PLANNING ROBOT MOTION IN A 2-D REGION WITH
UNKNOWN OBSTACLES

'CARO LUCAS

‘Department of Electrical Engineering
Tehran University

Tehran, Iran

“Received may 1988

‘Abstract The purpose of this paper is to present several algorithms for planning the
motion of a robot in a two-dimensional region having obstacles whose shapes and
locations are unknown. The convergence and efficiency of the algorithms are
discussed and upper bounds for the lengths of paths generated by the different
algorithms are derived and compared. J

PR LY O AP PRYPUR I SRR SIPRy P JU ICK SPSp SR pW R RPETK { | ST L [T P N ST @
ku,v h\u.\-“,ﬂ JhﬂJ,”d‘jybé,b_,é;"d J‘ﬁ\-&ﬂ))’n bﬁ)ﬂ‘ U"‘JL{’UA;‘. o} ‘-_,luob g&ﬁ

..»_,;u.cJ‘)Mhﬁ:)ygayuawwulwduﬁ),ﬁ‘

INTRODUCTION

In recent years, the question of planning the
motion of a robot system in the presence of
obstacles which are not passable has been
studied by many authors. It is usually
converted to the geometric problem of finding
a continuous path from the starting point S to
the terminal point T that avoids the areas
occupied by the obstacles [1-5]. In most of the
published works on the motion planning of a
robot, it has been assumed that full
information about the environment and the
positions of the obstacles is available. In this
paper however, it is assumed that no
information about the geometrical shapes and
locations of the obstacles is initially available
and the robot learns about the obstacles only
as a result of meeting them along its path. The
formulation of the problem is given in
reference 6. The robot is modelled as a point
located in a two dimensional plane and the
obstacles are modelled as fixed and stationary
regions. It is also assumed that there is a finite
number of obstacles, any obstacle has finite
area and perimeter, and any straight line can

Journal of Engineering, Islamic Republic of Iran

“cross -the boundary of an obstacle a finite

number of times. The robot can recognize an
obstacle when it encounters one and is able to
move along the boundary of an obstacle or
leave it so as to move freely in the area that is
not occupied by the obstacles (the free space).
The points S and T are known and the robot is
capable of knowing its exact location and
orienting itself in the two dimensional plane as
well as moving along a straight line in the free
space. -

Two nonheuristic path planning algorithms
have been given in reference 6. The upper
bound for the length of paths generated by
each algorithm has been considered as an

indicator of the efficiency of that algorithm. It

has also been shown that the least value for the

'upper bounds (called the “lower bound™) is
given by 4

LB=ST+2X P (1)
) 1ecI
where P is the perimeter of obstacle i, C,.
the set of all obstacles intersecting the ST- lme
and ST is the distance between § and T. An

'Vol. 2, No.3&4, Nov.,1989 —112

‘improved algorithm having a smaller upper
bound has been given in reference 7. The
principle behind these algorithms is either to
follow the ST-line whenever moving in the
free space or to leave the obstacles at the
points of minimal distance from T. In this
paper, three more algorithms based on a
different principle are presented. It is argued
that although these algorithms do not have
smaller upper bounds than those previoiusly
presented [6,7] , they are more reasonable and
leave the boundary earlier.

'THE PATH PLANNING ALGORITHMS

Unless additional assumptions are made, no
algorithm has so far been proposed whose
upper bound is equal to the value of LB given
by Lozano-Perez [1]. It has been claimed that
the following algorithm is “the best that can be
offered today” [6].

Algorithm 1
Initially, j=1; L, =S

T) From point Lj_l move toward T along a
straight line until one of the following
occurs:

a) Point T is reached. The procedure stops.

b) An obstacle is encountered and a hit point
H is defined. Go to step 2.

2) Usmg the conventional direction
(arbitrarily assumed left in the rest of this
paper), follow the obstacle boundary. If
point T is reached, stop. Use the registers R
to store the coordinates of the current point,
Q_, of a minimal distance from the point T,
R to integrate the length of the boundary
starting at H and R,, to integrate the length
of the boundary startmg at Q_. (In the case
of many choiees for Q choose any). After
having traversed the whole boundary and
having returned at HJ define a new leave
point at L, =Q_. Gotostep 3.

3) Using the contents of R, and R,, determine
the shorter way along the boundary to L It
the straight line segment LT is blocked by
the obstacle at L, then the pomt T cannot be
reached (test for reachability). Otherwise::

113- Vol. 2, No. 3 & 4,Nov., 1989

set j=j+1 and go to step 1.
The upper bound on the length of paths
generated by this algorithm is given by

Lumelsky and Stepanov [8]:

UB-smqszp)

where C, is the set of all obstacles intersecting
or inside the circle C(T, ST) centered at T with
radius ST. Clearly C, cC,. Actually, a better
algorithm from the point of view of having the
least upper bound, is given by Lucas [7].

'Algorithm 2

Initially, j=1,L =S

1) From point L. move toward T along the
ST-line until one of the following occurs:

’ a) Point T is reached. The
procedure stops.
b) An obstacle is encountered and
a hit point Hj is defined. Go to
step 2. .

2) Using the conventional direction, follow the
obstacle boundary. If point T is reached,
stop. Use the registers R to store the
coordinates of the intersection with the ST-
line, Q_ currently having the least distance
from the point T, R, to integrate the length
of the boundary starting at Q_. (In the case
of many choices for Q choose any). After
having traversed the whole boundary and
having returned to Hj, define a new leave
point as L Q.. (If the robot returns to Hj
without ever meeﬁng an intersection point
with the ST-line then the point T cannot be
reached). Go to step 3.

3) Using the contents of R, and R . determine
the shorter way along the boundary to L. If
the straight line segment Lj T is blocked by
the obstacle at L. then the point T cannot be
reached. Otherwise, set j=j+1 and go to
step 1.

The upper bound on the length of paths
generated by Algorithm 2 is given by

UB §A+ 5Xp, [t

‘which is smaller than UBI. When an obstacle
is encountered, the robot must traverse the

“Journal of Engineering, Islamic Repubiic of iran

“whole boundary under both algorithms,
during which the “leave point” is decided.
Then it must move along the boundary again
$0 as to reach that leave point. The total
length of path along the boundary generated
by any algorithm will depend on the shape of
the obstacle and one cannot determine,
a priori,which algorithm will generate a
shorter path. If no other obstacle is
encountered after leaving the current
obstacle, the remaining length of the path
generated by Algorithm I will be shorter.
But even in this case, one cannot determine,
a priori, the total length of the path
generated by which algorithm will be
shorter. Therefore, Algorithm 2 is to be
preferred because UB_<UB,.

However, the upper bound alone is too
conservative an index for determining the
efficiency of an algorithm. Not all decision
makers would prefer an algorithm having a
smaller upper bound if in most cases of
interest it generated longer paths.
Furthermore, the bounds are expressed in
terms of Pi, which depend on the locations
and shapes of the obstacles. Generally, if an
algorithm allows deviations from the ST-line
there will be some possibility of
encountering obstacles not betonging to C,
(as well as obstacles belonging to C,); and
so, the upper bound, as expressed by P,
will increase because more terms have to be
included [7]. But one cannot say that there
1s always some likelihood of encountering
additional obstacles because there is also
some possibility of not encountering even
those obstacles belonging to C .

The following algorithm can thus be
proposed:

Algorithm 3
Initially, j=1,L =S

1) From point L , move toward T along a

straight line until one of the following

OCcCurs:

) a) Point T is reached. The
procedure stops.
b) Anobstcle is encountered and a

Journal of Engineéring, Islamic Republic of Iran

hit point I—Ij is defined. Go to
step 2.

2) Using the conventional direction, follow the
obstacle boundary. If point T is reached,
stop. Use the registers R, to store the
coordinates of the first pomt Q, along the

~ boundary such that Q,T does not intererst
the obstacle at any pomt and Q T< H T,R,
to register the last point, Q along the
boundary having the same propertles R, to
integrate the length of the path along the
boundary from Hj to Q, and R tointegrate
the length of the path along the boundary
from O, to H*. If the robot returns to H
without having found any point with the
properties given for Q, or Q.. then point T
cannot be reached (test for reachability).
Otherwise go to step 3.

3) Using the contents of R, and R, determine
the point Q, (i=1 or 2) havmg the shorter
distance along the boundary path from H.
Define L Q,. Setj=j+1 and go to step 1.
The upper bound for this algorithm is equal

to that of Algorithm 1.

UB,=8T=15ZP 4)

iec]

However. it can be easily seen that the path
along the boundary under Algorithm 3 is
shorter than under any of the other two
algorithms; and if no other obstacle is met,
then the total path generatéd by Algorithm 3
will be the shorter (Figure 1). We can, in fact,
further improve Algorithm 3 by modifying R,
and R, in step 2 to include the distance along
the boundary from Hj to Q, plus the distance
QT (Algorithm 4),

It is to be noted that the upper bounds
corresponding to Algorithm 1, Algorithm 2,
and Algorithm 3 are all greater than LB. This
is due to the fact that the robot completes a
close curve along the boundary of each
obstacle it encounters before it determines
the leave point of that obstacle, and then it
has to move along the boundary once again
(but chosing the shorter path. along the

* Further memorization (e.g. angles tor the QT- line) is
necessary for this algorithm.

Vol. 2, No. 3 &4, Nov.,1989 —114

T
S / Q1
Figure 1: Comparison of the paths generated by Algorithm 1, Algorithm 2, and Algorithm 3.
‘boundary, from the hit point to the leave UB, = ST + %, 1/2 n P (5)

point) so as to reach the desired leave point.
Thus, the total path along the boundary is
always greater than P_and in the worst case it
is equal to 1.5P.The following algorithm
proposed in reference 6 avoids this drawback.

‘Algorithm 5
Initially, j=1, L =S
1) From point L move along the ST-line
until one of the following occurs.

a) Point T is reached, the
procedure stops.
b) An obstacle is encountered and
a hit point Hj is defined. Go to
step 2.

2) Using the conventional direction, follow the
obstacle boundary. If point T is reached,
stop. If the ST-line is met at a distance d
from T such that d< HJ T, then define the
point L set j=j+1 and go to step 1. If the
robot returns to H without ever meeting the
ST- line, or before identifying another hit
pointH , then point T cannot be reached.
However, unless additional assumptions

(such as convexity of the obstacles) are made,
there is always the possibility of coming across
the same obstacle after having left it at some
other point, as well as having to pass some
segment of the obstacle boundary several
times. As for Algorithm 5, the upper bound
can be expressed as

115- Vol.2,No. 3 &4, Nov.,1988

iect

where n is the number of intersections

between the ST-line and the i-th obstacle
boundary. If, e.g., under convexity
assumption, we have n=2; i=1, 2,..., then
UB, will be equal to LB. Finally, if we assume
that all obstacles are convex, then the
following algorithm may also be proposed.

‘Algorithm 6

Initially, j=1,L =S
1) From point LJ._l move toward T along a

straight line until one off the following

occurs.

7 a) Point T is reached, the

procedure steps.

b) An obstacle is encountered and
a hit point HJ. is defined. Go to
step 2.

2) Using the conventional direction, follow the
obstacle boundary. If point T is reached,
stop. If a point Q, is reached such that
QT< H]_T and the straight line Q T is not
blocked by the obstcle at Q , thenset j=j+1.
L =Q, and gotostep 1.

Although the paths generated by this
algorithm are not bounded by (5), because
there is now the possibility of meeting
additional obstacles not intersecting the ST-

“Journal of Engineering, Islamic Republic of lran

line Algorithm 6 is not inferior in Algorithm
5. The possibility of meeting an increased
number of obstacles does not necessarily
imply an increased likelihood of coming across
more obstacles, and there is also the possibility
of avoiding some of the obstacles intersecting
the ST-line without meeting other obstacles
instead. On the other hand, if after leaving an
obstacle neither algorithm generates a path
that meets another obstacle, then Algorithm 6
will generate the shorter path.

CONCLUSION

After discussing the two algorithms
proposed in [6], as well as the “optimal”
algorithm given in [7] (optimal with respect to
the “upper bound” criterion as suggested in
[6]), new algorithms, which, have a greater
upper bound than the “optimal” algorithm
and are more efficient in certain other respects
have been proposed here. Algorithms 3 and 4,
while having the same upper bound as
Algorithm 1, are more efficient than both
Algorithms 1 and 2 in those other respects.
Algorithm 6 combines the features of these
Algorithms and Algorithm 5 so as to avoid
investigating the whole boundary of each
obstacle™ (as suggested in [6]). However,
additional assumptions were necessary for
guaranteeing convergence and efficiency [7] .
It has also been argued that the upper bounds.
besides being a rather conservative criterion,
are expressed in terms of the perimeters P of
the obstacles, which are initially unknown and

Journal of Engineering, Islamic Republic of Iran

‘therefore, other criteria for efficiency should
also be considered.

AKNOWLEDGEMENT
The author wishes to thank the reviewers of
the journal for their careful analysis of the
paper and their many useful suggestions.
which have contributed to the improvement of
the presentation and elimination of possible
sources of error.

REFERENCES

1. T. Lozano-Perez. “Special Planning: A Configuration

Space Approach™ IEEE Trans. Comp. Vol. C-10, Feb.
1983.

2. K. C. Shin and N. D. McKay. “Robot Path Planning
Using Dynamic Programming”. IEEE Trans.
Automat. Contr., Vol. AC-31, June 1986.

3. M. W.Spong, J. S. Thorp, and J. M. Kleinwaks. “The
Control of Robot Manipulators with Bounded Imput™.
IEEE Trans. Automat Contr, Val. AC-31, June 1986.

4. H. P. Moravec. “The Stanford Cart and the CMU
Rover”. Proc. IEEE No. 7, 1983,

5. R. A. Brooks. “Solving the Find-Path Problem by
Representing Free Space as Generalized Cones™.
Artificial Intelligence Lab., MIT. Cambridge. Al
Meno. 674, May 1982,

6. V. I. Lumelsky. adn A. A. Stepanov. “Dynamic Path
Planning for a Mobile Automation with Limited
Informatiion on the Environment”™. 1EEE Trans.
Automat. Contr.. Vol. AE-31. November 1986.

7. C. Lucas. “Comments on Dynamic Path Planning for
a Mobile Automation with Limited Information on the
Environment”. IEEE Trans. Automat. Contr. In
Press.

8. V. J. Lumelsky and A. A. Stepanov. "Authors’
Reply”. IEEE Trans. Automat. Contr. In Press.

‘Vol.2,No.3&4,Nov.,1989 116

