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Abstract A desired dynamic behavior of constrained manipulators can be achieved by means of
impedance control and various implementations of fixed controllers have been proposed. In this paper,
an adaptive implementation is presented as an alternative to reduce the design sensitivity due to
manipulator mismatch. The adaptive controlier globally achieves the impedance objective for the
nonlinear dynamic model of rigid robot manipulators.
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INTRODUCTION
Constrained motion control of robot
manipulators is concerned with the control
of a robot whose end-effector interacts
mechanically with the environment. Most
assembly operations and manufacturing
tasks require mechanical interactions with
the environment or with the object being
manipulated, along with fast motion in free
and unconstrained space. Several
approaches to constrained motion control
have been suggested as impedance control,
force control and hybrid position/force
control. '

The fundamental philosophy of
impedance control, due to Hogan [1], is that
the manipulator control system should be
designed, not to track a motion or force
trajectory alone, but rather to regulate the
mechanical impedance of the manipulator
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[2]. The impedance control specifications

consist of a desired motion trajectory and a
desired dynamic relationship between the
motion trajectory of the end-effector and
measured end-effector applied forces. Twc
common approaches to controlling
impedance via feedback control are the so-
called position-based impedance control [3,
4] and the torque-based impedance control
[1, 5]. Stability analysis and comparison of
the behavior of both approaches are
presented by Lawrence [6].

The dynamic behavior of rigid
manipulators is described by a set of
complex nonlinear differential equations.
Most high performance model-based
control strategies rely on the exact
cancellation of the nonlinear dynamic. The
uncertainty in some robot parameters, as
link inertia and payload, has motivated
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‘many researches in the last ten years to
consider the design of globally stable
adaptive controllers for robots.

The adaptive constrained motion control
is not yet well developed. Adaptive force
controllers have been designed for simple
linear model arms [7], or without rigorous
stability analysis for full nonlinear dynamic
manipulator models [8, 9]. An adaptive
hybrid position/force controller was
proposed by Slotine and Li [10]. Where
adaption is only driven by the position
€errors.

In this paper an adaptive impedance
controller for constrained robots is
presented. It is motivated by the position-
based impedance control approach which
consists of two loops. An external one
generates a modified motion reference by
adding a term obtained by filtering the
measured interacting force by the inverse of
the impedance transfer function. This
modified motion reference is applied to an
internal loop which consists of an adaptive
motion controller based on an inverse
dynamics plus an additional compensation.
This adaptive structure has been presented
previously [11]. Compared with a recent
work on adaptive impedance controllers
[12] the controller presented here has the
advantage that all controller gains have a
direct interpretation and can be defined
independently of the impedance parameters,
which specify the control objective.

ROBOT MODEL AND PROBLEM
FORMULATION
In the absence of friction and other
perturbations, the Cartesian-space
dynamics of an n-link constrained rigid
robot manipulator can be written as [5]:
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‘where x is the nx1 vector of Cartesiai
positions and Euler angles of the end
effector related to a fixed frame of referenc
R, on the robot base. F, is the n.x1 vector o
forces/moments due to actuators bu
referred to the end-effector, and F is th
vector of forces/moments at the end
effector due to interaction. H(x) is the nx1
symmetric positive definite manipulato
inertia matrix. C(x, X)X is the nx.1 vector o
centripetal and Coriolis forces, and g(x) i
the nx 1 vector of gravitational forces. It i
considered that the manipulator is non
redundant. It is assumed that the robot i
equipped with joint position and velocit?
sensors and a force sensor at its end-effector
The relationship between joint positions anc
end-effector configuration is:

X=f(q)

‘with the corresponding velocity relation:

4

X =J(q)q (2

“with q the nx 1 vector of joint displacemen
and J{q) = 09f(q)/3q the Jacobian matrix
Also, the relationship betweer
force/moments at the end effector and at the
joints is given by:

T
7a~J (a)Fa

7 T
r=J (qQ)F

Some important properties of the
Cartesian arm dynamics are given below.

Property 1 [10]. Matrices H(x) and C(x, X)
in (1) satisfy
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il.. 7I—I(x) —2C(x,x)]z=0

forall zeg™

Property 2 [10]. A part of the dynamics (1)
is linear in terms of a suitable selected set of
robot and load parameters. i. e.

H(x)X + C(x, %)% + g(x) = Q (x, %, &) 0

‘'where (X, X, %) is an nxm matrix and an
m x1 vector containing the selected set of
parameters.

Property 3. H(x) is an nxn symmetric
positive definite matrix and there is a
constant & >> o such that

ol < H(x) for allxeﬂn
“For revolute joint robots, if in addition j (q)
is a bounded nxn matrix, then there is a
B{a<c<es) such that
@l SH(x)S Bl forallxe &
Now, the adaptive impedance control
problem can be formulated. Consider the
robot manipulator described by (1). The
dynamic vector parameter ¢ of the
manipulator and payload is constant but
unknown. The Jacobian matrix J(q) is
assumed to be nonsingular and known.
Knowledge of J(q) is not restrictive because
it does not depend on the dynamic
parameters. The specifcations of the
impedance control problem are given in this
paper in terms of a desired motion trajectory
and (eventually) a desired force function and
a desired dynamic relationship between the
position error and the force (or force error)
at the end-effector. The robot arm may or
may not interact with the environment. The
impedance control problem can be stated as
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‘that of designing a controller to compute the

torques Ta applied to the joints, so that the
following control arm is verified.

2 —
x(t) = x4q(t)> [Mp +Bp+K]
(F(e) - F ()
where Xd(t) is the desired motion trajectory

in the Cartesian space, Fd (t) the desired
interaction force at the end-effector and p =

as t 2oo

d/dt, M, B, K are arbitrary nxn positive
definite matrices. Let us define the
impedance error as:

2 -1~
g=e+[Mp +Bp+K] F (4)

‘where e(t)=x (1) - x4 (1), F(t) = F(t)- Fa(v).

Hence the control aim is verified provided
that £ (t) -0 as t > o . A technical lemma is
now established.

Lemma 1. Let the transfer function
His)eq
strictly proper. Let u and y be its input and

(s) be exponentially stable and

output respectlvely 1) If uEIL then y,
n

yel[, . ii) IfueiLmL thenyeL2m!L

and y(t) >0 ast-> .

ADAPTIVE IMPEDANCE
CONTROLLER
Controller
The adaptive impedance controller
proposed to solve the problem formulation
consists of a two loops controller structure
with a parameter estimator or adaptive law,
as shown in Figure 1.

Considering the desired motion trajectory
specification, the external loop generates a
modified motion reference by adding a term
which is obtained by filtering the measured
interacting force by the inverse of the
specified impedance transfer function. Also,
a modified reference is obtained for velocity
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F igure 1. Block diagram for the adaptive impedance controller

"and acceleration functions. These modified

motion references are applied to the internal
loop. This loop consists of an adaptive
motion controller based on an inverse
dynamics law plus an additional
compensation and a parameter update law.
The controller equations are given in the
following.

External (impedance) loop:

X (= Mp +Bp+ KT F (9 (8)
‘Modified motion references:
xg(6) = x y(6) * x (1) 6)
x (t) =% (0)+ % (1)
% (1) =X () +% (1

‘Internal (adaptive motion) loop:

F:=ﬁa+a[5{—v] +g+F (7)

a=X
(o] vV O
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Ke 7(8)

+K e

b= (1/(P+)\))[§G+ Kvéo o

e Tx-—X
) o
7 where H, €, g have the same functional for:
as H(x), C(x), g(x), respectively, wil
estimated parameters § (see property 2), A
a positive scalar and Kv , Kp are positiv
definite gain matrices. Notice from (9) the

v 7}\v=é +Ke + K e
0 "V O p o

From a practical point of view, v can b
implemented by

v (plpRA)E_* (UEPRIK

where measurement of joint acceleratio

was obviated. Due to property 2, the motio
control law (7) can be written as

-

F =¢(x,%,a,0)0 +F

a

‘with ¢ an nxm matrix.

‘Update law

To update the parameter vector §
consider an integral adaptive law [13].

o T
5=—1"¢ v

) T . :
where p=r"1s an mxm positive defini
adaptation gain matrix.

Main Result
The main properties of the propose
adaptive impedance controller ar
summarized in“the following.
Proposition. FQ% the controller describe
previously, in closed-loop with th

manipulator (1), the following hoids:
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(a) 6L
(b) ve (L;n[[.n

c) e -é EILn ﬂ[[;n
o o 2 o0
(@) ()~ x_(6) as =

(e) £(t)> 0 ast~

If in addition F, Fa, Xa, Xda. Xd are
bounded.

(£) x(t) > % (t) as toeo
(@) E(t)>0 as toe

Proof. First, let us consider the adaptive
motion controller whose inputs are the
modified references and the outputs are the
position and velocity at the end-effector,
(Figure 1). The closed-locop system is
obtained by equating (1) and (12)

Hi + Cx+ g = ¢(6+0) (14
‘where the parameter error vector § is defined
as 9= —6,0 contains the unknown dynamic
parameters, which are assumed to be
constants. From (7) it can be written.

¢9 =Ha+C[x—v] +¢g

‘Hence, (14) becomes

H[é +Ké +Ke|+Co=00
8] v O p (]
‘Substituting (9),

7H[ir+7w] Cv = ¢; 15)
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' ~T
V(t) = (1/2)[6

‘Now, from the update law (13),

- T :
5=~ v 16)

‘where the fact that ¢ is constant has been

used.

Consider the non-negative function

o~ T
6 +v Hyl (17)

‘whose time derivative along the trajectories
of (15) and (16) is

. i _
V(t)=—Av Hr<0 18)

“where property 1 has been used to eliminate

the term y” (H/2—CJ. Equations (17) and
(18) imply that g . ™and v eL"”. Using
property 3 and (18), It can be concluded that
vel . Now, as v e’ n L" and
considogring (9) with ¢_ as the outp‘ﬁot of an
exponentially stable and strictly proper
linear filter, from lemma 1 it is concluded
that eo €5 € {Lnnan and eo (t) —o0 as
tree  (x(t) > x(t)). °Islow consider the
impedance error (4). Using (5) and definition
of e(t).
R

EO=X@ =X, ) -X (1)

or, considering (6)

As x(t) > x(t). then E(t)~> 0 ast-»oo.
Additional convergence properties (f) and
(g) related to error derivatives, are
established in the following. Under the
assumptionof F and Fd bounded, Xa, Xa and
Xa are also bounded (refer to lemma 2).
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7Considering that Xd, Xa, Xa are also

bounded, it results Xo, Xo, an )"(o to be
bounded. Also x, x are bounded because eo.
é_oe,L:. Now consider equation (14) written
as, -

%=H l(x)(cp(x, X, a, v)(;+0 ) (19)
— C(x, %) & — g(x))

Observing that a - eq. (8) - and v are
bounded signals, it results ¢.eanxm and
from (19) % is also bounded because H™ is
bounded by property (3). Hence 'éo e,
The facts that e E[Ln ar;nd
e € L n [L:: imply that eOOZt) -0 or
x(t) > :gj(t)as t>o Finally,

E(t)=x(t)—}g_(t)—> 0ast oo,

Remark. Force reference Fd can be used

to induce a desired force during interaction
of manipulator with the environment. For

small values of k and error e, a constant Fd
can be attained with practical accuracy.

SIMULATION RESULTS
Computer simulations have been carried out
to show the stability and performance of the
proposed adaptive controller. The
manipulator used for the simulations is the
two - degrees - of - freedom arm moving in a
vertical plane as shown in Figure 2. The
manipulator is modeled as two rigid links of
unitary length with point masses mi and m2
at the distal ends of the links. Friction is not
considered in the model.

The simulation experiment is designed as
follows (see Figure 2). The desired
trajectories last for ten seconds, the first five
seconds for free space motion, the remaining
for interactive impedance control. The
interaction with the environment is modeled
in this experiment as
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f = (beic1+ke(x1-x1e)) ifx1>x

1e

1

‘otherwise f=0

7f2 = 0 (no interaction in the x, axis)

’xluu)as g™

" Figure 2. Two link manipulator and the environment

‘with be the damping and ke the stiffness

coefficients of the environment. Simulation
is carried out using the following desired
impedance parameters:
7M = diag (m), -m=1
B =diag (b), b=10
K =diag (k), k=25
TInitial conditions for tl;lre manipulator are
X(0)=[0.5 0] ;X(0)=0.

Controller design

Parameters are chosen to be.
K = diag(k }, k_=30
p- Bl

K, =diag(k), k=15
=diag (v), 7=0.5
‘A =15.

“Journal of Engineering, Islamic Republic of Iran



The desired trajectories as well as the
actual trajectories achieved through
impedance control are shown in Figure 3. It
is clear that the impedance control objective
is reduced to an unconstrained motion one
during the first five seconds of free space
motion., Then the desired x trajectory
diverges from the real one x1 so as to
accomplish the impedance control objective.
Convergence to zero of fandf in both
directions is shown in Figure 4. Figure 5
shows evolution of estimated parametes

from an initial guess of ¢ 1(0)=0 , 8,(0)=0

“control problem has been presented. The
dynamic parameters of the manipulator are
assumed to be unknown but constant. The
controller is based on the position - based
impedance control structure and an
adaptive motion controller. Compared with
previous solutions this controller presents
the advantage that all controller gains have a

direct interpretation and can be assigned
independently of desired impedance

parameters. Future research should include
comparative as well as practical robustness
studies which consider the effects of joint
and link flexibility. friction, sensor and
actuator dynamics. digital implementation

and other uncertainties and perturbations.

“Figure 4. Impedance errors
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CONCLUSIONS Experimental analysis should also be
An adaptive solution to the impedance considered.
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