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Abstract BEM canbe used to solve Poisson’s equation if the right hand side of the equation V¢ = -ais constant
because it can easily be transformed to an equivalent Laplace equation. However, if the right hand side isnot constant,
then such a treatment isimpossibleand part of the equation can not be transformed over the boundary, hence, the whole
domain has to be discretized. Although this takes away important advantages of BEM over the Finite Element Method
(FEM) in which the whole domain also hasto be discretized, but the results are more accurate, and amuch coarser mesh
can be employed to obtain an equivalent accuracy with less effortin data preparation. In this paperthe application of

BEM to two - dimensional Poisson’s equation is described.

A computer program is developed using linear elements to express the geometry and functions. The program, isused to
solve the torsion porblem (Poisson’s equation) and potential flow around a circle (Laplace’s equation), and the results

are compared with those of analytical methods and FEM.

74.:..‘,,;BIE‘-UQ.5‘;,_.,.¢[SMU,,.¢.,|.JJ.:LA;.,I‘QUA.EP@UQQU_,.:d:h‘hbq.?djf.lklu:uﬁdw@l Jrysnes
..\J‘o.\JJ».(bLa‘x aolan) 6"#"#&“‘&5’-‘#‘&")(&’)\‘.\1 alae) Jeuilsy ol 0L~ ‘H.od:...nJa {_\i SR PR

1. Boundary Element Method
2. Finite Element Method

INTRODUCTION

For many years the Finite Difference Method
(FDM) was the only numerical tool for calculating the
solution of Partial Differential Equations (PDEs). The
method is simple and generally applicable, butforeach
PDE with different boundary conditions a separate
computer program must be developed, and its accura-
cy is limited. The FEM which was developed for
structural problems has now expanded to a stage that
nearly all sorts of PDEs have beensolved by using this
method. In this approach the PDE is first written in
variational form and the functions are then approxi-
mated over each element using usually polynomical
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‘interpolation. After implementing the boundary con-

ditions, a system of equations is proauced, by which
the values of functions are calculated at several points
in the domain. Then general computer programs can
be developed. BEM is to some extent a new numerical
tool in which the governing PDEsare transformed over
the boundary, thus producing in a form of integral
equation. Only the boundary has to be discretized and
the functions are appoximated over the boundary.
Ater implementing the boundary conditions a system
of equations is produced, by which the values of
functions are evaluated at some boundary points. Then
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the values of the functions inside the domain are easily
calculated.

The BEM has been widely used te solve Laplace
equation in recentyears[1)]. Problemsof thissort which
include two or three dimensional potential flow [2, 3],
elastostatic [4, 5, 6], and many other engineering
porblems are solved with relative convenience using
BEM. Compared to other numerical methods such as
FEM, it displays better accuracy, efficiency and ease of
data preparation.

TRANSFORMATION OF POISSON’S EQUA-
TION INTO AN INTEGRAL EQUATION
Consider Poisson’s equation for the domain A and
boundary S;
-V-u(x) = P(x),x e A
o7 (H
where x = (x;,x,) and the functionP:A—IR,anduare
continuous functions. The fundamental solution G (X;
) is defined as [7]:
-Vi(x; ) = 8(x; ), f’{“:lR:
S #)
where &(x; 9 is the Dirac deita function and is defined
at point £ ({is the source and x is a point), 8(x; {) = 8({;
x). For a Laplace operator the fundamental solution is
[71: 1
G(X; Q = ——.Inr
r=[(x-0) ¥ (b
(3)
This solution is symmetric, i.e. G(x; {) G({ix). Ifwe
multiply equation (1) by G(x; {), and multlply equatlon
(2) by u(x) and then subtract “from each other, and by
considerﬁ‘lg the symmetry of the equation; it follows:

’Vzu(n{'). G(x; ) + VlG()j;f),- u(4)]

[P(). G(x: ) - 8(x: 9)- u({)] )
- - - 4

If we integrate over the domain A from both sides:
[ 7@ 600 + 76(x: 9. u(@laA

JAlP(D). G(x; 0 - 8(x; 9. w(QIAAQ)

- - - (5)
Using Green’s theorem [1], and after some rearrange-
ments, the integral form of Poisson’s equation is
derived as:

’ G(x;
PGy 0o+ ) %9 a5 -

(G
WP Gx: 9 GAQ) - [ 805 ) u() dAW)
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" a(x)

‘By substituting

‘In this equation the unit vector perpendicular to Sisn
(n,, n,) where;

- L8 .- A - .
an V{x). n (-—aZE_l ——a?—]). mi + nyj) i
— - - 7)
‘But according to the definition of §(x; {), we have
fux), xeA
B DU dAQ Lo~ LA
(8)

where A AUS, and also;
aG(x; {)
n

Fn(’ﬁg) = 2;_1_37[("1' &)n; + (xo- {o)ns]

(x, 74)2 +(x,- &)1, n

(my, .
(9

q(¢) it follows;

au())
| an
w0 = §. 40 G0x: 9 4SO - §u() Fulxi 0 s
+ Jr'A P({) G(x; H dA(D

(10)
_The integral § P($) G(x; {) dA({) is in the form of
Cauchy’s prmc1pa1 valu€ and can be written as 7}

fr G parw [, Poowpiag

- (L
‘By usingequation (10), one canevaluate _aulx) fora
direction m = (m,, m,) by differentiafing wrt m
direction, thus:

fnu()s) - §S a(9) Fo(x; 9 dS() §5u(£) H,(x;
£ds(9) i ”
+ J,\ P() F.(x; {) dA(2) “12)
LY (12
‘where Hm(?f;'f) 7—"2[}.‘;1”(’"_‘29—

‘Now if point x is moving toward the boundary S, the
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‘equation (10) can be written in as:

w) = §afo) Gl ) dS) - Guudo) Fx
L0)AS(45) S
[ PQOEOIAQ  wlpes ten

ot T T (13)

‘In this equation the integrals Psu(do) Folx; £0) dS(¢o)
anddy({o) G(x; {O) dS({o) arein the form of Cauchy’s
principal value, and it can be proved that they can be
written as;

§19060) 63 ) 45600 = P, 8(00) G £ 4508

$aago o £ d8(g) = — ute) + g

F\(x7¢o) dS{Zo)

‘For simplicity we write S instead of S - {x ], so the
equation (14) is written as;

() = §, algo) Gx; £0) dS W) - Gsu(do) B, 0
13as (o) -

+ [P (s paag

where %r—— (1- ; ).0;and ), areshowninFigure. 1.
When the boundary > is continuous at X then 8, = r,
otherwise it is usuaily equal to the corner angle at x.
Having found the finalform of the integral equation the
boundary conditions must be incorporated.
(1) Dirichlet Boundary Conditions (DBCs)

If we designate a;(x) to be equal to —21%, for DBSc
we have
u(x) = d(x), x 29

‘The form of boundary integral equation is;
$. 440 Gx: £0) dS(Zo) = a(x) i(x) +

$ 6(40) Futx: £0) 350) - [P0 Gl paagp
~ ~ 16)

In equation (16) q(¢) is unknown.

‘Journal of Engineering, Islamic Republic of Iran

“(II) Newmann Boundary Conditions (NBCs):

For NBCs we have;

q(x) = 4(x) xe$

The form of boundary integral equation is;

a(x) UQ) + U((o) Fn(x o) ds(fo)

Js q(s’o) G(x; £o) dS({o) +Ja P(() G(x; ) dA(Y)

P —

(an

“In the above equation u({,) is unknown.
(I1T) Mixed Boundary Conditions (MBCs):
For MBCs we have

u(x) = a(x), XeS,
q(x) = 4(x), xS,
S=5§,US,

The form of the boundary integral equation is;

a(x) u(x) ly,s + ¢s U(fo) Fn(x; (o) dS({o) Is Q({o)
G(x; fo) dS({o)

_“?s U(fo)F (x; fo)ds(fo) +¢s Q({O)G(X Lro)ds(;o)

AP Glx; ) dA(Q)
In the above equation u({o) and q({o) are unknownsat
some points on the boundary.

' NUMERICAL FORMULATIONS.

The boundary S(S, ) isdividedinto N, elements, each
called 2 Boundary Element (BE). Every BE has
several Nodes (N,) and its geometrical shape can be
either linear or non - linear. For integration over the
domain A(A;), the domain is also discretized into
elements (Nein), thus;

N.

2 Se, A, = Interior(§,)

Nein

=3 Ae

e=]

‘Approximating u,(¢,) and q,({,) over the new

boundary;
N,
uc(£0) =£_lui“ ¥ (£0/

N,
qe(fo) 3 q| > (!o)
{HeS, . (19)
The shape functions ) are Lagrangian type and have
the property of;

7¢ilu (g.) = 8ij’ ue(‘{j) =u _(20)

ij=1,2,...,N,
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‘The numerical formulation for MBCs is described
here, as for the other two types of BCs foliow the same
suite. The boundary conditions for MBCs are given as:

7uh(§) = i(x), X &8y,
Qh(i) = Q(ZS), XE San ]
N“. NZE
=8, USy, Sy = US,e S = U_ISZe

“where N, is the number of elements with DBCs, and
N., is the number of elements w;th NBCs The form of
the equation for every node is:

N,, N,
a(x;) uy(x) + E ISZe [2 u e(fo)] Fn(xn {o) ds(fo) +
Nae N Ny Np
z_ljSle [ z qle'/’,e(fo)] G(xl’ {O) ds((O) = 2 ISle [2
605 (o)) Falx: Lo) dS(Z0) 21
NZe Np

+ z_ljsze [_;lqj‘ed’je(go)] G(x;4o) dS(go) + [ an P(_{) G(fi?
{) dA(g)

‘The compact form of the equation (21) becomes;
N

N3
2 qiqu 2 b.a. + d
i=1 i=1

a, +Ebu Za,]qJ i

4
=1

i='12,. N (22)

“where N,, and N, are the number of nodes with DBCs
and NBCs. Also,

a = a(X) = ——

8, = corner angle at node

= 04(X), Qi = qu(x))
N,

q; = eé'laijev

a;j* = {5 (xn {o)d’j ({0) ds(fo)
N,

bi,— = 2=]bijc’

by = fse Fal®s §o) 957(d0) 45(4o)

di = [an P(D) G(x; §) A()

‘For the computer program written, linear shape
functions have been assumed for boundary elements as
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(A]=[a,). [B] =

‘well as interior elements. Thus ., for the two nodes of

each boundary element as a function of intrinsic
coordinates £, is written as;

Y(H=05(1-¢

() =05(1+§). -1<¢é<1

Each interior elements has four nodes, for which the
shape function is written as a function of £ 7 the
intrinsic coordinates;

(& n)=1(1-6(1-n)

BEnN=11+H 1) -

(€, m) =11+ (1+7m) -1<€ <1
W€ n)=41(1-H(1+n)

The integrations are performed using Gaussian
quadrature. For this purpose theintegrandsare first
transformed into £, 5 local coordinates by use of the
Jacobian of transformation. Different strategies have
been employed for singular or nonsingular integrands.

The matrix form of the equation (22) is written as;

[B]{U}=[A]{Q}+{D]

where {U‘= u,and {Q )= qI

u,=0,and q = = ¢;for DBCs and u; = u;,andq, =
NBCs Also

q;for

[b,l] {D}={d}.b;=b, b + af;

After rearrangement the form of the equation (23)

becomes;

KJ{V]=M]{e]+{D]

where,

{ -u K by
[K] [Kl_]] v = q‘l §y= a,J j
=-b;;

M) = [m.J{'w il

“and finally;

[K]{V]={R]

where;

{R}={r,,1,= 2mw+d (25)
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A convinient way to calculate a; is the use of rigid body
motion property of the Poisson’sequation. Suppose we
have;

Vau(x) 0,xeA

au(x)

an 0, xeS

the solution to thisequationisu(x) = u, = const. Now if
we formulate the equation wrt the given boundary
condition;

[B]{U] [Al{Q]

Since q = 0, then {Q ] = 0 and thus [B] {u }= {0}, but
we know that u, = u,, thus {U ] = [U,, U,,...,U,J".
Hence;

N_
UOZbl-j = 0, i= 1,2,...,N‘
i=1 B

since the Lapalace equation is true for everyu,, thus;

N N :
2b,1=0—)al+2bu=0 LI
i=1 i=1

SR s

therefore;
N

i = -2 by

=1 ’.(_30)

The matrix [K] in equation (25) is a fully populated
matrix, and if asimple elimination routine isemployed,
the round - off - errors could cause seriousinaccuracy in
the solutions. Thus a Gaussian elimination method
with total pivoting and scaling is employed.

APPLICATIONS
In order to check the accuracy and efficiency of the
method two problems have been solved here.

1. Torsion Problem:

The governing equation for torsion of noncircular
members is a kind of Poisson’s equation. The equation
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‘with the boundary conditions is given [8];

Vé(x) 2G8  xeA

$(x)=0 xeA

A={x (x,y) -b<x<b,-a<y<a)
S={x: (x,y) b<x<b,-a<y<al-A

‘The function ¢ is a kind of stress function by which 7,,
and 1, are derived according to;
. -ag  ad

T ax ™= ay

'The analytical solution to the equation is found by use
of series functions [8]. For BE discretization a square
shape witha = b = (.5 isassummed. It has40 boundary
elements and 100 interior elements, The number of
nodes is 40 on the boundary and [2] on the interior.
With G@ = 10 x 107, the problem is solved. For
comparison the vawues of ¢, 7,, and 7,, are calculated at
some nodal points on the boundary and at the interior
of the cross section are tabulated in Table 1. As it is
shown the BEM would yield very accurate valuesfor 7,,
and 7, but FEM [10] has given better values for ¢. For
FEM discretiztion the same number of elements (100
elements with 121 nodes) has been used.

2. Potential Flow Around a Circle:

BEM has been applied to solve a Laplace equation,
here the potential flow around a circle. The problem
and its boundary conditions are expressed as [9];

Viy(x) = 0,x £ IR? - (AUS), x=(x,y)
¥(x) =0, XeS
Wx) = Voo y, IXI > ixi = VX 4y’

A={§|x2+y2<yaz],S={)slx2+y2=a2]

‘The analytical solution has been derived for an infinite
domain [9]. Although indirect BEM can be formulated
for infinite domain but here a direct BEM has been
applied to a finite domain with the following form of
discretization;

Vx) =0, xeA,x=(x,y)
¥(x) = 0, xe$
Wx)=V,y, xeS,_

A ={x1a° <x’ +y’ < (100a)’ )

S={xx*+y’ =a’),S={xix?+y* = (100)*]

The domain is finite and doubly connected. The
domainSand$ are divided into64 boundaryelements
(32for S and 32for S,.). The values of ¢, ,.%(*k ,, % are
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“tabulated in Table 2. The results match very well with
the analytical solution, although a finite domain is
assumed.

CONCLUSION:

A BEM program is presented for Poisson’s equa-
tion. The BEM requires the formulations of the
functions in terms of integral over the boundary. This
would cause very much simplification as far as the data
preparation and the input data is concerned. The
method has also its own drawback, as in case of
Poisson’s equation part of the integral equations can
not be transferred over the boundary.

With respect to Poisson’s and Laplace’ equations the
following conclusions :may be made.

In case of Laplace equation:

1. In BEM ¢ is approximated over the boundary S,
while in FEM it is approximated overthedomain A,
and hence increases the errors

2. The size of the domain doesnot cause anyincreasein
calculations in case of BEM, But in FEM by
increasing the size, the number of elements must be
increased.

3. In BEM the functions and their derivatives are easily
and accurately calculated at internal points, while
for FEM the points are usually the nodes and the
values of derivatives aré not as much accurate.

In Case of Poisson’s equations:

1. The volume of calculations due to an integral ovet
the domain has been consideribly increased for
BEM.

2. A much coarser interior mesh generation can be
done for BEM in comparison with FEM at the same
accuracy.

3. The computation time for BEM is bigger than FEM
because of a fully populated matrix of coefficients.
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"4, Those in 2, and 3 in case of Laplace equation are true

for the case of Poisson’s equation.
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"Table 1(a): Values of ¢ (Analytic V. S. BEM)

" Point “Analytic BEM e%
w# value value BEM
1 '0.14734257E-2 ~0.14489902E -2 - 1.6584
0.14230610E-2 0.13986203E-2 1.7174
0.12675927E-2 0.12430740E-2 1.9342
0.99366109E-3 0.96910693E-3 2.5005
0.58083665E-3 0.55510297E-3 4,4304
0.14230610E-2 0.13986203E-2 1.7174
0.12675927E-2 0.12430740E-2 1.9342
] 0.99396109E-3 0.96910693E-3 2.5005
9 0.58083665E-3 0.55510297E-3 4.4304
10 0.13748848E-2 0.13504703E-2 1.7757
0.10968195E-2 0.10727214E-2 2.1971
12 0.69293764E-3 0.67026314E-3 327122
13 0.26142494E-3 0.24326972E-3 6.9447
"Table 1(b): Values of ¢ (Analytic V.S, FEM)
" Point " Analytic FEM2 %
# value value FEM2
1 "0.14734257E-2 0.14733923E-2 0.0022
2 0.14230610E-2 0.14229543E-2 0.0075
0.12675927E-2 0.12675525E-2 0.0031
4 0.99396109E-3 0.99386760E-3 0.0094
0.58083665E-3 0.58079151E-3 0.0077
6 0.14230610E-2 0.14229543E-2 0.0075
7 0.12675927E-2 0.12675525E-2 0.0031
8 0.99396109E-3 0.99386760E-3 0.0094
9 0.58083665E-3 0.58079151E-3 0.0077
10 0.13748848E-2 0.13747074E-2 0.0129
11 0.10968195E-2 0.10967966E-2 0.0021
12 0.69293764E-3 0.69288640E-3 0.0074
13 0.26142494E-3 0.26214551E-3 0.2756
“Table 1{c): Values of d¢/dx (Analytic V.S, BEM)
" Point " Analytic "BEM %
= value value BEM
0.0 0.0 0.0
2 0.10145858E-2 0.10147975E-2 0.0208
3 0.21165837E-2 0.21182574E-2 0.0790
4 0.33917714E-2 0.33973342E-2 0.1640
5 0.49181034E-2 0.4930839%0E-2 0.2589
6 0.0 0.0 0.0
7 0.0 0.0 0.0
8 0.0 0.0 0.0
9 0.0 0.0 0.0
10 0.97081015E-3 0.97039424E-3 0.028
1 0.17655405E-2 0.17621529E-2 0.1918
12 (.21940042E-2 0.21818066E-2 0.5559
13 0.19776714E-2 0.19386562E-2 1.9727
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Table 1(d): Values of dd/ds (Analytic V.S, FEM)

" Point " Analytic FEM2 T e%
# value value FEM2
1 0.0 0.0 0.0
2 0.10145858E-2 . i
3 0.21165837E-2 0.21454334E-2 1.3630
4 0.33917714E-2 i
5 0.49181034E-2 0.49693380E-2
6 0.0 )
7 0.0 0.0 0.0
8 0.0
9 0.0 0.0 0.0
10 0.97081015E-3
11 0.17655405E-2 0.17957373E-2
12 0.21940042E-2 .
13 0.19776714E-2 0.20845348E-2
Table i(e): Values of d¢/dy (Analytic V.S. BEM)
“Point " Analytic "BEM “e%
# value value BEM
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0
4 0.0 0.0 0.0
5 0.0 . 0.0 0.0
I3 -0 10145858F-2 -0.10147975E-2 0.0208
7 -0.21165837E-2 -0.21182574E-2 0.0790
8 -0.33917714E-2 -0.33973342E-2 0.1640
9 -0.49181034E-2 -0.49308390E-2 0.2589
10 -0.97081015E-3 -0.97039424E-3 0.0428
11 -0.17655405E-2 -0.17621529E-2 0.1918
12 -0.21940042E-2 -0.21818066E-2 0.5559
13 -0.19776714E-2 0.19386562E-2 19727
dé .
Table 1(f): Values of d_y- (Analytic V.S. FEM)
“Point " Analytic "FEM2 “e%
# value value FEM2
1 0.0 0.0 0.0
2 0.0
3 0.0 0.0 0.0
4 0.0
5 0.0 0.0 0.0
6 -0.10145858E-2
7 -0.21165837E-2 "1.3630
8 -0.33917714E-2
9 -0.49181034E-2 " 0.49693380E-2
10 -0.97081015E-3
11 -0.17655405E-2 -0.17957373E-2 11,7103
12 -0.21940042E-2
13 -0.19776714E-2 -0.21454334E-2
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