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Abstract In this paper a two-state Markovian maintenance process where the true state is unknown will be
considered. The operating cost per period is a continuous random variable which depends on the state of the
process. If investigation cost is incurred at the beginning of any period, the system will be returned to the
“in<control” state instantaneously. This problem is solved using the average criteria. The method involves
exploiting the structure of the problem to develop an algorithm which is shown to be more efficient than the
usual dynamic programming approach. Results of extensive tests show the accuracy of this algorithm. In
eddition, it Is shown that if certain condition is satisfied, then it is possible to find the average cost per period
by a simple calculation.

U8 350 il Jptoma T godly casayn 65 1) iy 53 5555t 15,0005 3 o 830 00L s adlo K o adlin 0l 50 su.S>
St J)L)Q.hulnu“,du"s.uu oT &b oy oS cul gy JE> AL L Folas pitie Ko S0y 58,0 il (o5, 0050 . paoase
oiile Sove ”aAJLmu.o 39 b o JET" 508w T cnsdgay P hgh il su S s la g agp slanl jo Guil g3l ey
i 00,80 Lgy 3y00bp 51 LB saladlged poysSil K 0y so0e b By el soliinl el gh 6500 S5 o Sgapr 50 630
bylys S1eS audaue o lis adlie ol jo oSyl " Blao, cuwl Jla 98 1 50 o198 jlaws a1 fu.a,,i.llu..laSau ul-’.‘.s..xm ‘slnu...s

-l s ool Slhulon bugin 1) g1y 8 50 a3 (pSbe a

INTRODUCTION

Consider the two state problem of Kaplan
[10] (In-Control and Out of-Control) with
a Markov chain describing the transition
between the two states in successive periods.
The operating cost per period is a random
variable depending upon the state of the pro-
cess. In each period there are two actions:
continue or investigate. If the investigation
cost is incurred at the beginning of any period
the system will be returned to the “in-control”
states instantaneously. Thus, a decision to
delay investigation for one period carries
the risk of operating one more period out
of control, therefore incurring expenses from
the higher cost outof-control distribution
rather than from the lower, cost, in-control

distribution. Balanced against this risk is the
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certain cost of an investigation which might

show that the system is still in-control. Exam-
ples of this model include inspection/replace-
ment of production machinaries, maintenance
of military equipment or communication
systems, quality control, and cost variance
investigations problem in managerial accoun-
ting.

This problem is a partially observable
Such a

process is a generalization of a Markovian

Markovian maintenance process.

decision process which permits uncertainty
regarding the state of a Markov process and
This
generalization results in added computational

difficulties.

sion process, an optimal policy can be ex-

allows state information acquisition.
In a finite state Markovian deci-

pressed in simple tabular form, listing optimal
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“actions for each state. However, in the par-
tially-observable Markovian maintenance pro-
cess, because of the state uncertainty we will
be confronted with an enlarged set of states,
in fact a continuum of states.

Monahan [16] in his review of the partially
observable Markov decision process, states
that efficient computational procedures exist
when the planning horizon is finite and short.

Less efficient procedures exist for infinite
horizon problems.

Here we will reconsider the two-state par-
tially observable Markovian-maintenance pro-
cess (POMMP) of Kaplan.
have addressed this problem but none has

Several authors

used the approach that we suggest, namely
the optimal long run-non-discounted average
cost per period.

Kaplan [10] solved this problem by using
dynamic programming for a discounted in-
finite horizon case. However, the convergence
of its V; (The optimal return function with
i=1, 2, ... periods to go) is not finite, and in
value iteration the repetition of a policy (The
same decision rule for V; as V,;;) does not
imply that the policy is optimal. The two-
state (POMMP) can also be solved by policy
iteration, and the methods are finite when
the number of realized cost is finite. Either
Brown’s [2] method of recursive sets of
rules or Sondik’s [20] “finitely transient”
procedure can be used, and Sondik points
their similarity. Magee [14] attempted the
solution of the two-state problem allowing
cost to be normally distributed. Magee pro-
posed seven plausible rules to be compared
through simulation. He did not develop an
optimal solution, however, because of the
difficulties in doing so. Dittman and Prakash
[7] proposed an easily calculated heuris-
tic rule which allows the decision of whether

to investigate to the dependence on the most

202 - vou. 1, No. 4, November 1988

recently observed cost. They investigate the

non optimality of their rule in [8].
Buckman and Miller [3] have solved the
two-state problem as a regenerative stopping
problem, but they modified the parameters
of the problem in order to satisfy a monotone
condition. Buckman and Miller [3] developed
their previous studies for a multiple cost pro-
cess systems, they assumed each cost process

evolves independently. Investigation and cor-
rection are assumed to be made for all cost
process at once, and investigation decision
is based on a vector of probabilities that each
cost process is in control.

In this paper the two-state (POMMP) will
be solved using the average criteria. Aryane-
zhad [1] has shown that the average cost per
period (ACPP) for an infinite horizon case of
the two-state (POMMP) has an optimal policy
of the control limit type.

Then he proves that this (ACPP) is a quasi-
convex function of the control limit policy.
We will use these two main results and a
discrete-approximation technique to develop
an algorithm using Fibonacci search in order
to find the optimal (ACPP) of the (POMMP)
model, when the cost functions are continuous.
Furthermore it is shown that if certain con-
dition is satisfied, then the (ACPP) will be
derived by a simple calculation.

In our algorithm; the new control limit
policy will be derived through a searching
procedure. We have shown by numerical
examples that this searching method is quite
accurate and much faster than the dynamic
programming approach, used by Dittman
and Prakash [8] since it converges to the
optimal limit policy from both sides instead
of one side. In addition certain other pro-
perties are utilized to reduce the search effort.

The paper is organized as follows. In

Section 2, the mathematical description of the
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model is given. Analysis of the model is given
in Section 3. In Section 4, we will show how
to find the optimal (ACPP) for a special case.
In Section 5, we will give a discrete-approxi-
mation method in order to find (ACPP) for
a given control limit policy. An algorithm
using Fibonacci search is given in Section 6.
Finally in Section 7, results of extensive tests
are presented.

MATHEMATICAL DESCRIPTION
OF THE MODEL

We are considering a two state system where
state 1 means the system is “in-control”
and state 2 means the system is out-of-control.
We let q; be the probability of being in state
1 at the beginning of period i. The density
of the expected cost x in period i will be
qif1(x) + (1—-q;)f5(x) where f;(x) and fy(x)
are the probability densities of cost when we
are in state 1 or 2 respectively. Presumably
f1(x) has most of its probability at low costs
and fy(x) has most of its probability at higher
costs. We let my and m, be the means of the
two distributions.

When in state 1, there is a probability g of
remaining in state 1 and probability (1—g) of
going to state 2. It is assumed the move to
state 2 takes place late enough in any given
period so that reported costs are determined
by the state the system is in at the beginning
of the period. The cost in the given period
and the state the system goes to in the next
period are assumed to be conditionally in-
dependent given the state at the beginning of
the period. Once the system is in state 2,
it will remain there until corrective action is
taken. Therefore, the system can be repre-
sented by a two-state Markov process whose

one step transition matrix is:
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Investigation and repair are synonymous in
this model. Either action may be taken at
the beginning of any period for a cost of K
and the system will be in state 1 instant-
aneously. The cost K is incurred even though
the system may have already been in state 1
and no correction was needed.

The probability that the system is in state
1 will be determined because the actual state
of the system cannot be known except through
investigation. Since q; is the probability of
being in state 1 at the beginning of period i,
we can find q;4q given that the cost is x by
using Bayes formula:

P(x/we are in state 1)P(being in state 1)
P(The cost is x)

9i+1/x"

ofy (x) g4,

- (1
qif] (x) + (1 —q;) £5 (x)

In state q; two decisions are available, decision
1 which is to do nothing and decision 2 which is
to investigate and correct if necessary. There-
fore, the one period cost and state transition
functions will be as follow:

7C(<li» 1)=qjmy +(1—-q;)my;

) g 9if1(x)
9i+1 qifl(x) + (l—qi)fz(x)

C(g;, 2)=K+gm, +(1-g)my;

7 ngl(x)
gf1(x) + (1-g)f5(x;

Qi+1 =

The objective is to determine a decision rule

which minimizes A, the average cost per
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period (ACPP) for an infinite planning horizon.

Let E[C] and E[T] be the total expected
cost and the total expected time until stopping
respectively. Then the (ACPP) turns out to be

E[C]
E[T]

A= (2)
In order to simplify the calculations of
optimal A* we need to exploit the structure
of the problem. This will be the subject of

the following section.

MODEL ANALYSIS

Let q; be the state of the system at period i
(initially q5=g) Then the one step transition
probability P(U, V) is the probability of going
from state U to state V, where UeS and VeS and
S= (0,g) ;g<1. Hence we will have a Markov
chain with continuous state. Aryanezhad
[1] has proved that the optimal policy is of
the control limit type. In the other words,

suppose q is the stopping level, then we won’t
inspect the system unless q; < q. Therefore,
by using the result of section (VLII) of Feller
[9], the probability of going from state qo=g
to state q after n steps will be as follows:

-5 g g
PYg, q)= - 17 T2 P(g,qq) P(qq5 qp) -
(89 g q 3 1 10492
P(q,_1,9)dq1dqy . dq,_4 (3)
then by Cinlar [5] we have

E(T] =/ >, Pllgu)du (4
Calculation of E[T] by (4) is not so simple.
In the following section it will be shown that
if certain condition is satisfied (i.e. f;(x) is
uniformly distributed in x), then it will be
possible to find an explicit formula for A asa

function of q. In section 5 we will propose
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"THEOREM 1.

a discrete approximation method in order to

find A for a given stopping level q.

'CALCULATION OF A* (SPECIAL CASE )

Here, we would like to show that if a certain
condition is satisfied for f;(x), then it is
possible to find an explicit formula for A asa
function of q. Before doing it, let us prove
the following lemma and theorem for our
continuous state Markov chain.

LEMMA 1. Suppose we have a Markov chain
with continuous and transient states UeS, VeS
andS=';§,gz, 0<q<g<1. Let P (U, V) the
one step transition probability to be a separa-
ble function of U and V i.e. P (U, V)=n(U)8(V).
Suppose n(U) and (V) are positive functions
of U and V respectively. Let us assume for
each value of UeS, V can take all values of S.
Suppose S is an irreducible set. Then the n
step transition probability will be:

PR(U, V)=n(U)8 (V) [fi_n(t) 6 (1) dej™1 (5)

PROOF. The result can be proved by induction
For n=1 we will obtain the one step transition
probability P(U, V)=n(U)8 (V).
for n=1.

So it is true,

Now, suppose it is true for n—1 or

-1, v)=n(U)e (V) [fgn(t)e(t)dt]n_z

So,

PYU, V)= f% Pr—1(U;, ¢)P(t, V)dt

=f§ 2(0)8 (t) [%n(W)G (w)dw]™~2n(t)0 (V)dt

=a(U)B(V)[ 18 n(t)8(t)de]n—1
9 0. E.D.

Suppose all conditions in
Lemma 1 are satisfied. Then Eg[tu] the
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expected number of visits to state u starting,

from g will be:

Eft] =1+ n(g) 8 (u) ()

PROOF. At period zero,we are in state g with
probability 1.

By Lemma 1, we are in state u, starting
from g after n period with probability:

P"(g, u)=n(g) 0 (u) [f% n(t)6 (t) de) 11

Therefore vEg{.tu] will be the sum of all these
probability when n—>eo.

Blt,1=1+ 2 n(g)0 (uv) ug n(t) 0 (t) de) "
‘Since we are interested in § > 0.

Then this is a geometric series with, rate

;& n(t)0 (t) dt < 1. Finally:
q

2(g)0 (u)
1-s8 n(r)o(t)de
q

Eg [t,l=1+

O.E.D.

Now let us return to our model to see for what
type of fi(x); i=1, 2 we can use the result of
Theorem 1.

By Bayés equation when the cost is x and

we are in state q we have

= gqfl (X) (1)
qf;(x) +(1-9) f5(x)

where q and q belong to S, and S= 10, g
At each state q the cost x will lead us to
state q' with probability:

P(q,q)=qf;(x) +(1—q) f5(x) (7)
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7Using equation (1) we have

f
P(q,q)= g4 1(") @
q

7Suppose we know q and q, from equation

(1') and equation (7) we find x and then use
its value in equation (8). After this step
if P(q,q) satisfies the separability condition
in Theorem 1, then we can easily find E[C],
E[T] and A(g). Now if the solutien of

——(—‘—L) =0 implied q=q*eS then \*q*
will be the optimal solution.

As an example, let us assume that f;(x) is
uniformly distributed. That is

1  o<x<a

£1(x)

0 ‘otherwise

then by equation (8) we see that

P(q, q')=fqﬂr

7Obviously P(q, q is a separable function of q

and q. Then n(q)=q and @ (q)= ql, . Using

Theorem 1 we will have
g2/aq

E [t,] =1+
g 1-g(g—q)/a

Since for each value of qe(q, g)=S, q wil
“assume all values belong to S. Then we can

write
) g '
B(T) =12 By ltq) da

)+_<a2_/_amm
1-g(g—q)/a

=(g—
8o .
E[C] = f(_l_C(q)Eg[tq]dq

=fz_ [q'mg +(1—q) my] x

Vol. 1, No. 4, November 1988 — 205



o 2, ) .
[1+—B874 44
1-g(g—q)/a
Therefore )\=M will be function of 21_
BT] "y = |
Suppose by solving d\(q)/dq=0 we obtain
q=q*. Now if q*eS then A*=A(q*) will be
the optimal average cost per period.

CALCULATION OF A{q)

Here we will show how to find A for a given
stopping policy q. The main problem here is
the calculation of the equation (4) or more
actually the construction of the matrix P(U, V).
This P(U, V) is a continous state Markov
chain. Construction of the matrix P(U, V)
is quite possible if we use the following four
devices of a discrete-approximation. Then it
is shown that this approximation is very
accurate.

1. Neglect that part of the distribution which
has very small probability (i.e. out of pt4.50
in normal distributions).

2. Choose a good subinterval of integration
(e.g., .01¢ in normal distributions).

3. Convert the continuous state q into discrete
states with an interval of .01.

4, Use linear interpolation in order to find the
matrix p.

By using the first two ideas our continuous
cost function will be changed to a discrete
one with a finite number of values. However,
we have to normalize these new distributions.
Since at each state q;, there would be many
costs, therefore the number of states will be
extremely large. The third idea will remove
this difficulty.

Now let us construct the matrix P, Suppose
that the stopping level is q. Then the state
space will be(g, g—0.01, g—0.02, ..., q) Let
n=(g—q)/0.01. Let us rename our state space
to be (qp, qq, - q,,) such that q;=g—0.01i,

206 — vol. 1, No. 4, November 1988

Bgi )=t
Plai 4)= 501

7i=0, 1, 2, ..., n. Therefore the matrix P will

be (n+l) x (n+1) matrix.
in state q;, i=0, 1, ..., n and the cost is x. By

Suppose we are

using Bayes equation (1) we have

gg;fq (x)
qfq (x) + (1—q;)f5(x)

I q< q we have nothing to calculate. Suppose

4j+1 <g< 9 j=0, 1, ..., n. By using the 4th
idea and the cost distribution in state q; we

will have

TIN gy (0 +1-q)fp ()]

P(‘li"ljﬂ):—qg{(';';l— [q;f1 (x) + (1—qpf5 (x)]

Since we are interested in'q < 0 then TP <1

y
Therefore (I—P)'_1 always exists. The ex-
pected number of visits to each state-starting
from state q; will be the i+1th row of (1-p)~1
Cinlar, E[5]. Since we start form state q=g
so our interested row will be the first row of
(I—P)_l. Let us denote the first row of (I—-P)"1
by (I—P)"1 oif 170, 1, 2, ey . Therefore,
the expected time and the expected cost and

cost and A(J) will be as follows:

E[T] = i_Z::lo i(I—P)"1 }oi (9)

5o =k+ 2 Jup egy

=0 oj
‘where
Clg;)=gymy +(1-gj)my
"Then
NT) = —1;4[[% (12)

Aryanezhad [1] has shown that the function
A is a uniminal function of the stopping level.

“Journal of Engineering, Islamic Repubiic of Iran



That is if qq, qs and qj3 are three stopping
levels such that q; 9593 then.

A(gq) < Max [M(qq), A(q3)]

Therefore if we let thedistance of uncertainty
equal to .01 in the Fibonacci search we can
continue our calculation by using the fol-

lowing algorithm.,

ALGORITHM

Calculation of A(q) in section 5 enables us to
give an efficient algorithm to solve the two-
state (POMMP) when the cost functions are
continuous.

Before giving the algorithm, let us recall
the elements of the Fibonacci search, Luenber-
ger, D. [13] _
d1=R—L (R=g, L=0), the initial width of
uncertainty.
dps=width of uncertainty after M measurements.
Fps= the integer number of Fibonacci sequence
generated by the recurrence relation Fyy =

FN_1 *FN-23Fp=Fp =1

Then, if a total of N measurements are to be
made, we have

: F
= N—M+1
dM - (—F———) dl
N
‘Now we are ready to see the algorithm.
STEPO.

ment points N in the Fibonacci search such

Choose the number of measure-

that the final distance of uncertainty be equal
to .01.
STEP 1. Find dy (initially M=2). Let

EI=L + dM
qp=R-dy

Find A(qq) and A(q,) by applying the results

“Journal of Engineering, Islamic Republic of lran

‘in section 5.

STEP 2. If A (g;)=\(3,) GO TO STEP4.
Otherwise GO STEP (3).
STEP 3. M=M + 1. If A(q) A(qp) then
R=q; Otherwise L=q,. If M < N GO TO
STEP 1. Otherwise GO TO STEP (4).
STEP 4. STOP. By quasi-convexity of A the
minimum A must lie in this final distance of

uncertainly (L. R).

NUMERICAL EXAMPLES

We have used Dittman and Prakash’s [8]
basic examples. In those examples f; is
N(100, a%) and f, is N(120, ag) where 01
and 0, can range over five values: (5, 10,15,
20, 30) giving a total of 25 combinations.
K=20 and g=.90.

These examples have been solved by the
algorithm in section 6. Note that we let the
subinterval of integration in fact 2 be equal to
.01 min (01, 05).

In Table 1 we have presented the detailed
calculation of the first case (01=0,=5). The
final results of all combinations are given in
Table 2.

Dittman and Prakash [8] have solved these
examples by using the dynamic programming
procedure formulated by Kaplan [10].

However, they tabulated my—A* which
they call cost saving, in Table 1 of their paper.
We can readily see that the results are the
same. It should be mentioned that, in order
to derive the results in Table 2, they used
more than 3000 seconds of computer time,
while it took us less than 340 seconds with
IBM 360/91kk. Therefore we can state that
while this algorithm is quite accurate, it is
much faster than dynamic programming app-

roach.
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Table 1

01,=02= 5

Region of incertainty q

in Fibonacci search

Mq)

(0,.90)
(0,.90)

(0,.56)

(.22, .56)
(.22, .56)
(.35, .56)
(.35, .48)

(.38, .43)
(.40, .43)

(.35,.43)

.56 194.232697
.34 104.218552
22 104.240692
43 104.216278
.35 104.217819
48 104.219757
40 104.216049
.38 104.216202
41* 104.215988*
42 104.216064

(*) means the optimal solution

The number of iterations for all combinations

is ten.
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