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Abstract Increasing interest is being shown in the use of microprocessor for protection, switching and
data acquisition required in modern high voltage substations. One of the most difficult functions to fulfill is
that of transmission line distance protection employing samples of the voitage and current waveform taken
from high voltage transducer equipment at the usual relaying point. This paper examines and compares
different digital algorithms suitable for distance measurement, with particular reference to their accuracy and
speed of calculation.
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'INTRODUCTION

Several methods can be used for the digital
calculation of transmission line fault impe-
dance using a microprocessor on-line. All
methods rely on sampling and storing voltage
and current waveforms at a single measure-
ment or relaying point. For measurement
purposes, the most onerous condition is when
a fault occurs at a voltage maximum on one
phase, because the consequent discharge of
potential energy through the line inductance
causes harmonics to be generated in the current
and voltage. In addition, noise and non-
linearity of the transducers result in further
harmonics against which any algoithm used to
calculate fault impedance should be immune.
This paper examines and compares different

algorithms

measurement, with particular reference to

suitable for fault impedance

their accuracy and speed of calculation. These
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algorithms have been chosen because of their

ability to deal with low order harmonics.

'FAULT MEASUREMENT ALGORITHMS

‘There two main methods proposed for digital

distance relaying, namely:

(i) Determination of fundamental frequency
phasors V and T at the relaying point so that
the impedance “seen” can be calculated from

= v

T

=R +jx (1)

<|

‘This method was proposed by Slemon et.al.

[12], and developed by Mann and Morrison
[3], Gilbert and Shovlin [7], Rockefeller [4]
and others.
(ii) Instantaneous values of v and i obtained
by sampling without corruption from
harmonics or noise canbe inserted into an
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equation of the form

di
t

V=Ri+L

(2)

and solved for R and L using two successive
V and i values.

'PEAK DETERMINATION METHOD

Establishing Z of equation (1) by predicting
the peak values V and I from samples was
one of the early methods investigated by
Mann and Morrison [3] and Rockefeller and
Udren [4]. The method required that the
d.c. offset of fault waveforms be eliminated
by using a mimic impedance as a secondary
burden comprising the average source impe-
dance and 90% of the line impedance. In
addition, Rockefeller and Udren proposed
and implemented a digital relay using first
and second derivatives of voltage and current

to determine impedance from

~

V2 (L2
7Z=7—‘——T- 7(3)
24+ ( )2
W

To find V'and i/ the difference expressions
using sampled values can be used, typically:

o 7
Vi = — (Vigaq =V (4
K = 57 (Vk+1=Vk-1) )
‘or
Vool weve o -
VK= (Vg-Vk_1.  (5)

‘Where T is the time between successive
samples Vi and Vg _ ;. Appendix 1 shows
how these expressions can be looked upon as
digital filters with voltage samples as inputs

and voltage derivatives as outputs. More
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‘elaborate difference expressions could be used

but it can be shown that no great benefit
results and increased computational burdens
are incurred.

The frequency spectrum of equation (4)
is given by

Hy(f) =50 N lsin 2”5le (6)
where N is the number of samples per cycle.
The maximum output from this filter which
will be useful should occur at fundamental

frequency, ie. 50 Hz, giving the condition

=7/2, _3_1r_, 57/2, ... or N = 4 s/c for
25N 2

practical sampling.

This is, therefore, the optimum sampling rate
for this filter. The spectrums for 4 and 16
s/c are shown for comparison in Figure 1 where
it can be seen that for sampling rates higher
than the optimum, many components larger
than 50 Hz are accentuated.
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"Figure 1. Spectrum of H 1(P) for 2 sampling rates.

A similar argument can be applied to the
difference equations and their corresponding
filter equivalent frequency response for deter-
mination of second derivatives V'and i." It can
that, unless 4 s/c is used,
unwanted components above 50 Hz are ampli-

be shown
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fied, as would be expected from any method
relying on differentiation for fault determina-
tion. To overcome this problem Rockefeller
and Udren [4] used analogue filters with low
cut-off frequencies having long time delays
and a sampling rate of 12 s/c. Methods which
could combine acceptable sampling rates with
simple analogue filters are much to be desired
and will be explored in the next section.

'FOURIER METHODS

These methods depend upon establishing the
fundamental components of V and I by
eliminating harmonics which are integer-
multiples of the fundamental. The elemina-
tion of these harmonics will be shown by the
use of a finite impulse response digital filter
‘approach.

Assume the fundamental components of

voltage and current waveform are:

v=Vp sin (wt+A+8) = Ay sinwt + By cos(c;)t

7i=IP sin (wt +8) =Aisinwt+Bicoswt (8)

Incomplex form: V = Ay +jBy
T = IA1 +JBi

‘Hence from equation (1)

= T _. ..  AvA{ByB;  ByAi-AyB
s RIpE =S
I A°+ B A“+ B
' i i
“or
AyA; +ByBi ]
R = 5 5 (9)
A+ B
i i
and
, ByA;—AyB: ]
X = Yul V©i (10)
A2 4 p2
1 1
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‘Slemon et.al. [12] suggested calculation of

‘the modulus and phase angle of transmission

line impedance as:

’ 2 2 22 !
Z=|/A” +B A+ B (11)
Vv VvV i

1

7and

B B.

Ay Ay
It is very difficult and time consuming to

A =tan

calculate Z from equation [11] by micro-
processor and the calculation of arc tangents
is lengthy by exact means. An alternative is
to use a coarse look-up table. The method of
calculation of R and X from equations [9]
and [10] avoids these difficulties and makes
possible the production of an ideal chara-
cteristic.

If Ay, By, A and B, are calculated for
each phase, the impedance of the transmission
line seen from a single relaying point can be
determined. Now, using Fourier analysis, the

coefficients can be calculated as:

1 ¥+ 2n
Ay=—J vsin wt d(ewt)
" (13)
+2
BV=i f7 ﬂvcoswtd(wt)
.-
Y
: ) + 27
A= 07T sinwt d(w)
’ Ty (14)
1 vy +2n
B;=— Iy icoswtd (wt)

where v is an arbitrary angle form which
to start the calculation. By using the trape-
zoidal rule (which requires less manipulation
than Simpson’s rule, but produces about the
the coefficients can be

same accuracy)

calculated from N s/c as follows: |

=1 : .
AvK = -N- [ VK_N sin Y + ZVK'—N—]. S]_n(’y +

2my 4 42V in(y+-N=1 27) +
N )+ K—1 sin(y N 2m)
Visin (y + 27)] (15)
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“and

7 =1
BVK = ? [VK—-N CosYy + ZVK—-N—I

cos (y + ZF”) +...+ 2V qcos(y +N;11 2m) +

7VKcos (v + 2n)] (16)

where Vg, Vg_1 are everﬂy spaced

samples of voltage. Similar equations can

be written for A and B,.

‘1. Immunity of Fourier Method to Noise and
High Frequency Components

‘Equations (15) and (16) are two finite impulse
response digital filters whose frequency spec-

trums are shown in Appendix 2 to be

respectively
2 sin 757—;
H (f)‘: X
| A nf 2n
N {(cos ~ COS —
5N N
(sin2 =2 cosz'y+ sinz'y sin2 2;; )1/2 (17)
. 2sin 15r_(f)_
IHB (f)l = R X
N (cos — — cos 2—")
25N N
sin? il—" sin?y + cosZy sin2 27;_%)1/2 (18)

‘where v is the angle after zero that the first
sample is taken. By varying y between
extremes of 0 and /2 it is possible to obtain
a variety of characteristics dependent upon
the sampling rate N. Figure 2 shows typical
spectrums with 16 s/c and y=0, n/4 and /2.

Further study shows that by increasing the
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sampling rate, more unwanted components

can be filtered out and that the portion of the
characteristic between zero and 100 Hzis
approximately independent of the sampling
rate. Thus, if components above 100 Hz are
filtered out by analogue means, the accuracy
of the Fourier method would be independent
of the sampling rate. However an analogue
filter with 100 Hz cut-off would have a time
delay of about % cycle which would be
unacceptable for fast fault determination. If
at least three successive calculations must be
done with.new samples to identify a fault,
then a sampling rate of at least 8 s/c must be
selected. This rate is therefore chosen for
further study.
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'Figure 2. Spectrum of Fourier Metbod with 16 s/c

‘2. Fourier Spectrum With 8 s/c and A

Butterworth Analogue Filter

‘The spectrum of equation (17) with 8 s/c and

a double pole Butterworth analogue filter
having a 150 Hz cut-off frequency is shown
in Figure 3. This combination was chosen as the
best after comparison with spectrums obtained
from various analogue filters from 60 Hz
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single pole up to 200 Hz three pole. A 150 Hz
double pole filter produces a time delay of
about 1/8th cycle which should be acceptable
in a practical scheme. Increased sampling
rates (e.g. 12, 16, 20) could improve the
characteristic but not significantly enough to

compensate for increased hardware complexity.
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"Figure 3. Overall spectrum of Fourier method with
8 s/c and 2-pole Butterworth analogue filte with
150 Hz cut-off.

For 8 s/c, Ayg and Byg of equations
(15) and (16) can be calculated as
7 =_1
Ay =g [2(Vg_6—Vg_2) *
J2(Vg_7+ Vg_5~ Vg_3~ Vg_1)]
(19)

' _ 1
Bvk =5 [(Vk—8—=2Vk_4* Vk)

+/2Vg_7 - Vg_5- Vk_3+Vkg_1)]
' (20)

In each equation only one multiplication is
necessary. But even this can be avoided by
approximating /2 with 1.5 and writing equa-
tions (19) and (20) as:
Ayg=2(Vg_g—Vg_o)+ L5(Vg_ 5+

Vk_5-Vg_3—-Vg_1q) (21)
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Byg =(Vk-8—2Vg_4+Vg) *

1L.5(Vg_7 - Vk_5-Vk_3~Vg_1)
(22)

The coefficient — has now been omitted

because it will be cancelled out in the impe-
dance calculation. These two equations can
only be calculated by addition and shifting

operations. The frequency response of the

‘method is:

1 . «f nf
IHA (f), = 5 sin 755 (1 +//2 cos 555)

‘and with 1.5 instead of /2 it becomes:

_ 1 . #f nf
H == £ _(1+1. i S
A (f) =5 sin 00 (1+ 1.5 cos 200"

‘Figure 4 shows these two sbectrums; the
maximum difference between the two is less

than 4% and for practical purposes they can be
considered identical.
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Figure 4. Spectrum of Fourier method with 8 s/c

The accuracy of the Fourier method with
any sampling rate is impaired by its inability
offset

to remove the exponential d.c.

effectively. = A constant d.c. offset can be
removed completely; but a decaying one
contains low order frequency components and

so its effects cannot be completely eliminated
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‘but only attenuated. Therefore it is concluded
that Fourier methods are most applicable to
transmission systems with high X/R ratios
in which very little offset decay occurs in the
first cycle following a fault. Alternatively,
methods based on equation (2) could provide
an improved response and accuracy. These

mehtods will be studied next.

'MCINNES & MORRISON METHOD (5)

“This method, based on equation (2), has been

quoted in a number of papers and extensively
tested in the development laboratory. It
would appear to have the potential of fast
fault detection provided high order harmonics
and noise can be reliably and quickly removed.
To achieve this, equation (2) is usually inte-
grated over two successive time periods tj to
(tx +KT) and ty4q to (tp41+KT) where K is
an arbitrary integer constant whose optimum
value will be determined. The following pair
of equations result:

tj +KT ) +KT t +KT
J 7 vdt=R [ idte+Ls ~ di  (25)

tk Ttk g

Tt vdt=R [ idt+L [ di

k1 th+1
(26)

'Which can be written as:
SVp =R. Sl +L.DI (27)
SVp41=R.SI} 4 +L.Dhyy (28)

‘where SV, SI, DI ... represent the integra-
tion terms. From the pair of equation (27)
and (28), R and L can be calculated as:

) SVk+1 . le - SVk . DIk+1

R= (29)

STy 4q - DIy — SIj. . Dl
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“and

_ SVi-Slpyy = SVpyy - Sk “(30)

SIp4q-DIp — SI  Dlpyy

‘Using the trapezoidal integration rule and N

s/c, SV, and DI} can be written as (similar
expression apply for SVj.q, SI}4q and

Dlytq):

k-1
2/ SVE =V + Ve +2 12;’:1 Vie4n (31a)

k-1
2/T . SIk= ik+k+ik+ 2z ik+n
n=1

Dl = ijyp — g

where Vi and ij ... are instantaneous samples

of voltage and current taken at equally spaced
intervals of period T senconds.

Regarding these equations as three non-
recursive digital filters with voltage and current
samples as inputs and SV} and DI}_as outputs
produces spectrums of (see Appendix 3):

Hsvk (f)l = HSIk (f) =
7 1| Kaf . af
N ,sm 50N son |32
) - . Knf -
Hpy, (f)l 2| sin I (33)

'Equation (33) shows that the frequency

response of the DI} filter is dependent upon
two parameters: N (sampling rate) and k
representing the interval over which the in-

tegration is performed. To attenuate all

unwanted components with respect to the

50 Hz fundamental requires that sin SSOTI;TII =1

N 3N 5N
L2027 2 . .
This is a very interesting result since to

ork= -
attenuate all components with respect to
50 Hz, the interval of integration should
be 1/2, 3/2, 5/2 cycles, etc.

Thus, for the fastest response, a half cycle
integration period is required, independent
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‘of the sampling rate. Increase or decrease of
this interval only accentuates the undesirable
frequency components. Figure 5 shows the
spectrum of HDIk (f) for any sampling rate N.

If equation (32) is considered in a similar
way, K=N/2 again produces an optimum but
now the spectrum HSVk (f) depends upon

N as shown for N=4, 8 and 16 s/c in Fig.6

e o o =
L =.) -] (=]
u‘T' T

e
9

Magnitude of frequency response

<

0 100 200 300 400 500 600 700 800
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7Figure 5.Spectrum of HDIk( f) for any sampling rate.

Dotted line shows the effect of 2-pole Butterworth
analogue filter with 60 Hz cut-off.
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7Figure 6. Spectrum of Hg vy various sampling rates.

No analogue filter.

From the above argument, it can be deduced
that the most vulnerable spectrum is that of
HDIk (f) with respect to harmonic and non-

harmonic '.components above 50 Hz. This
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“spectrum (Figure 5) is similar to that of a

Fourier method (section 5.1) with 4 s/c for
which a double pole Butterworth analogue
filter with 60 Hz cut-off would have been
necessary to reduce effectively components
above 50 Hz as shown by the dotted line in
With this analogue filter, the
spectrums of SV} and SIj with any sampling

Figure 5.

rate greater than 4 s/c would be acceptable
but from a numerical accuracy viewpoint
at least 8 s/c should be used. Tests have
shown (14) that with 8 s/c and a 60 Hz
double pole Butterworth filter, the McInnes
and Morrison method enables distant faults
to be detected reliably in less than one
fundamental cycle. This is generally faster
than the Fourier method which needs samples
of one complete cycle for the correct deter-

mination of distant faults.

'DISCUSSION AND CONCLUSIONS

Digital protection is now receiving consider-

able attention as a means of using micropro-
cessor technology applied to the relaying
task. It has often been quoted as a way of
producing faster co-ordinated protection than
can be obtained by using analogue relays of
either the electromagnetic or solid state type.
However, a careful analysis of relaying wave-
forms, using sampled data theory and filter
design methods, has tended to show that there
are more fundamental limitations to speed of
response due to line and system characteristics
than there is to the hardware implementation
in the digital relay itself. Kohlas [17] was one
of the first to recognise this in a highly mathe-
matical paper several years ago and this has
since been explored by Johns etal, [1]
AEP [18] and others in subsequently published
material. In this paper it has been explored
the best that can be done with signal con-
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 ditioning, assuming realistic rates of sampling
up to 24 s/c. If higher rates are economically
feasible, then the problem of detecting faults
at one relaying point using fundamental com-
ponents must be re-examined. One possibility
is to measure the higher harmonics to identify
fault types as has been proposed by Ogden
et.al., [19] and Vitins [20]. Incremental
values of voltage and current as implemented
by ASEA [25] could also be used in digital
relaying, but a re-examination of filtering is
necessary, depending on the system protected.

From the amalysis given here, it can be
concluded that Foruier techniques provide a
sound way of establishing fundamental com-
ponents of voltage and current waveforms
from which impedance can be calculated.
References 3, 6, 8 and 15 give examples
of the speed of fault detection possible,
mainly under laboratory conditions, and show
that even for distant faults,one cycle operation
can be assured. Faster detection of distant
faults is feasible by the McInnes and Morrison
[5] method of section 5, provided care is
taken to eliminate unwanted harmorics and
noise with a suitably designed analogue filter.
Examples of this method are given by the
author in reference 14 and show fault detec-
tion in about —L- cycle. Initially, this method
is recommended for digital relaying with 8
s/c and a double-pole Butterworth filter.
With more powerful microprocessors allowing
fast multiplication and adequate storage, the
method could be developed to include shunt
capacitance effects in the protected line or it
could even be applied to distance protection
of long cables.
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'APPENDICES

1. Frequency Spectrum of Peak Determination
Algorithm (Section 3)

Equations (4) and (5) can be regarded as
digital filters with voltage samples as inputs
and voltage derivatives as outputs. Applica-
tion of the Z-transform gives

Hy(Z) = —211:— (1 — Z~2) for equation (4)

‘and

Hy(Z) = L (1-z7) for equation (5)

eij

Replacing Z with gives the frequency

spectrum as

Hl(f)‘ = 50N ]sin S’I)le and
| Hy(f)| = 100N | sin 2 |

2. Frequency Spectrum of Fourier Method
Algorithm (Section 4.1)

The Z-transform of both sides of equation (15)
5 Z(Ayg) = LN [ Z Nsiny +

22—N+1 sin (7 + %\”_) + ...+

2z lsin(y+2r 2+
sin(y+2r) Z(Vg)l  (39)
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The transfer function of the filter is therefore

givern by
Z(AVK)

Z(Vg)

Hp(z) =

Using the two relations:

) n n+1
Psinx—P sin(nx)+P sin(n—1)x

n—1
> Pksin(kx)=

k=1 1 — 2P cosx + P2

‘and

1 p n n+l 1
— — g + -

n Pkcos(kx)—l cosx Ptos(nx)+Pcos(n-1)x

k=0 1 — 2P cosx + P2

it is possible to simplify the term in square
brackets of equation (39) to give

(1-2N)(Z%siny-2Zsin 2T -cosy-siny)

1—2Zcos lN’L + 72

1
N

Hp(Z) =

Putting 2=eJ27fT and T=Oﬁi S then

2sin-g-bf—
! Hp (f) I =
N(cos mf_ cos 21,
N
(sin2 —21\—111 cosz’y + sinz'ysin2 ?"sf—)l/z
N
7Similarly
) 2 sin nf
- 50
IHB (f)| =. , x
N(cos mf o5 2T
25N N
s 2 27 . 2 2 .2 qaf W
sin“ == sin“y + cos“ysin” ——
( N Y Y 25N)

3. Frequency Spectrum of Mcinnes and

Morrison Method

‘The Z-transform of DI} (equation (31c))

is:
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Z(D1y) = (1 — 27K) (i)
So:
Hpy, (2) = (1 - 278)

In terms of frequency f this gives
ird Kf
e ==
Hpy, (f) = 2sin X2£ ¢ PRTY
k 50N
So:

A 7K1rf
l HDIk (f)l = 2sin 0N
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7 Similarly, the transfer function of SV is

to give the spectrum’

— 1 ,.. Knaf nf
H =1 Ant 4 S
| SV (f)l N SN O 5o
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