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Abstract This paper demonstrates the capabilities of the PFGC-MES tion of state (EOS) far|calculating|the
thermodynamic properties in the superheated region for pure refrigerants, In addition the ability of this EOS {s also
tested for predicting the VLE behavior of binary mixtures. For pur mpoun everal perties n the
superheated region are predicted. The calculated results and th perim | data |are| presented as
pressure-enthalpy diagrams and also summarized in tables for five selec efrigerants|For mix] the predjcted
results for different properties are also compared with the experimental data.
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INTRODUCTION

The halogenated compounds have been
extensively used as refrigerants and heat transfer
agents. There are also other fields in which the
unusual properties of these compounds have led
to significant commercial or social benefit [1].
Therefore, it is obvious that the development of
equations of state to accurately describe the
thermodynamic properties of these compounds is
of considerable importance. Earlier work [2,3]
has showed that the PFGC-MES provides an
accurate method for predicting the
thermodynamic properties of saturated pure
refrigerants. This EOS has been also successfully
applied to describe the vapor-liquid equilibria
behavior of refrigerants and light hydrocarbon
mixtures [4].

In this paper, the capabilities of this EOS
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for predicting the thermodynamic properties of

superheated pure refrigerants and their binary
mixtures are tested.

PFGC — MES EOS

‘The Parameters From Group Contribution

(PFGC) EOS was presented by Cunningham and
Wilson [5]. In this equation of state, the
parameters are functions only of the groups
making up the individual molecules present in
the system. Wilson and Cunningham presented
only four parameters, namely, b, , S, . £, E&Y
in the original version of the PFGC equation of
state. Moshfeghian et al. [6] introduced the fifth
parameter, £, for better accuracy and
extension of capabilities of this equation of state.
In order to distinguish between the two versions,
the latter one will be referred to PFGC-MES*

« Appendex A preserts the equations for the PFGC-MES EOS, along with expressions for calculating enthalpy and

chemical potential. The mixing rules are also presented.
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EOS.

In order to perform any thermodynamic
property calculations, the PFGC parameters must
be known. Moshfeghian [2] has presented the
parameters for several groups and compounds.
For those compounds and groups for which
parameters were not available, the procedure
suggested by Moshfeghian et al. [3] was followed.
The binary interaction parameter between groups
i and j also had to be determined. In PFGC-MES
EOS differint binary interaction parameters are
defined for ecach phase presented; i. ¢. one
interaction parameter per binary pair for vapor
phase and another one for liquid phase. A detail
calculation procedure for finding the binary
interaction parameter and the results of these
calculations for several binary systems are
reported by Moshfeghian et al. [4] Justification
for selecting two sets of a;; for different phases
was also discussed by Mehranbod [3]. In order to
improve the accuracy of the predicted results
and due to the complexity of refrigerant
molecules, each molecule was treated as a group.

RESULTS

Pure Compounds
As mentioned previously, the PFGC-MES
EOS has been successfully applied to
describe the thermodynamic properties of
saturated pure refrigerants (2, 31 In this work, in
order to show the capabilities of this EOS, the
thermodynamic properties are predicted in the
superheated region and are compared with the
experimental data for different refrigerants. All
of the refrigerant molecules could be divided
into five distinct chemical categories. These
categories are:

1) Methane derivatives

2) Ethane derivatives

3) Cyclic molecules

4) Azeotrope mixtures

5) Unsaturated molecules

Typical calculated results for each of the
above categories are presented. The selected com-
pounds from each category are R-12, R-114,
R-C318, R-502, R-1150. For each of these
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compounds the calculated values are compared

with the experimental data at different
conditions. These conditions are as follows:

1) Constant temperature

2) Constant entropy

3) Constant volume

For each condition three arbitrary curves aré
selected in the superheated region (e. g. three
different isotherms are selected). Some arbitrary
data points are selected along each of these
curves. For each of these data points the
experimental temperature and pressure are
specified. For each case at the specified
temperature and pressure, the enthalpy is
predicted and then compared with the
experimental value. In this way the relative error
in enthalpy is determined for each data point.
A summary of the comparison results for the
five selected compounds are presented in Table 1.
For obtaining a complete phase diagram it is
also necessary to calculate the saturated vapor
and liquid enthalpies. The predicted results for
saturated data were obtained from references (2]
and [3).The calculated values and experimental
data for each of these five pure compounds are
plotted in pressure-enthalpy (P-H) diagrams.
These diagrams are presented in Figures 1 to 5.
As can be scen in Table 1, the predicied results
in the superheated region are in good agreement
with the experimental data. In no case of the
five selected pure compounds is the average

_absolute percent deviation between the predicted

values and the experimental data more than 47.

‘Mixtures

In carlier works [2,4], the interaction coefficient
in the liquid and vapor phases was optimized
for several binary mixtures. Based on these
parameters the VLE of the binary mixtures
under study is accurately predicted. In this work,
as an extension of the previous work, it is
intended to show the capabilities of the
PFGC-MES EOS in predicting other
thermodynamic properties of mixtures. For
mixtures, these properties are bubble point
pressure, saturated vapor and liquid volume, and
saturated vapor and liquid enthalpies. The
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‘mixtures under study are:

1) CBrF, + CH,CHF,

2) CHCIF, + CF,CCIF,

3) CO, + CH,Cl,

For the first mixture, saturated liquid and
vapor volumes are predicted at two isotherms.
For each point, comparison between the
experimental data and predicted values is made
and the results are plotied in Figures 6 and 7.
The second mixture is an azeotrope at a specific
composition (the mole fractions are 48.8 and 51.2
for R-22 and R-115, respectively). This mixture
could be treated by two different approaches for
predicting the thermodynamic propertics. The
first approach is to treat it as a pure compound,
and the second is to treat it as a mixture of
specified composition. For this mixture the
following properties are predicted by using the
above two metheds:

1) Vapor pressure (when treated as pure) or
bubble point pressure (when treated as a mixture)

2) Saturated vapor and liquid enthalpies

3) Saturated vapor volume

4) Saturated liguid density.

The predicted results from the two different
approaches and the experimental daia are
reported together in Table 2. For a better
comparison betwcen the two approaches these
results are also plotted in Figures 8 to 12. For
all of the properties under study the results by
the first method are better than the other
approach. The difference between these two
methods is more pronounced in the case of
saturated vapor volume. For the third mixture
the bubble point pressure is predicted at
different conditions. The predicted results and
experimental data are plotted in Figure 13. The
range of CO, composition in the liquid phase is
from 0.0 to 0.3 mole percent. The predicted
results show good agreement at 327.6 (K) and
310.93 (K) isotherms. At 294,26 (K) the predicted
results show considerable negative devition in the
upper range of composition. For all data points
under study, the average absolute percent
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“deviation is about 5.5%

'CONCLUSION

‘The capabilities of the PFGC-MES EOS were

investigated for two different categories:

1) Predicting the thermodynamic propertics in
the superheated region for pure refrigerants

2) Predicting the thermodynamic properties
for binary mixtures.

For the first category several refrigerants
were studied, and the predicted results for five
selected compounds are presented in
pressure-enthalpy diagrams. In the case of
mixtures, different thermodynamic properties are
predicted for several binary mixtures. The
calculated results and experimental data are
presented both in tabulated and graphical format.

Based on the results presented in this study,
it could be concluded that the PFGC-MES EOS
is a practical and reliable tool for describing the
thermodynamic properties of superheated pure
refrigerants and light hydrocarbon mixtures.
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Table 1. The Ability of PFGC MES in Predicting Enthalpies of Refrigerants in the

Superheated Region
"The Average Absolule Percent Deviation
_]Refrig_erant “isotherm “isoentropy lisovolume
No curves curves curve
12 1.306 1546 1.626
114 1.300 1.649 1.583
502 0.180 '0.641 0.578
C-318 3.249 2.890 3.534
1150 0.182 0.281 0.247

Table 2. The Comparison Results between the Two Methods for Prediciing the
Thermodynamic Properties of R-502

‘The Average Absolute Percent Deviation

" Saturated " Saturated “Saturated “Saturated
" Method ) Vapor Vapor Liquid Vapor Liquid
No. Pressure Enthalpy Enthalpy Volume Density
1 "0.2840 0.5430 ©2.6950 T0.6760 75.2160
2 4.9800 3.7270 5.1270 11.443 5.5280

O =
H Il
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first method (treated as pure)
second method (treated as a mixture)
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Figure 1. Pressure-enthalpy diagram for refrigerant 12
T & . CONS.TEMPERATURE (K)
~~Y~— CONS, ENTROPY (KIXGK)
REFRIGERANT (114) —Tt— CONS. VOLUME (CUMKG)
-1 PRESSURE ENTHALPY i
DIAGRAM
10 -
.\\
.
< * Fr
g e TE
5 b —457 N
z \
i LU
107~ \ \
/ ]
z Vo L
: V4 y
3 [ J—— i'—-f/.b +
2 T s
< o i/ ™
/y rd
/ >
10% . ,.F / 4
(‘zi // :. //
v /’<> : /'<> +
]
i R
- /
5/ o - o
b
10 —— T —— —_— T I I I I — |
500 -- 0.0 500 . 1000 150.0 200.0 250.0 3000 350.0 o 4000
ENTHALPY (KJ/KG)

Figure 2. Pressure-enthalpy diagram for refrigerant 114
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APPENDIX A
PFGC -- MES BASIC EQUATIONS

Compressibility factor:

PV |4 b
—kT—=Z— Sb in [1—7 bt )
’ g
b—bY €jtij
C i
+hlg) %

g
V—b+bX€inj
i

Chemical Potential;

e —Sl[[%—l][.n[l A
b 1]

) g
V—b+b§;em,1

] +in [‘;ﬂ]

g
] —bi+ 3 mijbitij
+b$eiLn| —
V—nb+nb3 €
i

Enthalpy departure:
f [6‘[31

é—u(z—1)+( (Tb2)§ & :
V—b+bZ €y
!

Mixing Rules:

2 ]
=>miibi, component covolume
C - .
b =T xi1bi, mixture covolume
T
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Tij =Exp(—Eij/KT),

8 ]
St =Xmisi, proportional to component
degrees of freedom
c - . .
S =X xisl, proportional to mixture degrees
1

of freedom

‘interaction energy
parameter between groups
iand j

“where:

Eij=aij[Ei+E;]/20, interaction energy between

groups i and j

Ei= EO+E{ &;'7- 1]

- 15097
vem |22
‘interaction energy between groups i and j

— r ¢ )
b ,-=[%j X1 mij b,‘]/b

where;

7 1" component of ¢ total
components

1 ith group of g total groups

J jth group of g total groups

C/bu Umvcrsal constant =12,

my; Number of groups j in component 1

a; Interaction coefficient between
groups i and j

v Molar volume

P Absolute pressure

R Universal gas constant

Absolute temperature
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