Ti+ M.y e (6,:/0y) %)

“where, 1. is the slope of critical state lme and o is the

initial value of effective normal stress oni” plane. Typlcal
presentations of this function are shown in Figure 1. The
gradient of this function represents contractant and dila-
tant behavior in the ranges as:

00<T< o;ﬁ .M (contractant behavior) (6)
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20, e (dilatant behavior) NGO
Derivative of this function is found as;

3%/3g; = { 10,1 -nyT (8)

Where, 1y, is the hardening parameter or the slope of yield
line in i* plane.

Obviously, dilatancy is positive if n;> . and negative
if Mi<Me. On critical state line ni=7 volumetric plastic
strain,

Accordingly, the derivatives of the adopted plastic
potential function which are based on the conception of
energy Equation [10,11], can only be expressed in terms of
variable m; and identify the components of plastic strain
increment ratio as well as the position of no dilatancy/
contractancy on T versus 0, space. This aspect seems to be
the most suitable form which conforms with the constit-
tive formulation of sampling plane for granular media.

'NON-ASSOCTATED FLOW RULE AND
CONSISTENCY CONDITION

“Flow rule is expressed as follows:

deP=1, 3¥i "(9)
do;
Where A isthe proportionality scalar parameter and changes
during plastic deformations.
In theory of plastic flow, the consistency condition is a
necessary condition which requires thata yield criterion be
satisfied as far as the material is in a plastic state.
Mathematically, this condition is stated as follows:

(OFi/00' )T do +Fi ok dki=00  (10)

7where in the first loading process k= ef’ "and ef’ 'is plastic
shear strain on the i plane. Substituting Equation (9) in
(10), dA, is obtained as follows:

PURN _
dA=- {oFi/dg;} .dg; w
{OF:/ k). (i / ori)

b= (OFi/30,)".dg {0/ 3T}

i (12)
- {JFi/dki}.{ovi/ ok}

or

“This relation can also be expressed in another form as;

deP={1/Hpi). {9F:/9g;)" . (Bi/3g ). dg, (13)
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“where Hpiis defined as hardening modulus of i® plane and

is obtained as follows:

Hp, =- {3F:/ok} . (yi/dwi) “(14)
therefore, def=Cl.dg’ (15)
where:

CP={ 1Hpi) (9yi/30 } (F:do, )"

Q?asawhole, represents the plastic resistance corresponding

1o i* plane and must be summed up as the contribution o
this plane with the others. Accordingly the conceptua
numerical integration of multilaminate frame-work present:

the following summation for computing CP.

i n -~y
Caam ), w.C
=]

where W, is the weight coefficients and EP is the global

plastic compliance matrix corresponding to a single point
in the medium. A simple function simulates the best
variation of this property during the plastic flow which has
been represented as a hyperbolic function as follows:

K. tn (@9 (18)
A+ K

where, K; = (e - €F), @y is the peak internal frictional angle,
and A;is a soil parameter. £” and E‘; are current and initial
values of plastic shear strain on i plane. It must be noted
that at first loading &} is equal to zero and its value is
renewed at each change of load increment sign. n; starts
from ., grows aaccompanied with the plastic shear strain
and slowly approaches the failure line. However, as stated
for dense soils, it has to slowly rotate back towards the
critical state line.

nNi=

'FIRST LOADING

“ The behavior of soil is assumed to be elastic in asmall zone

as shown in Figure 1, This conforms with a small value of
ni which is equal to tan(@.).

A simple form of variation of ;is a hyperbolic function
which has been considered. However, the range of varia-
tion of 1}iis between - tan(&) and + tan(&%). The following
relation is an equation which is used for first loading.

p ; _
ni___(gi 'Eﬁ.(ﬂl lan(@r) 'Tlm)_‘_nm_ (]9)
A+ € -£)
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~ Ajis a material constant and for first loading it is equal to
Ao, where A, is the initial vidue of this parameter. o and €7
are the values of niand € when the last change in the
direction in stress path has taken place. For first loading sg
and Ne; are equal to zero. m for first loading is equal to +1.
The value A, is found by trial and error by comparing
computer results with experimental results of triaxial com-
pression tests.

'UNLOADING

“To obtain comparable theoretical and experimental results
the value of A must be changed. Another reason for this, is
the different shape of hysteresis loop when cyclic loading
takes place at different positions. A value obtained from
numerical experiments is given by:

A=A+ 0075, (20)

) Equations (19)and (20) are valid for unloading and m must
equal -1 for unloading process. Clearly, the value of n;
approaches -tan(Jy) while Ef‘ is large enough in compari-
s0n to A;.

'RELOADING

“The variation of 1; for reloading process is similar 10
unloading although the limit value of 1;is +tan(&)p. m is
equal to +1 and the value of A;must change. The new value
of A;is shown as follows:

A=E] - (o @) /Ga-nad 0} @D

“where el and T are the values of 82 and n; at the start of

unloading process. eg and g are similar values at the start
of reloading process. ‘

Finally, this form of the variation for mi as a unique
equation at each process, can produce hysteresis energy
loops with different widths. The higher the absolute values
of egizmd Te the higher the width of hysteredsis energy
loops produced.

'DEFINITION OF PLANES IN THREE
DIMENSIONAL MEDIA

“To satisfy the conditions of applicability of the theory from
the engineering viewpoint and also to reduce the extremely
high computational costs, a limited number of necessary
and sufficient sampling planes are considered.

As stated inreference [5], the choice of 13 independent
planes for the solution of any three dimensional problem is
a fair number. The orientation of the sampling planes as
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" TABLE 1.Direction Cosines and Weight Coefficients of
Integration Points.

Direction cosines of integration points Weighls
1 m n; Wi
+1/ 1 +f L mfL 27/840
3 3 3
L /L +/ L 27/840
3 3 3
- f1 4 [1 4af L 27/840
3 3 3
afl L . [1 +1 /L 27/840
3 3 3
w1 safl 0.0 32/840
2 2
-1/ 1 4l L 0.0 32/840
2 2
+1/ L 0.0 +1/ L 32/840
2 2
afL 0.0 +q/ L 32/840
2 2
0.0 4l L +q/ L 32/840
2 2
0.0 +1/ 1 +4‘/ 1 32/840
2 2
1.0 0.0 0.0 40/840
0.0 1.0 0.0 40/840
0.0 0.0 10 40/840

“given by their direction cosines and the weight coefficients

for numerical integration rule are given in Table 1.

Figure 2 shows the orientation of all 13 planes in similar
cubes. In order to clarify their positions, they have been
presented in four cubes.

'IDENTIFICATION OF PARAMETERS

“In a general case, for the most anisotropic, non-homoge-

neous material, 13 sets of material parameters correspond-
ing to plastic sliding of each of the sampling planes are
required. However, any knowledge about the similarity of
the sliding behavior of different sampling planes reduces
the number of required parameters.

The number of parameters required in the proposed
model to obtain the behavior of an isotropic-homogeneous
sand is five. Two of these parameters correspond to elastic
behavior of soil skeleton and the rest to plastic flow on each
sampling plane. These parameters are listed as follows:

1) Elastic modulus, E
2) Poisson ratio, v
3 Slope of critical state line, nc

“Journal of Engineering, Islamic Republic of {ran



4) Constant value in hardening function, As
5) Peak angle of internal friction, &3¢

E and v are found in the usual way as for any other
model, The other three parameters correspond to the
plastic behavior of one plane. In this research, these three
parameters have been assumed to be the same for all 13
defined planes because of initial isotropic conditions.

In order to calibrate the model, two sets of test results
concerning hollow cylindrical and true triaxial tests [12}
consisting of monotonic compression and extension and
also compression cyclic loading have been considered.
The first set of test results consists of five hollow cylindri-
cal tests used to calibrate the model and the other set for
verification.

The values of parameters used in computations are
shown in Table 2.

iTABLE 2. Parameter Values

parameter vatue / unt
E’ 229.667 MPa.
¥ 0377
e 0.800 x tan (&)
Ao 0.0005

The value of &3¢ for the tests with initial mean pressure

is equal to 203 KPa. Thus D¢ is equal to 37.8° and while
= 350 KPa. is equal to 36.38°,

It must be noted that there is another parameter (Je)
which defines the elastic domain. The value of this param-
eter is small and thus can sometimes be ignored; also it is
ineffective to make any change in the overall model
results. Therefore, the value of this paramether for all tests
even for different sands is equal to 0.57°.

'THE MODEL RESPONSE UNDER
UNDRAINED CONDITIONS

"The principle of effective stress is stated as follows:
‘o=¢'+mU (22)

where O and ¢ are representative of total and effective
stresses vectors, respectively, M- is constant operator
vector which is equal to {l, 1,1,0,0, O} ,and U is excess
pore water pressure. This ' equation can be writien in
incremental form as:

‘do=dg’+m.dU (23)
“where d is used for representing small increments.

Itcan also be assumed thatin a fully undrained case, the
skeleton volume change is precisely equal to change in the
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‘volume of pore water. Equation (22) can be rewritten as:

dU=K. {m)".de. (24)

“where K is obtained [13] as follows:

11,18 (25)
Kf Kw Ks

where K w bulk modulus of water and- @ is initial porosity.
Therefore,

dU=K¢. {m)".de. {m} (26)

Retaining the elastoplastic constitutive law, it is pre-
sented as follows:

“do’ D" de

‘do=D".de

) ep . .
where 13 and D™ are effective and total stress-strain

matrices. Substifuting Equations (26), (27) and (28) in
(23), the result is written as:

DPF=D"F+Ke (M. (M}

“where
D= (|
Dép= Ct+CP
where C 9 ,and - C%are compliance elasticity, plasncnty

and elasto plasncnty matrices, respccnvely

According to incremental algorithm, - c® computed in
the previous step can be used for the current step; therefore,
the solution will not remain indeterminate.

"Undrained Triaxial Standard Test

Considering axi-symmetric strain control scheme, the

known variables is de_and unknown variables are dU, and
do.

Equation (23) can be abbreviated for this case as
follows:

do, -dU -(1/2) de
doy |=| -au [=| D? || -(/2)de.
do, | Ldo,-dU de,

Similar to strain control scheme, the stress-strain ma-
trix equation is carried out as follows:
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-(1/2)de, -dU
-(1/2)de; || C® || -dU (33)
de; do.-dU

The above matrix equation represents two independent
equations. The value of dU simply is a function of de_and
can be obtained from the first or second row, however,
substituting this statement in the third row leads the solu-
tion to obtain de_. The substitution of this value in either the
first or second row and represents dU. In this process, C*
from the previous step can be used in the computations,

'UNDRAINED PREDICTED RESULTS

From the results presented here, it can be concluded that
the model reproduces salient features of sand behavior
under monotonic loading. The model has shown how
boiling in a loose sand (low initial hydrostatic pressures) is
produced after pore water pressure built-up leading to
failure, This is precisely in agreement with the concept of
liquefaction [14] as when pore pressure rises sufficiently
to destroy the material strength. It is noted that the same
value of ; was used for both cases.

'CONCLUSION

From this study a model capable of predicting the behavior
of granular material on the basis of sliding mechanisms
and elastic behavior of particles has been presented. The
concept of multilaminate framework was applied success-
fully for granular materials. However, this is achieved by
the use of generally simplified, applicable, effective, and
easily understandable relations between micro and macro
scales. These relations demonstrate an easy way to handle
any heterogeneous material property as well as mechani-
cal behavior of materials. Significantly, the stress-strain
relations are primarily defined on the sampling planes,
therefore there is no need to handle tonsorial invariance
requirements which are a source of great difficulty in
constitutive modeling. In this way, not only the tonsorial
invariance 1s subsequently ensured, but some more effects
which, in ordinary models are missed, are additionally
included. This inclusion is achieved by combining the
responses from sampling planes of all orientations within
the material. Consequently, these results are a step closer
to real plastic behavior of soil.

This model is able to solve a three dimensional plastic-
ity problem by a rather simple theory based on the phe-
nomenological description of two dimensional plastic
deformation and kinematic hardening of materials. This
actually, is achieved in such a way that the application of
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“some difficult tasks such as induced anisotropy and rotation

of principal stress and strain axes which take place during
plastic flow, are out of constitutive relations. Accordingly,
the sampling plane constitutive formulations provide
convenient means to classify loading events, generate
history rules and formulate independent evolution rules
for local variables.

The behavior of soil has also been modeled based on a
semi-microscopic concept whichis very close tothe reality-
of particle movement in soiis.

Kinematic and isotropic hardening based
phenomenological features on sampling planes are
contributed and appropriately summed up, therefore, the
solution of any complexities involved in random cyclic
loading can be obtained and presented.

In spite of producing the final results in macro scale,
there is another significant feature that represents the
ability of being informed of the semi-micro scales
procedures during any transient monotonic or cyclic loading
stress path. This feature is very beneficial in clarifying the
history and rate of all local average microscales variations
through the medium, The final thing which can be gained
through this process is the information about failure and
corresponding orientation through the medium,
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7Figure. 3. Loading and unloading modes with respest to the

current position of yield surface.
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Figure. 15. The comparison of model response with CH3. TST

'b) Volumetric strain (g,) ~1D2
Figure. 17. The comparison of model response with CH5. TST
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7b) Variation of Q versus(sz)for undrained extension tests




