
IJE TRANSACTIONS B: Applications Vol. 37 No. 08, (August 2024) 1600-1614

Please cite this article as: Mahdavi K, Mohammadi M, Ahmadizar F. Flexible Job Shop Scheduling Problem Considering Upper Bounds for the
Amount of Interruptions Between Operations and Machines Maintenance Activities. International Journal of Engineering, Transactions B:
Applications. 2024;37(08):1600-14.

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Flexible Job Shop Scheduling Problem Considering Upper Bounds for the Amount of

Interruptions Between Operations and Machines Maintenance Activities

K. Mahdavia, M. Mohammadi*a, F. Ahmadizarb

a Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
b Department of Industrial Engineering, University of Kurdistan, Sanandaj, Iran

P A P E R I N F O

Paper history:
Received 03 March 2024
Received iH revised form 26 March 2024
Accepted 02 April 2024

Keywords:
Job Shop Scheduling
Upper Bound For Interuptions
Maintenance Activity
Metaheuristic Algorithm

A B S T R A C T

In modern production environments where perishable products are manufactured in a job shop system,

machine reliability is of utmost importance, and delays during job processing are not acceptable.
Therefore, it becomes crucial to consider machines maintenance activities and set upper bounds for

interruptions between job operations. This paper tackels the Flexible Job Shop Scheduling Problem

taking into account these factors. The study is conducted in two phases. Initially, a novel Mixed-Integer
Linear Programming (MILP) model is elaborated for the problem and juxtaposed with the Benders

decomposition method to assess computational efficiency. Nevertheless, owing to the elevated

complexity of the problem, attaining an optimal solution for instances of realistic size poses an
exceptionally challenging task using exact methods. Thus, in the second stage, a Discrete Grey Wolf

Optimizer (D-GWO) as an alternative approach to solve the problem is proposed. The performance of

the extended algorithms is evaluated through numerical tests. The findings indicate that for small
instances, the Benders decomposition method outperforms other approaches. Nevertheless, as the

instances grow in size, the efficiency of exact methods diminishes, and the Discrete Grey Wolf Optimizer

(D-GWO) performs better under such conditions. Overall, this study highlights the importance of
considering machines maintenance activities and interruptions in scheduling of job shop for the

production of perishable products. The proposed model and Benders decomposition method in small

instances, and the metaheuristic algorithm in large instances provide viable solutions.

doi: 10.5829/ije.2024.37.08b.13

Graphical Abstract1

1. INTRODUCTION

The job shop scheduling problem (JSP) is a scheduling

challenge frequently encountered in different

*Corresponding Author Institutional Email: Mohammadi@khu.ac.ir (M. Mohammadi)

manufacturing contexts. The complexity of scheduling

arises from the distinctive constraints and limitations

inherent in each manufacturing environment. The

perishable products industry is one such sector that

mailto:Mohammadi@khu.ac.ir

K. Mahdavi et al. / IJE TRANSACTIONS B: Applications Vol. 37 No. 08, (August 2024) 1600-1614 1601

presents its own set of special circumstances and

limitations. With perishable products, the product

production process is done without delay or with a

permissible delay (lower than upper bound delay), and

the produced products are packaged and stored

immediately. Experiencing significant delays during

production can severe consequences and incur high

expenses. In production environments where the

manufacturing system follows a job shop format, the

scheduling problem transforms into a JSP with the

additional constraint of maximum delay between

operations. Moreover, anticipating potential machine

breakdowns makes integrating maintenance into the

schedule essential. Therefore, manufacturing perishable

products within a job shop system involves navigating

numerous restrictions.

Mahdavi et al. (1) in their study examined a particular

scheduling problem known as the no wait flexible job

shop scheduling problem (FJSP). This involved

incorporating various aspects like machine maintenance

and processing restrictions. To achieve minimal total

lateness for the jobs, they introduced a Mixed-Integer

Linear Programming (MILP) model, which was based on

a model previously proposed by Gao et al. (2).

Nevertheless, given the intricacy of the problem, they

also developed an alternative solution approach called

the Imperialist Competitive Algorithm (ICA),

specifically designed to handle large instances of the

problem.

This research takes the problem studied by Mahdavi

et al. (1) a step further. Instead of focusing only on no

wait scenarios where jobs cannot wait between

operations, they consider a more general case. This new

formulation allows for an independent maximum waiting

time to be defined for each job's operations.

Consequently, the no wait problem becomes a specific

example within this broader framework, where the

maximum waiting time for every job is set to zero.

Additionally, the researchers propose a novel approach to

formulating the Mixed-Integer Linear Programming

(MILP) model, aiming to minimize the total cost

associated with both early and late job completions. This

approach is inspired by the work of Ozguven et al. (3).

This research explores a FJSP, where the goal is to

minimize the combined cost of jobs finishing too early or

too late. This problem takes into account three primary

constraints:

• An independent upper bound on waiting time between

operations of each job

• Periodic machines maintenance activities.

• An independent due date for each job so that if the

processing of the job is not completed in the due date,

earliness and tardiness fine will be imposed.

The problems associated with the conditions and

limitations of the perishable food manufacturing

industry, operating within a job shop environment, are

the focus of this research. On the one flip side, periodic

maintenance activities for machines and the ability to

process operations by machines at each stage are a set of

common constraints of any job shop production

environment. On the other hand, allowing the upper

bound for the amount of waiting time between operations

of each job is a challenging restriction in the perishable

food manufacturing industry. In previous research

studies within the realm of FJSP, two scenarios have been

explored: one where there is no possibility of delay time

between job operations (referred to as no-wait FJSP), and

another where there are no limits on the delay time

between job operations. In the proposed problem in this

research, it is possible to create a delay time between job

operations, but an upper bound is defined for each job so

that the delay time between its operations does not exceed

its upper bound. On the other hand, the objective function

focuses on achieving a balanced schedule by minimizing

the total deviation from desired completion times for all

jobs. That is to say that each job should be processed very

close to its due date. Therefore, no wait FJSP is not

necessarily suitable, and creating a waiting time between

the operations of each job according to its upper bound

may help to improve the objective function. Thus,

according to the due date of each job, creating a delay

time between the operations must be managed in such a

way that the least earliness and tardiness penalty is

imposed. In the next section, the latest literature will be

reviewed.

2. LITERATURE REVIEW

The JSP was initially raised by Manne (4) and Wagner

(5). They demonstrated that the JSP, widely recognized

as NP-hard problem in literature, is extremely intricate.

El Khoukhi et al. (6) proposed a FJSP with restrictions

on machine accessibility to minimize the makespan.

They suggested a Mixed-Integer Linear Programming

(MILP) model and owing to the intricacy of the problem,

they proposed a new solution method utilizing the ant

nest algorithm. Yousefi Yegane et al. (7) investigated the

FJSP to minimize the makespan. Since job splitting is an

important technique to reduce completion time, they

assumed that preemption is allowed. They proposed a

memetic algorithm owing to intricacy of the problem and

inability of exact methods in solving large instances.

Benttaleb et al. (8) studied a JSP with two machines,

one of them being out of reach during certain periods. In

their research, they surveyed the optimality of the

Jackson algorithm and developed a exploratory method,

and provided upper and lower limit for the problem. Shen

et al. (9) examined a FJSP where the setup time required

to switch between jobs depends on the specific jobs

involved. They developed a Mixed-Integer Linear

Programming (MILP) model to find a schedule that

1602 K. Mahdavi et al. / IJE TRANSACTIONS B: Applications Vol. 37 No. 08, (August 2024) 1600-1614

minimizes the total time it takes to complete all the jobs.

Additionally, they developed a TS that incorporated

numerous novel structures to tackle this problem.

Tamssaouet et al. (10) focused on a JSP to minimize the

makespan in instances that machines are not always

accessible. They proposed TS with locality functions and

a specific diversity structure.

Caldeira and Gnanavelbabu (11) present an enhanced

version of Jaya Algorithm (JA) specifically tailored for

solving FJSP with the primary objective of minimizing

the makespan. In this study, it is assumed that there are

setup times for machines and transfer times between

them. Samarghandi (12) researched a no-wait JSP

focused on minimizing the makespan while factoring in

job due dates. His approach involved transforming the

original problem into a related one (CP) and creating

models for both. To solve large instances, he designed a

Genetic Algorithm (GA). The results demonstrated that

the proposed method performed more effectively for the

transformed problem (CP) compared to the original JSP

formulation.

Zhang et al. (13) offered an enhanced Genetic

Algorithm (GA) for a multi goal FJSP by considering

machines processing restrictions. Li et al. (14) took the

Jaya Algorithm (JA) a step further by creating an

improved version specifically designed for FJSP. This

enhanced JA incorporates the limitations of machine

capabilities within the optimization process. Ying and

Lin (15) focused on a no-wait JSP to minimize the

makespan. They offered a new solution method. Zhu and

Zhou (16) explored a FJSP where jobs have priority

constraints and processing times are uncertain,

represented as ranges instead of exact values. They

introduced a novel optimization method aimed at

minimizing the overall duration of the makespan interval.

Zhu and Zhou (17) introduced an efficient method called

the Grey Wolf Optimizer (GWO) for tackling a complex

scheduling problem in FJSP. This problem involves

balancing multiple objectives while adhering to specific

job priority constraints. Zhang et al. (18) offered an

enhanced memetic algorithm designed to solve the FJSP,

with the added complexity of factoring in transportation

times between machines. Defersha et al. (19) suggested a

two-phase Genetic Algorithm (GA) to address a FJSP

that involves setup times. In this investigation, machines

may not be accessible at all times for processing jobs, and

each machine needs a specific cooldown period after

finishing an operation before it can handle the next one.

Ozolins (20) tackled a no-wait JSP with the goal of

minimizing the makespan. Their novel approach utilizes

dynamic programming (DP) as an exact solution method.

This method effectively solves problems of medium size

within a sensible timeframe. Izadi et al. (21) investigated

the integration of production and distribution scheduling,

allowing outsourcing to minimize total costs. They

proposed a mathematical model for small problems and a

hybrid Genetic Algorithm (GA) approach for large ones,

incorporating dominance properties to find optimal

solutions.

Gao et al. (22) investigated a no-wait JSP with due

date restrictions. They offered two mathematical models.

Then, they suggested a metaheuristics algorithm called

RTL-ABC. Boyer et al. (23) investigated a FJSP with

hard restrictions such as machine valence, time delays.

They offered a Mixed-Integer Linear Programming

(MILP) model to tackle this problem and also devised a

metaheuristic approach to effectively solve larger

instances of the problem.

Torkashvand et al. (24) studied a new three stage

production-assembly problem to minimize the maximum

completion time of all jobs. They presented a Mixed

Integer Linear Programming (MILP) model to solve

small instances. Due to high complexity of problem, they

developed a new improved Genetic Algorithm (GA) to

solve large instances. Valenzuela et al. (25) investigated

a no wait JSP and to solve large scales of the problem,

they offered a cooperative coevolutionary algorithm. Fan

and Su (26) presented a JSP with conveyor-based CFTs.

In this investigation, the operations are carried out on the

machines that are conjoined in a row through the

conveyor. They offered a mathematical model for small

instances and a metaheuristic for large instances. Şahman

and Korkmaz (27) introduced innovative versions of the

Artificial Algae Algorithm (AAA) to address discrete

optimization problems. In this research, three encoding

strategies were incorporated with AAA to tackle the JSP.

Tutumlu and Saraç (28) investigated a FJSP with job-

splitting. They showed that taking into account job

splitting in the JSP contributes to identifying

improvement opportunities and aligns the problem more

closely with real world conditions. In this research, they

proposed a MIP model, and for large sizes, a hybrid

Genetic Algorithm is presented. Gong et al. (29)

investigated a new type of FJSP. According to the

simulation of the real world situation, in this context,

certain operations within a job do not have specific order

restrictions, leading to the proposal of FJSP with discrete

operation order flexibility. The objective is to minimize

both the makespan and total energy consumption. They

presented a model for small instances and improved a

memetic algorithm for large instances. Xie et al. (30)

delved into a type of scheduling problem called the

distributed FJSP, which builds upon the traditional FJSP.

They offered a mathematical model for the problem and

owing to complexity associated with large instances, they

proposed a new algorithm called HGTSA.

Liu et al. (31) investigated a FJSP which is an

expansion of the flexible manufacturing. In this research,

they presented a mathematical model and suggested an

enhanced Genetic Algorithm (GA) with a three-surface

encoding strategy. Berterottiere et al. (32) investigated an

extension of the FJSP where transportation resources are

K. Mahdavi et al. / IJE TRANSACTIONS B: Applications Vol. 37 No. 08, (August 2024) 1600-1614 1603

considered. They extended the classical disjunctive graph

model and offered a novel metaheuristic that utilizes a

locality function, enabling the exploration of a wide

range of moves.

To our best of knowledge, this research is the first to

concurrently take into account machines' processing

capability, machines' maintenance activities, and an

upper limit on the waiting time between job operations in

the context of the FJSP. The primary contributions of this

paper can be summarized as belows:

• The FJSP in the perishable food manufacturing

industry is investigated and a Mixed-Integer Linear

Programming (MILP) model, incorporating priority

variable, is formulated for the proposed problem. Then, a

Benders decomposition method based on the model is

offered as an exact method for solving small instances.

The supremacy of Benders method in some instances

than Gams software shows its high efficiency.

• A modified version of the Grey Wolf Optimizer (D-

GWO) is used to tackle larger problems, and its

effectiveness is evaluated.

• A comprehensive analysis for the proposed solution

methods is presented and their performance, in problems

with different sizes, is specified.

The remaining sections of this research will be

organized as belows. Section 3 characterizes the problem

and presents the mathematical model of the investigated

problem. In section 4, the Benders decomposition

method is presented to optimally solve small instances of

the problem. In section 5, the metaheuristic algorithm

(Discrete Grey Wolf Optimizer) is offered to solve large

instances. Computational results are mooted in section 6.

Finally, conclusions are provided in section 7.

3. PROBLEM DESCRIPTION AND FORMULATIONS

The FJSP considers a scenario with multiple machines

and jobs. Each job needs processing on specific

machines, but there's a twist! Instead of being assigned to

a single machine for each operation, jobs have the option

to select from a pool of accessible machines within each

stage. This problem involves m stages, each containing

parallel machines that can work independently, and n

jobs, each consisting of a order of operations with

flexible machine choices. The other suppositions of the

problem are as follows:

• From the outset, both jobs and machines are readily

available for scheduling. However, keep in mind that

each machine is limited to handling only one operation at

any given time.

• Each job follows a predetermined sequence of

operations, outlining the exact steps it takes to be

completed.

• The processing path of each job may not involve

machines from all stages. This means some jobs might

only require a subset of the available stages.

• No multitasking allowed! Each job is restricted to being

on one machine at any given time.

• Preemption, or interrupting and resuming operations, is

prohibited.

• The gap duration between two successive operations of

the same job must be lower than its upper limit of

interruption.

• If each job has not been processed on its due date, a

penalty is imposed.

• Not all machines are capable of handling every

operation. In other words, each machine is capable of

processing a certain set of jobs (and not necessarily all of

them).

• The machine structure of each stage is parallel and

unrelated.

• Because of maintenance activities, each machine must

be periodically unaccessible.

• Each inaccessible interval last for a certain period. In

other word, the interval length is fixed.

• The objective is to create a realistic schedule that

ensures jobs finish as close to their deadlines as possible,

without being completed too early or too late.

This section introduces the notations used to define the

key components of the model: indices, parameters, and

decision variables.

Indices:

𝑖, ℎ: represent the indices of jobs, ranging from 1 to 𝑛.

𝑗: denotes the index of operations, ranging from 1 to 𝐽𝑖 for a

specific job 𝑖.

𝑘: represents the index of machines, ranging from 1 to 𝑚.

𝑟: is the index of the inaccessibility period.

Parameters:

𝑛: represent the whole number of jobs

𝑚: represent the whole number of machines

𝐽𝑖: represent the whole number of operations of job 𝑖

𝑝𝑘𝑖𝑗: represents the processing time of operation 𝑜𝑖𝑗 if it is

carried out on machine 𝑘

𝑑𝑖 : denotes the due date of job 𝑖

𝑢𝑏𝑤ℎ : The upper bound of waiting time between operations

of job ℎ.

𝑠𝑚𝑘𝑟: denotes the start time of the r-th inaccessibility period

on machine 𝑘.

𝑓𝑚𝑘𝑟 : represents the end time of the r-th inaccessibility

period on machine 𝑘. (𝑓𝑚𝑘𝑟 − 𝑠𝑚𝑘𝑟 = 𝑇)

𝑀: represents a large numerical value.

1604 K. Mahdavi et al. / IJE TRANSACTIONS B: Applications Vol. 37 No. 08, (August 2024) 1600-1614

Decision variables:

𝑇𝑖: tardiness of job 𝑖.

𝐸𝑖: earliness of job 𝑖.

𝑉𝑖𝑗𝑘: 𝑉𝑖𝑗𝑘 takes the value of 1 if operation 𝑜𝑖𝑗 is performed

on machine 𝑘; otherwise 𝑉𝑖𝑗𝑘 is 0.

𝑍𝑖𝑗ℎ𝑔𝑘: 𝑍𝑖𝑗ℎ𝑔𝑘 is 1 if 𝑜𝑖𝑗 precedes operation 𝑜ℎ𝑔 on machine

𝑘; otherwise 𝑍𝑖𝑗ℎ𝑔𝑘 is 0.

𝑠𝑖𝑗𝑘: denotes the start time of operation 𝑜𝑖𝑗 on machine k

𝑐𝑖𝑗𝑘 : represents the completion time of operation 𝑜𝑖𝑗 on

machine 𝑘.

𝑐𝑖: denotes the completion time of job 𝑖.

𝐵𝑖𝑗𝑘𝑟: binary variable in unavailability constraints

This section describes a mathematical model for the

problem using an approach called the priority variable-

based model. This approach relies on a specific type of

variable (represented by 𝑍𝑖𝑗ℎ𝑔𝑘) introduced by Manne

(4). It is important to note that 𝑍𝑖𝑗ℎ𝑔𝑘 being 1 does not

necessarily mean oij comes immediately before ohg. This

variable only needs to be defined when i is less than h,

because the order of operations within the same job is

already fixed. The model presented here utilizes this

concept of priority variables to formulate the problem as

a Mixed-Integer Linear Programming (MILP).

This modeling approach was initially introduced by

Ozguven et al. (3) for formulating the FJSP and we have

adopted it for our FJSP as follows:

Min ∑ (𝐸𝑖+𝑇𝑖)𝑖 (1)

S.T.

𝑐𝑖 ≥ ∑ 𝑐𝑖𝑗𝑘𝑘∈𝑀𝑖𝑗
 , ∀ 𝑖 , 𝑗 = 𝐽𝑖 (2)

𝑠𝑖𝑗𝑘 + 𝑐𝑖𝑗𝑘 ≤ 𝑉𝑖𝑗𝑘 . 𝑀 , ∀ 𝑖 , 𝑗 ∀𝑘 ∈ 𝑀𝑖𝑗 (3)

𝑐𝑖𝑗𝑘 ≥ 𝑠𝑖𝑗𝑘 + 𝑝𝑘𝑖𝑗 − 𝑀. (1 − 𝑉𝑖𝑗𝑘) , ∀ 𝑖 , 𝑗 ∀𝑘 ∈

𝑀𝑖𝑗
(4)

𝑠𝑖𝑗𝑘 ≥ 𝑐ℎ𝑔𝑘 − 𝑀. 𝑍𝑖𝑗ℎ𝑔𝑘 , ∀ 𝑖 ≤ ℎ , ∀ 𝑗, 𝑔 ∀𝑘 ∈

𝑀𝑖𝑗 ∩ 𝑀ℎ𝑔
(5)

𝑠ℎ𝑔𝑘 ≥ 𝑐𝑖𝑗𝑘 − 𝑀. (1 − 𝑍𝑖𝑗ℎ𝑔𝑘) , ∀ 𝑖 ≤

ℎ , ∀ 𝑗, 𝑔 ∀𝑘 ∈ 𝑀𝑖𝑗 ∩ 𝑀ℎ𝑔
(6)

∑ 𝑠𝑖𝑗𝑘𝑘∈𝑀𝑖𝑗
≥ ∑ 𝑐𝑖𝑗−1𝑘𝑘∈𝑀𝑖𝑗

 , ∀ 𝑖 , 𝑗 = 2,… , 𝐽𝑖 (7)

∑ 𝑠𝑖𝑗𝑘𝑘∈𝑀𝑖𝑗
≤ ∑ 𝑐𝑖𝑗−1𝑘𝑘∈𝑀𝑖𝑗

 + 𝑢𝑏𝑤𝑖 , ∀ 𝑖 , 𝑗 =

2,… , 𝐽𝑖
(8)

∑ 𝑉𝑖𝑗𝑘 = 1𝑘∈𝑀𝑖𝑗
 , ∀ 𝑖 , 𝑗 (9)

𝑇𝑖 ≥ 𝑐𝑖 − 𝑑𝑖 , ∀ 𝑖 (10)

𝐸𝑖 ≥ 𝑑𝑖 − 𝑐𝑖 , ∀ 𝑖 (11)

𝑠𝑖𝑗𝑘 < (𝑠𝑚𝑘,𝑟 ∗ 𝑉𝑖𝑗𝑘) + 𝑀 ∗ 𝐵𝑖𝑗𝑘𝑟 , ∀ 𝑖 , 𝑗, 𝑘, 𝑟 (12)

𝑐𝑖𝑗𝑘 < (𝑠𝑚𝑘,𝑟 ∗ 𝑉𝑖𝑗𝑘) + 𝑀 ∗ 𝐵𝑖𝑗𝑘𝑟 , ∀ 𝑖 , 𝑗, 𝑘, 𝑟 (13)

𝑠𝑖𝑗𝑘 < (𝑠𝑚𝑘,𝑟 ∗ 𝑉𝑖𝑗𝑘) + 𝑀(1 − 𝐵𝑖𝑗𝑘𝑟) , ∀ 𝑖 , 𝑗, 𝑘, 𝑟 (14)

𝑐𝑖𝑗𝑘 < (𝑠𝑚𝑘,𝑟 ∗ 𝑉𝑖𝑗𝑘) + 𝑀(1 − 𝐵𝑖𝑗𝑘𝑟) , ∀ 𝑖 , 𝑗, 𝑘, 𝑟 (15)

𝑠𝑖𝑗𝑘 > (𝑓𝑚𝑘,𝑟 ∗ 𝑉𝑖𝑗𝑘) + 𝑀(1 − 𝐵𝑖𝑗𝑘𝑟) , ∀ 𝑖 , 𝑗, 𝑘, 𝑟 (16)

𝑐𝑖𝑗𝑘 > (𝑓𝑚𝑘,𝑟 ∗ 𝑉𝑖𝑗𝑘) + 𝑀(1 − 𝐵𝑖𝑗𝑘𝑟) ,

 ∀ 𝑖 , 𝑗, 𝑘, 𝑟
(17)

𝑠𝑖𝑗𝑘 ≥ 0 , 𝑐𝑖𝑗𝑘 ≥ 0 , ∀ 𝑖 , 𝑗 , 𝑘 (18)

𝑐𝑖 ≥ 0 , 𝑇𝑖 ≥ 0 , 𝐸𝑖 ≥ 0 , ∀ 𝑖 , 𝑗 , 𝑘 (19)

𝑧𝑖𝑗ℎ𝑔𝑘 ∈ {0,1} , ∀ 𝑖 ≤ ℎ , ∀ 𝑗, 𝑔 ∀𝑘 ∈ 𝑀𝑖𝑗 ∩ 𝑀ℎ𝑔 (20)

𝑉𝑖𝑗𝑘 ∈ {0,1} , ∀ 𝑖 , 𝑗, 𝑘 (21)

𝐵𝑖𝑗𝑘𝑟 ∈ {0,1} , ∀ 𝑖 , 𝑗, 𝑘, 𝑟 (22)

Equation 1 determines goal function as minimizing

whole earliness and tardiness of jobs. Constraint 2

specifies the completion times of the jobs. Constraint 3

describes each operation has beginning time and

completion time when is devoted to a machine; If not

devoted, both times are set to 0. Constraint 4 ensures the

processing time on a machine matches the difference

between start and end times. Constraints 5 and 6 prevent

two operations from being processed simultaneously on

any machine. Constraints 7 and 8 describe the operation

precedence constraints and guarantee that the

interruption between two successive operations of any

job does not exceed its upper bound. Constraint 9

guarantees that each operation is devoted to precisely one

machine. Constraints 10 and 11 specifies the tardiness

and earliness of each job. Constraints 12 to 17

characterize inaccessibility periods for machines and

compel each operation oij be processed between periods

when the machine is active. Constraints 18 to 22

characterize the type of decision variables.

4. BENDERS DECOMPOSITION METHOD

Benders decomposition, developed by Benders [33] is a

well-established optimization technique frequently used

to tackle intricate integer problems and identify optimal

solutions. This method divides the problem model into

K. Mahdavi et al. / IJE TRANSACTIONS B: Applications Vol. 37 No. 08, (August 2024) 1600-1614 1605

two main problems (including complicated variables

such as integers and binaries) and a subproblem

(including other variables). In this method, the optimal

solution is determined by utilizing upper and lower

limits. In minimization problems by solving the master

problem (MP), the value of its goal function is considered

as a lower bound and to obtain the upper bound, a dual

subproblem (DSP) must be solved. Then, the sum of the

goal function value of the DSP optimal solution and the

goal function value of the MP optimal solution is

considered as the upper bound. In the Benders

decomposition method, first, the MP, SP, and DSP

problems must be identified and the MP problem solved

to obtain a lower bound and the values of the complicated

variables (minimization problem). Then, by fixing the

complicated variables according to the obtained values

(in the MP problem), the DSP problem is solved and an

upper bound is created for the goal function of the

problem. In each step of the method, the discrepancy

between the upper and lower bounds is evaluated, and if

it is less than a specific value, the algorithm stops and the

optimal solution is placed between the upper and lower

limit values. If the algorithm does not stop an optimality

cutting plane is added to the MP problem according to

the DSP solution; thus, the MP problem is solved again

and the values of the complicated variables and the lower

bound of the problem are obtained. This procedure is

repeated to reduce the discrepancy between the upper and

lower bounds until this discrepancy falls below a

predetermined value. Figure 1 depicts a flowchart of the

Benders decomposition method.

As mentioned above, the presented mathematical

model is used as the basic model of the Benders

decomposition method; so at the beginning, the MP and

SP problems will be as follows:

MP:

𝑀𝑖𝑛 𝑍 (23)

∑ 𝑉𝑖𝑗𝑘 = 1𝑘 , ∀ 𝑖, 𝑗 (24)

Constraints 3.20 𝑡𝑜 3.22 (25)

𝑍 ≥ 0 (26)

SP:

Min ∑ (𝐸𝑖+𝑇𝑖)𝑖 (27)

Constraints 2 𝑡𝑜 8 (28)

Constraints 10 𝑡𝑜 19 (29)

In the next step, the dual subproblem is evaluated and the

Benders decomposition method is implemented

according to the flowchart in Figure 1. According to the

flowchart in Figure 1, if the DSP problem is infinite, the

corner orientations that lead to the infinity of the DSP

problem must be found and eliminated in the DSP

problem. In other words, a feasibility cutting plane

corresponding to each of the corner orientations must be

added to the MP problem.

5. METAHEURISTIC ALGORITHM

The JSP is recognized as an high complexity

optimization problem in the field of production

scheduling. Since the JSP is a specific type of FJSP, it

follows that FJSP is also NP-hard and exhibits high

Figure 1. Benders decomposition method flowchart

1606 K. Mahdavi et al. / IJE TRANSACTIONS B: Applications Vol. 37 No. 08, (August 2024) 1600-1614

complexity. In the preceding sections, a mathematical

model and Benders decomposition method were

presented with the aim of obtaining the optimal solution.

Nevertheless, the FJSP is of such complexity that even

powerful optimization methods struggle with large

instances. To tackle this, a new approach called D-GWO

is introduced. This method is designed to rapidly

generate good solutions, although not necessarily

optimal, even for large and intricate instances.

5. 1. Solution Representation Job-based

encoding is like a recipe for this process. Each job is like

an ingredient, and its position in the recipe tells you

exactly when and on which machine it needs to be

processed. This ensures all jobs are completed in the right

order, and makes comparing different production

schedules like comparing different recipes – you can

observe how altering the order of jobs influences the

outcome. In this representation, the length of this solution

code is the number of jobs (n). Each job position in the

code tells you when it's processed on the machines. For

instance, in Figure 2, the solution depicts a scenario with

three jobs. Each job is comprised of multiple operations

and follows a distinct processing route.

Decoding is a crucial step in the process of evaluating

the goal function for a given solution to a JSP. The

decryption algorithm offered by Brizuela et al. (33) is

specifically tailored for problems with no wait

constraints, and it likely provides an effective method for

transforming the encoded solution into a schedule that

can be evaluated to determine the goal function's value.

The algorithm consists of the following phases:

Phase 1: Initializing a workless times list for each

machine. At the commencement of the schedule, when

no jobs have commenced, all machines are entirely

workless except for intervals allocated for maintenance

tasks.

Phase 2: Handling the operations of the first job that

hasn't been processed yet in the encoded solution

sequentially.

Phase 3: Updating the list of workless times for each

machine.

Phase 4: Verifying whether all jobs are done. If so, the

algorithm halts; otherwise, it goes back to step 2.

To provide a clearer understanding of the decoding

approach, let's take an example involving 3 jobs and 3

stages. It's worth noting that it's quite fascinating that not

all stages of machines may be necessary for processing

each job.

For instance, in the stage 1, there are two machines:

M₁ and 𝑀1
̅̅ ̅̅ . In the stage 2, there are two machines: M₂

3 1 2

Figure 2. An encoded solution for a problem with three jobs

and 𝑀2
̅̅ ̅̅ . Finally, in the stage 3, only machine M₃ is

needed. Let's examine the jobs in more detail. The first

job comprises two operations. The first operation must be

processed on 𝑀1
̅̅ ̅̅ in stage 1, while the second operation is

assigned to M₃ in stage 3. The second job also consists of

two operations. The first operation should be processed

on 𝑀2
̅̅ ̅̅ in stage 2, and the second operation on 𝑀1

̅̅ ̅̅ in stage

1. The third job encompasses three operations. The first

operation is processed on M₁ in stage 1, the second

operation on M₃ in stage 3, and the third operation on M₂

in stage 2. Let's consider the processing times for these

operations. The first and second operations of job 1

require 3 and 1 units of time, respectively. For job 2, the

first and second operations need 3 and 4 units of time,

respectively. As for job 3, its operations require 1, 2, and

1 units of time, respectively. The due dates for jobs 1, 2,

and 3 are 15, 18, and 16, respectively. Additionally, the

upper bounds for jobs 1, 2, and 3 are 3, 0, and 5,

respectively. There are also periods of unavailability for

the machines. Every 5 time units or every 7 time units,

the machines undergo preventive maintenance and

repair, rendering them unavailable for a period of two

time units. Initially, the idle times for the machines are

listed in Table 1. Now, let's consider the encrypted

solution presented in Figure 2.

The initial step in the decoding process, based on the

encoded solution shown in Figure 2, involves processing

job 3. To ensure job 3 is completed precisely on time, the

timetable displayed in Figure 3 is used for scheduling.

Once job 3 is scheduled, the idle times of the machines

are updated and recorded in Table 2. Next, the focus

shifts to determining the optimal start time for job 1. This

ensures that job 1's operations are processed on the

required machines and the job is completed as closely as

possible to its due date. The scheduling of job 1 is carried

out using the schedule illustrated in Figure 4. After

scheduling jobs 3 and 1, the idle times of the machines

are once again updated and documented in Table 2.

Following this, the processing start time for job 2 is

examined to ensure that all its operations are completed

on different required machines and the job is finished

close to its due date. The timetable depicted in Figure 5

is used to schedule job 2. It is observed from Figure 5 that

TABLE 1. List of idle times for machines at the

commencement

Idle time Machine
[0,7] ∪ [9,16] ∪ [18,25] + … M1
[0,7] ∪ [9,16] ∪ [18,25] + … �̅�1
[0,5] ∪ [7,12] ∪ [14,19] + … M2

[0,7] ∪ [9,16] ∪ [18,25] + … �̅�2
[0,5] ∪ [7,12] ∪ [14,19] + … M3

K. Mahdavi et al. / IJE TRANSACTIONS B: Applications Vol. 37 No. 08, (August 2024) 1600-1614 1607

TABLE 2. List of idle times for machines

Idle time
Machine

after scheduling job 1 and job 3 after scheduling job 3

[0,7] ∪ [10,16] ∪ [18,25] + … [0,7] ∪ [10,16] ∪ [18,25] + … M1

[0,7] ∪ [12,16] ∪ [18,25] + … [0,7] ∪ [9,16] ∪ [18,25] + … �̅�1

[0,5] ∪ [7,12] ∪ [14,15] ∪ [16,19] + … [0,5] ∪ [7,12] ∪ [14,15] ∪ [16,19] + … M2

[0,7] ∪ [9,16] ∪ [18,25] + … [0,7] ∪ [9,16] ∪ [18,25] + … �̅�2

[0,5] ∪ [7,10] ∪ [15,19] + … [0,5] ∪ [7,10] ∪ [14,19] + … M3

Figure 3. Schedule for job 3 based on the provided encoded solution

Figure 4. Schedule for job 3 and job 1 based on the provided encoded solution

Figure 5. Schedule for all jobs based on the provided encoded solution

1608 K. Mahdavi et al. / IJE TRANSACTIONS B: Applications Vol. 37 No. 08, (August 2024) 1600-1614

job 2 has an upper bound of zero, indicating no

interruption is permitted between its operations. In order

to optimize the objective function, job 2 is scheduled to

commence at time unit 9, aligning with its due date. Once

all the jobs have been processed, the decoding algorithm

is terminated, and the schedule from Figure 5 is selected

as the final schedule for the encoded solution presented

in Figure 2.

5. 2. Discrete Grey Wolf Optimizer (D-GWO) The

Grey Wolf Optimizer (GWO), introduced by Mirjalili et

al. (34), is a population-based metaheuristic algorithm

that has gained popularity for solving continuous

optimization problems. This algorithm is inspired by grey

wolves and this inspiration comes from both their social

structure (living) and hunting behavior in their natural

habitat. Grey wolves are known to live in groups of 5 to

12 individuals and exhibit a strict social structure. The

group is led by alpha wolves, who hold a crucial role in

decision-making. The rest of the pack follows the

decisions made by the alpha wolves. Beta wolves occupy

the next level in the hierarchy and follow the commands

of the alpha wolves, relaying those commands to the rest

of the group. At the lowest level, omega wolves provide

protection and submit to the dominant wolves. Wolves

that do not fit into these categories are classified as delta

wolves, following the alpha and beta wolves while

having dominance over the omega wolves. An intriguing

behavior observed in wolves is group hunting, which

involves three primary stages: encircling the prey,

hunting, and attacking the prey. The first two stages,

encircling the prey and hunting, are focused on exploring

the search space. The final stage, attacking the prey,

emphasizes exploitation.

In the process of encircling the prey, let's consider

𝑋(t) as the position of a wolf and 𝑋𝑝(t) as the position of

the prey at the current iteration of the algorithm. This

process can be represented by Equations 30 to 33 (34):

(𝑡 + 1) = 𝑋𝑝(𝑡) − 𝐴. 𝐷(𝑡) (30)

𝐷(𝑡) = |𝐶. 𝑋𝑝(𝑡) − 𝑋(𝑡)| (31)

𝐴 = 𝛼(2𝑟1 − 1) (32)

𝐶 = 2𝑟2 (33)

Here, 𝐶 and 𝐴 are vectors, and r1 and r2 are random

numbers ranging from 0 to 1. The value of α gradually

decreases from 2 to 0.

As depicted in Equation 30, wolves reduce their

distances from the prey (Xp(t)). This distance is

influenced by two factors: A, which gradually
diminishes, and D, which signifies the distance from the

prey's location. With the progression of the algorithm's

iteration count, the wolves draw nearer to the prey. This

behavior enables them to encircle the prey, given that

their initial locations are randomly determined.

During the hunting process, the alpha wolf takes the

lead within the group, with the beta and delta wolves also

potentially participating. The position of the prey

(optimal point) is denoted by Xp(t), and it is usually

unknown. Despite the unknown location, it's assumed

that all three wolves have a good understanding of where

the prey might be. The GWO mimics how wolves

collaborate during a hunt to find prey. It maintains a

virtual pack of potential solutions, with alpha, beta, and

delta representing the leaders who have an intuitive

understanding of the optimal solution (the prey). These

leaders' positions are constantly updated and stored. The

remaining wolves (other potential solutions) don't have

this innate knowledge. Instead, they strategically adjust

their positions by considering the positions of alpha, beta,

and delta, employing Equations 34 to 37 (34).

𝑋1(𝑡) = 𝑋𝛼(𝑡) − 𝐴1. 𝐷𝛼(𝑡)
(34)

𝐷𝛼(𝑡) = |𝐶1. 𝑋𝛼(𝑡) − 𝑋(𝑡)|

𝑋2(𝑡) = 𝑋𝛽(𝑡) − 𝐴2. 𝐷𝛽(𝑡)

(35)

𝐷𝛽(𝑡) = |𝐶2. 𝑋𝛽(𝑡) − 𝑋(𝑡)|

𝑋3(𝑡) = 𝑋𝛿(𝑡) − 𝐴3. 𝐷𝛿(𝑡)

(36)

𝐷𝛿(𝑡) = |𝐶3. 𝑋𝛿(𝑡) − 𝑋(𝑡)|

𝑋(𝑡 + 1) = (𝑋1(𝑡) + 𝑋2(𝑡) + 𝑋3(𝑡))/3 (37)

In Equation 37, the updated position of a wolf 𝑋(𝑡 + 1)

is determined as the average of the positions of the alpha,

beta, and delta wolves.

As previously mentioned, the GWO is commonly

utilized for continuous optimization problems. However,

in recent times, researchers have made efforts to adapt it

for discrete optimization problems due to the significant

achievements of the traditional GWO in continuous

optimization. One such adaptation is the Discrete Grey

Wolf Optimizer (D-GWO), introduced by Hosseini

Shirvani (35). This new version tackles the challenge by

introducing Binary operators and Walking Around

approache. Binary operators handle the discrete nature of

the problem, allowing the algorithm to work with specific

values instead of continuous ranges. Walking around

helps the algorithm maintain a balance between

exploring the entire search space (exploration) and

focusing on promising areas (exploitation). Additionally,

Jiang et al. (36) have developed another variant of the D-

GWO algorithm with the objective of minimizing the

makespan. This variant is specifically designed to tackle

two combinatorial optimization problems in the

manufacturing domain: JSP and FJSP. In this algorithm,

K. Mahdavi et al. / IJE TRANSACTIONS B: Applications Vol. 37 No. 08, (August 2024) 1600-1614 1609

a searching operator based on crossover operations is

utilized to ensure the algorithm operates within the

discrete domain. Furthermore, an adaptive mutation

method is introduced to maintain population diversity

and prevent premature convergence. For the purpose of

this study, the D-GWO presented by Hosseini Shirvani

(35) is employed to solve large instances of the proposed

FJSP. Below, you will find further details regarding the

D-GWO.

5. 2. 1. Wolf Representation As indicated in

section 4-1, the algorithm proposed herein represents

each solution (wolf) through a sequence, dictating the

order of job execution on the machines. In a scenario

involving n jobs, this representation comprises a

sequence with n elements, ensuring that each job appears

precisely once in the sequence. This guarantees that every

job is accounted for and executed within the solution.

5. 2. 2. Binary Vectors and Operators The

path taken by an individual wolf towards its prey is

guided by the three top-ranking wolves, namely alpha

(𝑊𝛼), beta (𝑊𝛽), and delta (𝑊𝛿). Consequently, novel

binary vectors and operators are introduced to leverage

the collective knowledge of these leader wolves

concerning the traversed discrete search space. This

involves the use of binary vectors Tokeni and Adjusteri

for comparing each wolf with the leader wolves. To

execute this, each wolf needs to rearrange jobs in its

representation to align with the leaders. In the vector, a

zero value indicates that the corresponding job does not

need to be changed. It's worth noting that the first and last

jobs are exempt from alterations, denoted by being set to

zero in the Token vector.

In the proposed algorithm, the movement of an

individual wolf towards its prey is guided by the three

leading wolves: alpha (𝑊𝛼), beta (𝑊𝛽), and delta (𝑊𝛿).

To leverage the knowledge of these leader wolves about

the traversed discrete search space, new binary vectors

and operators are introduced. Two binary vectors,

Tokeni and Adjusteri, are utilized for comparison

between each wolf and the leader wolves. The purpose is

to ensure that each wolf relocates jobs in its

representation similar to the leaders. The value of zero in

the Token vector signifies that the corresponding job

does not need to be changed. However, the first and last

jobs are exempted from any changes, so they are set to

zero in the Token vector. During initialization, all jobs

are considered for potential changes, resulting in an

initial Token vector value of one. The operator\ is utilized

to signify the differences in corresponding jobs between

two wolves (35). For example, let's consider the case

where n=6, and Token1 = (0,1,1,0,1,0) for 𝑊1, and

Tokenα = (0,0,1,1,1,0) for 𝑊𝛼 . The operation Token1 \

Tokenα yields:

𝑇𝑜𝑘𝑒𝑛1 ∖ 𝑇𝑜𝑘𝑒𝑛𝛼 = (0,1,1,0,1,0) ∖ (0,0,1,1,1,0) =
(0,1,0,1,0,0)

As shown, the output bit remains zero for the same

positions since no changes are necessary (35). Another

operator, "⨂", is used to determine if a bit should be

changed based on the corresponding Adjuster value. If

Token1 = (0,1,1,0,0,0) and Adjuster1 = (0,0,1,0,1,0),

the operation Token1 ⨂ Adjuster1 results in :

𝑇𝑜𝑘𝑒𝑛1 = (0,1,1,0,0,0) ⨂ (0,0,1,0,1,0) = (0,1,0,0,1,0)

The Adjuster vector serves as a guide for the Token

vector to prevent duplicate changes on specific jobs (35).

5. 2. 3. Description of Customized D-GWO
Algorithm parameters are divided into two categories:

1. General Parameters:

• Population size (PS): This parameter determines the

number of wolves in each iteration of the algorithm.

• Maximum iterations (MI): This sets the limit on how

many times the algorithm will repeat its calculations. It's

like the maximum number of attempts the wolves have to

find the prey.

2. Instance-related parameters:

• Quantity of jobs (n)

• Count of stages and machines within each stage

• Route of job processing

• Capability of each machine

• Processing time for each job on every machine

• Intervals for maintenance

• Job due dates

• Upper bound for waiting time between operations

D-GWO Algorithm:

Step 1: Generate the initial population of solutions

(wolves) equal to PS and set 𝑍 = 1.

Step 2: Generate binary vectors of Token and Adjuster

for each wolf:

𝑇𝑜𝑘𝑒𝑛𝑖 = (𝑏𝑖1, 𝑏𝑖2, … , 𝑏𝑖𝑛) = 1⃗

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖 = (𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑛) = 1⃗

Step 3: Calculate the value of the goal function of each

wolf according to the method of section 4-1.

The top-performing solution is identified as the alpha

wolf (𝑊𝛼). The second-best solution is designated as the

beta wolf (𝑊𝛽). The third-best solution is recognized as

the delta wolf (𝑊𝛿).

Step 4: if 𝑍 ≤ 𝑀𝐼 then set 𝑖 = 1 and proceed to step 5,

otherwise (𝑍 > 𝑀𝐼) proceed to step 10.

Step 5: if 𝑖 ≤ 𝑃𝑆 then proceed to step 6, otherwise (𝑖 >
𝑃𝑆) proceed to step 9.

Step 6: In the exploration phase, call algorithm EXP for

encircling the prey (update the position 𝑊𝑖).

Step 7: In the exploitation phase, call algorithm SWP for

Swap mutation (update the position 𝑊𝑖).

1610 K. Mahdavi et al. / IJE TRANSACTIONS B: Applications Vol. 37 No. 08, (August 2024) 1600-1614

Step 8: Calculate the value of the goal function of wolf

𝑊𝑖 according to the method of section 4-1. If there is a

change in the alpha, beta, and delta wolves, update them

and set 𝑖 = 𝑖 + 1 and move on to step 5.

Step 9: Add one to the number of iterations of the

algorithm (𝑍 = 𝑍 + 1) and go to step 4.

Step 10: Among the solutions in the last iteration (final

wolves), choose the best wolf (𝑊𝛼) and set it as the final

solution for the problem.

EXP Algorithm:

The EXP algorithm is employed to adjust the position of

each wolf (𝑊𝑖) and takes the following parameters as

input:

• 𝑊𝑖 ,𝑊𝛼 ,𝑊𝛽 ,𝑊𝛿

• 𝑇𝑜𝑘𝑒𝑛𝑖 , 𝑇𝑜𝑘𝑒𝑛𝛼 , 𝑇𝑜𝑘𝑒𝑛𝛽 , 𝑇𝑜𝑘𝑒𝑛𝛿

• 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖 , 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝛼 , 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝛽 , 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝛿

The procedure of the algorithm unfolds as belows:

Step 1: Calculate the 𝐹1 , 𝐹2 , 𝐹3:

• 𝐹1 is equal to the value of the goal function of 𝑊𝛼

• 𝐹2 is equal to the value of the goal function of 𝑊𝛽

• 𝐹3 is equal to the value of the goal function of 𝑊𝛿

• 𝐹1 ≤ 𝐹2 ≤ 𝐹3

Step 2: Calculate the 𝑃1 , 𝑃2 , 𝑃3:

𝑃1 =
𝐹1

𝐹1+𝐹2+𝐹3

 {
𝑃1 ≤ 𝑃2 ≤ 𝑃3
𝑃1 + 𝑃2 + 𝑃3 = 1

 𝑃2 =
𝐹2

𝐹1+𝐹2+𝐹3

𝑃3 =
𝐹3

𝐹1+𝐹2+𝐹3

Step 3: Calculate the 𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓1 , 𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓2 ,
𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓3 and set 𝑗 = 1:

𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓1 = 𝑇𝑜𝑘𝑒𝑛𝑖 ∖ 𝑇𝑜𝑘𝑒𝑛𝛼

𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓2 = 𝑇𝑜𝑘𝑒𝑛𝑖 ∖ 𝑇𝑜𝑘𝑒𝑛𝛽

𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓3 = 𝑇𝑜𝑘𝑒𝑛𝑖 ∖ 𝑇𝑜𝑘𝑒𝑛𝛿

Step 4: Choose a random number in (0 , 1) as 𝑞:

• If 𝑞 < 𝑃1 then 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) is obtained as

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) = 𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓1(𝑗)

• If 𝑃1 ≤ 𝑞 < 𝑃2 then 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) is obtained as

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) = 𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓2(𝑗)

• If 𝑃2 ≤ 𝑞 ≤ 𝑃3 then 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) is obtained as

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) = 𝑇𝑜𝑘𝑒𝑛𝐷𝑖𝑓𝑓3(𝑗)

Step 5: If 𝑗 = 𝑛, then move on to step 6, otherwise Add

one to 𝑗 (𝑗 = 𝑗 + 1) and move on to step 4.

Step 6: make change on 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖 vector as follow:

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(1) = 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑛) = 0

Step 7: Revise 𝑊𝑖 to encircle the prey by adjusting its

trajectory according to 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖:
Exchange job 𝑗 and job 𝑘 where 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) =
𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟𝑖(𝑘) = 1 and 𝑗 ≠ 𝑘.

Step 8: Consider 𝑊𝑖 as output of algorithm.

SWP Algorithm:

Algorithm SWP is used to make swap mutation on each

wolf and receives 𝑊𝑖 and 𝑛 as inputs.

Below are the outlined steps of the algorithm:

Step 1: Choose two random integer number in (1 , 𝑛) as 𝑗
and 𝑘.

Step 2: Set 𝑎 = 𝑊𝑖(𝑗) and 𝑏 = 𝑊𝑖(𝑘)

Step 3: make change on 𝑊𝑖 as follow:

𝑊𝑖(𝑗) = 𝑏 , 𝑊𝑖(𝑘) = 𝑎

Step 4: Consider 𝑊𝑖 as output of algorithm.

6. COMPUTATIONAL RESULTS

This research uses GAMS software, equipped with the

CPLEX solver, to tackle a Mixed-Integer Linear

Programming (MILP) model. Each instance of the

problem is given a maximum of two hours (7200

seconds) to find the optimal solution. If an optimal

solution is found within this time limit, it is reported. The

D-GWO algorithm, along with its components, is

implemented in Python. All computational experiments

are carried out on a laptop equipped with an Intel Core

i7-4600U CPU running at 2.10 GHz. The laptop is

equipped with 8GB of memory and runs on the Windows

10 operating system. To fine-tune the parameters of the

D-GWO algorithm, various values are considered for

each parameter. Through initial experiments and solving

numerical problems, the appropriate values are selected.

Specifically, the PS is set to 10 × 𝑛 , and the MI is set to

100 (n indicates the number of jobs).

In the research, the D-GWO algorithm begins by

randomly generating an initial population of solution

candidates. Since the algorithm is random in nature, each

problem is solved 5 times by applying D-GWO. The goal

function values for the obtained solutions are then

reported, including the minimum, average, and

maximum values. To facilitate result comparison, a

Relative Percentage Deviation (RPD) is employed to

gauge the goal function value for each solution. The RPD

is computed using the formula in Equation 38.

𝑅𝑃𝐷 = (
𝑓(𝑠𝑜𝑙)−𝑓(𝑠𝑜𝑙𝑏𝑒𝑠𝑡)

𝑓(𝑠𝑜𝑙𝑏𝑒𝑠𝑡)
) × 100 (38)

In this formula, 𝑠𝑜𝑙𝑏𝑒𝑠𝑡 denotes the best solution acquired

for a specific problem from the solutions obtained. The

RPD calculates the percentage difference between a

solution and the best solution, providing a relative

measure of how far each solution is from the optimal

value. It helps in comparing the performance of different

solutions and identifying how close they are to the best

possible outcome.

The considered problem can be examined from two

points of view: If the upper bound of waiting time is zero,

it implies that the operations of each job must be executed

consecutively without any breaks. In this case, the

K. Mahdavi et al. / IJE TRANSACTIONS B: Applications Vol. 37 No. 08, (August 2024) 1600-1614 1611

problem transforms into a no wait FJSP with additional

constraints. On the other hand, if the upper bound of

waiting time is greater than zero, it allows for the

consideration of waiting time between the operations of

each job. This introduces flexibility in scheduling and

provides an opportunity to utilize the gap time between

operations effectively. Since the objective function

focuses on achieving a balanced schedule by minimizing

the total deviation from desired completion times for all

jobs, it is crucial to make effective use of the waiting time

between operations. By strategically scheduling the

operations and utilizing the gap time, it is possible to

improve the objective function and minimize the

penalties associated with earliness and tardiness.

Therefore, in the latter scenario where waiting time is

allowed, optimizing the schedule to minimize the total

earliness and tardiness can be achieved by effectively

managing the gap time between operations.

Table 3 showcases the results obtained from solving

various instances. In each instance, some jobs have UBW

≠ 0 therefor waiting time between their operations can be

considered, and some of them must be processed as no

wait (UBW = 0) and their operations must processed in a

row without any waiting time. According to the

information provided in Table 3, the RPD values for

instances where either the mathematical model or

Benders decomposition method found the optimal

solution are highlighted in bold. In all instances

enumerated in Table 3, each job necessitates precisely

one machine from each stage for processing. For small

problems with a maximum of 7 jobs, both GAMS and

Benders decomposition find optimal solutions within a

reasonable timeframe. Additionally, the D-GWO

algorithm demonstrates excellent performance by

consistently providing the optimal solution every 5 times.

The Benders decomposition method proves to be

advantageous over Gams software, particularly in

instances 9 and 10, where Gams software fails to

guarantee an optimal solution within 7200 seconds. In

contrast, the Benders decomposition method not only

offers the optimal solution but also provides a suitable

lower bound for instances 11 to 15. In large instances,

both the Benders decomposition method and Gams

software lose their efficiency, but the D-GWO algorithm

performs remarkably well by delivering a suitable

solution within a reasonable time. The solutions obtained

from the D-GWO algorithm are reliable as it consistently

provides the optimal solution in small instances, similar

to exact methods. The algorithm's convergence is

confirmed by the minimal deviation of its provided

solutions for each instance. Overall, the results indicate

that the proposed D-GWO algorithm performs

effectively and can produce satisfactory solutions within

a reasonable timeframe, particularly for the larger

instances of the problem.

TABLE 3. Comparison results among the MILP model, Benders method, and D-GWO

D-GWO Benders GAMS

No.

stages

No.

job
Instance Run

time (s)

Output (RPD)
Run time(s) Output (RPD) Run time (s) Output (RPD)

Max Avg Min

53 0 0 0 1839 0 2011 0 5 5 1

59 0 0 0 2388 0 2894 0 7 5 2

55 0 0 0 2811 0 3362 0 9 5 3

76 0 0 0 3634 0 4251 0 5 6 4

67 0 0 0 3893 0 4984 0 7 6 5

81 0 0 0 4059 0 5375 0 9 6 6

95 0 0 0 4507 0 6311 0 5 7 7

107 0 0 0 5113 0 6798 0 7 7 8

118 0 0 0 5418 0 7200 0 9 7 9

109 0 0 0 5924 0 7200 0 5 8 10

143 0 0 0 6469 0 LB 7200 0.03 7 8 11

151 0.04 0.01 0 6713 0 LB 7200 0.05 9 8 12

142 0.04 0.02 0 6753 0 LB 7200 0.14 5 9 13

159 0.05 0.02 0 6854 0.03 LB 7200 0.19 7 9 14

191 0.08 0.05 0 6831 0.07 LB 7200 0.26 9 9 15

185 0.15 0.03 0 - - 7200 0.37 5 10 16

1612 K. Mahdavi et al. / IJE TRANSACTIONS B: Applications Vol. 37 No. 08, (August 2024) 1600-1614

229 0.10 0.03 0 - - 7200 0.35 7 10 17

217 0.12 0.08 0 - - 7200 0.38 9 10 18

384 0.52 0.36 0 - - 7200 1.08 5 15 19

415 0.63 0.27 0 - - 7200 1.36 7 15 20

430 0.84 0.39 0 - - 7200 1.98 9 15 21

576 1.38 0.51 0 - - 7200 3.12 5 20 22

558 1.65 0.76 0 - - 7200 4.02 7 20 23

603 1.78 1.11 0 - - 7200 4.31 9 20 24

753 1.93 1.32 0 - - 7200 - 5 25 25

798 2.15 1.20 0 - - 7200 - 7 25 26

774 2.01 1.07 0 - - 7200 - 9 25 27

879 2.28 1.29 0 - - 7200 - 5 30 28

961 1.92 1.16 0 - - 7200 - 7 30 29

994 2.18 1.19 0 - - 7200 - 9 30 30

345.4 0.66 0.36 0 - - 6299 0.73 Average

7. CONCLUSIONS

This paper focuses on the FJSP that incorporates

machines' maintenance activities and an upper bound for

interruption between job operations. The objective

function focuses on achieving a balanced schedule by

minimizing the total deviation from desired completion

times for all jobs. This problem has significant

applications in the production of perishable products. In

one hand, delays in production can significantly impact

the freshness and quality of these products, potentially

leading to spoilage and wasted resources. In other hand,

early completion can also be detrimental if it leads to

products reaching their expiration date before they can be

sold or consumed. Production processes in such

environments often involve job shop scheduling, where

production is carried out without delay or with a

permissible delay (lower than the upper bound delay),

and the products are promptly packaged and stored. To

address this issue, the researchers proposed a Mixed-

Integer Linear Programming (MILP) model and

compared it with the Benders decomposition method.

The Benders decomposition method demonstrated

superior quality compared to the model. However, exact

methods were found to be ineffective in solving large

instances of the problem. Therefore, the researchers

developed a D-GWO as an alternative approach. Both the

D-GWO and the exact methods exhibited good

performance in solving small instances of the problem.

Moreover, the D-GWO proved capable of solving

real-sized instances and demonstrated favorable

performance in terms of both solution quality and

runtime.

In future studies, we could look into letting operations

be paused and restarted, as long as the break between

pauses is shorter than the allowed maximum for that

particular job. Additionally, including immediate repairs

for unexpected problems would make the situation more

realistic.

8. REFERENCES

1. Mahdavi K, Mohammadi M, Ahmadizar F. Efficient scheduling

of a no-wait flexible job shop with periodic maintenance activities

and processing constraints. Journal of Quality Engineering and
Production Optimization. 2023.

https://doi.org/10.22070/JQEPO.2023.16882.1246

2. Gao J, Gen M, Sun L. Scheduling jobs and maintenances in
flexible job shop with a hybrid genetic algorithm. Journal of

Intelligent Manufacturing. 2006;17:493-507.

https://doi.org/10.1007/s10845-005-0021-x

3. Özgüven C, Özbakır L, Yavuz Y. Mathematical models for job-

shop scheduling problems with routing and process plan
flexibility. Applied Mathematical Modelling. 2010;34(6):1539-

48. https://doi.org/10.1016/j.apm.2009.09.002

4. Manne AS. On the job-shop scheduling problem. Operations

research. 1960;8(2):219-23. https://doi.org/10.1287/opre.8.2.219

5. Wagner HM. An integer linear‐programming model for machine

scheduling. Naval research logistics quarterly. 1959;6(2):131-40.

https://doi.org/10.1002/nav.3800060205

6. El Khoukhi F, Boukachour J, Alaoui AEH. The “Dual-Ants

Colony”: A novel hybrid approach for the flexible job shop
scheduling problem with preventive maintenance. Computers &

Industrial Engineering. 2017;106:236-55.

https://doi.org/10.1016/j.cie.2016.10.019

7. Yegane BY, Kamalabadia IN, Khanlarzadeb N. Critical path

method for lot streaming problem in flexible job shop

environment. International Journal of Engineering-Transactions
B: Applications. 2017;30(2):261-9.

https://doi.org/10.5829/idosi.ije.2017.30.02b.13

8. Benttaleb M, Hnaien F, Yalaoui F. Two-machine job shop
problem under availability constraints on one machine: Makespan

minimization. Computers & Industrial Engineering.

2018;117:138-51. https://doi.org/10.1016/j.cie.2018.01.028

https://doi.org/10.22070/JQEPO.2023.16882.1246
https://doi.org/10.1007/s10845-005-0021-x
https://doi.org/10.1016/j.apm.2009.09.002
https://doi.org/10.1287/opre.8.2.219
https://doi.org/10.1002/nav.3800060205
https://doi.org/10.1016/j.cie.2016.10.019
https://doi.org/10.5829/idosi.ije.2017.30.02b.13
https://doi.org/10.1016/j.cie.2018.01.028

K. Mahdavi et al. / IJE TRANSACTIONS B: Applications Vol. 37 No. 08, (August 2024) 1600-1614 1613

9. Shen L, Dauzère-Pérès S, Neufeld JS. Solving the flexible job
shop scheduling problem with sequence-dependent setup times.

European journal of operational research. 2018;265(2):503-16.

https://doi.org/10.1016/j.ejor.2017.08.021

10. Tamssaouet K, Dauzère-Pérès S, Yugma C. Metaheuristics for the

job-shop scheduling problem with machine availability

constraints. Computers & Industrial Engineering. 2018;125:1-8.

https://doi.org/10.1016/j.cie.2018.08.008

11. Caldeira RH, Gnanavelbabu A. Solving the flexible job shop

scheduling problem using an improved Jaya algorithm.
Computers & Industrial Engineering. 2019;137:106064.

https://doi.org/10.1016/j.cie.2019.106064

12. Samarghandi H. Solving the no-wait job shop scheduling problem

with due date constraints: A problem transformation approach.

Computers & Industrial Engineering. 2019;136:635-62.

https://doi.org/10.1016/j.cie.2019.07.054

13. Zhang G, Hu Y, Sun J, Zhang W. An improved genetic algorithm

for the flexible job shop scheduling problem with multiple time
constraints. Swarm and evolutionary computation.

2020;54:100664. https://doi.org/10.1016/j.swevo.2020.100664

14. Li J-q, Deng J-w, Li C-y, Han Y-y, Tian J, Zhang B, et al. An
improved Jaya algorithm for solving the flexible job shop

scheduling problem with transportation and setup times.

Knowledge-Based Systems. 2020;200:106032.

https://doi.org/10.1016/j.knosys.2020.106032

15. Ying K-C, Lin S-W. Solving no-wait job-shop scheduling

problems using a multi-start simulated annealing with bi-
directional shift timetabling algorithm. Computers & Industrial

Engineering. 2020;146:106615.

https://doi.org/10.1016/j.cie.2020.106615

16. Zhu Z, Zhou X. Flexible job-shop scheduling problem with job

precedence constraints and interval grey processing time.

Computers & Industrial Engineering. 2020;149:106781.

https://doi.org/10.1016/j.cie.2020.106781

17. Zhu Z, Zhou X. An efficient evolutionary grey wolf optimizer for

multi-objective flexible job shop scheduling problem with
hierarchical job precedence constraints. Computers & Industrial

Engineering. 2020;140:106280.

https://doi.org/10.1016/j.cie.2020.106280

18. Zhang G, Sun J, Lu X, Zhang H. An improved memetic algorithm

for the flexible job shop scheduling problem with transportation

times. Measurement and Control. 2020;53(7-8):1518-28.

https://doi.org/10.1177/0020294020948094

19. Defersha FM, Rooyani D. An efficient two-stage genetic

algorithm for a flexible job-shop scheduling problem with
sequence dependent attached/detached setup, machine release

date and lag-time. Computers & Industrial Engineering.

2020;147:106605. https://doi.org/10.1016/j.cie.2020.106605

20. Ozolins A. A new exact algorithm for no-wait job shop problem

to minimize makespan. Operational Research. 2020;20(4):2333-

63. https://doi.org/10.1007/s12351-018-0414-1

21. Izadi L, Ahmadizar F, Arkat J. A hybrid genetic algorithm for

integrated production and distribution scheduling problem with

outsourcing allowed. International Journal of Engineering,
Transactions B: Applications,. 2020;33(11):2285-98.

https://doi.org/10.5829/IJE.2020.33.11B.19

22. Gao J, Zhu X, Bai K, Zhang R. New controllable processing time
scheduling with subcontracting strategy for no-wait job shop

problem. International Journal of Production Research.

2022;60(7):2254-74.

https://doi.org/10.1080/00207543.2021.1886368

23. Boyer V, Vallikavungal J, Rodríguez XC, Salazar-Aguilar MA.
The generalized flexible job shop scheduling problem. Computers

& Industrial Engineering. 2021;160:107542.

https://doi.org/10.1016/j.cie.2021.107542

24. Torkashvand M, Ahmadizar F, Farughi H. Distributed production

assembly scheduling with hybrid flowshop in assembly stage.

International Journal of Engineering, Transactions B:
Applications,. 2022;35(5):1037-55.

https://doi.org/10.5829/IJE.2022.35.05B.19

25. Valenzuela-Alcaraz VM, Cosio-Leon M, Romero-Ocaño AD,
Brizuela CA. A cooperative coevolutionary algorithm approach

to the no-wait job shop scheduling problem. Expert Systems with
Applications. 2022;194:116498.

https://doi.org/10.1016/j.eswa.2022.116498

26. Fan H, Su R. Mathematical modelling and heuristic approaches to
job-shop scheduling problem with conveyor-based continuous

flow transporters. Computers & Operations Research.

2022;148:105998. https://doi.org/10.1016/j.cor.2022.105998

27. Şahman MA, Korkmaz S. Discrete artificial algae algorithm for

solving job-shop scheduling problems. Knowledge-Based

Systems. 2022;256:109711.

https://doi.org/10.1016/j.knosys.2022.109711

28. Tutumlu B, Saraç T. A MIP model and a hybrid genetic algorithm

for flexible job-shop scheduling problem with job-splitting.
Computers & Operations Research. 2023;155:106222.

https://doi.org/10.1016/j.cor.2023.106222

29. Gong G, Tang J, Huang D, Luo Q, Zhu K, Peng N. Energy-
efficient flexible job shop scheduling problem considering

discrete operation sequence flexibility. Swarm and Evolutionary

Computation. 2024;84:101421.

https://doi.org/10.1016/j.swevo.2023.101421

30. Xie J, Li X, Gao L, Gui L. A hybrid genetic tabu search algorithm

for distributed flexible job shop scheduling problems. Journal of
Manufacturing Systems. 2023;71:82-94.

https://doi.org/10.1016/j.jmsy.2023.09.002

31. Liu Z, Zha J, Yan J, Zhang Y, Zhao T, Cheng Q, et al. An
improved genetic algorithm with an overlapping strategy for

solving a combination of order batching and flexible job shop

scheduling problem. Engineering Applications of Artificial
Intelligence. 2024;127:107321.

https://doi.org/10.1016/j.engappai.2023.107321

32. Berterottière L, Dauzère-Pérès S, Yugma C. Flexible job-shop
scheduling with transportation resources. European Journal of

Operational Research. 2024;312(3):890-909.

https://doi.org/10.1016/j.ejor.2023.07.036

33. Brizuela CA, Zhao Y, Sannomiya N, editors. No-wait and

blocking job-shops: Challenging problems for GA's. 2001 IEEE

International Conference on Systems, Man and Cybernetics e-
Systems and e-Man for Cybernetics in Cyberspace (Cat No

01CH37236); 2001: IEEE.

34. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer.
Advances in engineering software. 2014;69:46-61.

https://doi.org/10.1016/j.advengsoft.2013.12.007

35. Shirvani H. A novel discrete grey wolf optimizer for scientific
workflow scheduling in heterogeneous cloud computing

platforms. Scientia Iranica. 2022;29(5):2375-93.

https://doi.org/10.24200/SCI.2022.57262.5144

36. Jiang T, Zhang C. Application of grey wolf optimization for

solving combinatorial problems: Job shop and flexible job shop

scheduling cases. Ieee Access. 2018;6:26231-40.

https://doi.org/10.1109/ACCESS.2018.2833552

https://doi.org/10.1016/j.ejor.2017.08.021
https://doi.org/10.1016/j.cie.2018.08.008
https://doi.org/10.1016/j.cie.2019.106064
https://doi.org/10.1016/j.cie.2019.07.054
https://doi.org/10.1016/j.swevo.2020.100664
https://doi.org/10.1016/j.knosys.2020.106032
https://doi.org/10.1016/j.cie.2020.106615
https://doi.org/10.1016/j.cie.2020.106781
https://doi.org/10.1016/j.cie.2020.106280
https://doi.org/10.1177/0020294020948094
https://doi.org/10.1016/j.cie.2020.106605
https://doi.org/10.1007/s12351-018-0414-1
https://doi.org/10.5829/IJE.2020.33.11B.19
https://doi.org/10.1080/00207543.2021.1886368
https://doi.org/10.1016/j.cie.2021.107542
https://doi.org/10.5829/IJE.2022.35.05B.19
https://doi.org/10.1016/j.eswa.2022.116498
https://doi.org/10.1016/j.cor.2022.105998
https://doi.org/10.1016/j.knosys.2022.109711
https://doi.org/10.1016/j.cor.2023.106222
https://doi.org/10.1016/j.swevo.2023.101421
https://doi.org/10.1016/j.jmsy.2023.09.002
https://doi.org/10.1016/j.engappai.2023.107321
https://doi.org/10.1016/j.ejor.2023.07.036
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.24200/SCI.2022.57262.5144
https://doi.org/10.1109/ACCESS.2018.2833552

1614 K. Mahdavi et al. / IJE TRANSACTIONS B: Applications Vol. 37 No. 08, (August 2024) 1600-1614

COPYRIGHTS

©2024 The author(s). This is an open access article distributed under the terms of the Creative Commons

Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long

as the original authors and source are cited. No permission is required from the authors or the publishers .

Persian Abstract

 چکیده
در ریخ أبرخوردار است و ت ییبالا تیاز اهم آلات ماشین نانیاطم تیقابل شوند،یم دی تول کار کارگاهی ستمیس کیدر یمدرن که محصولات فاسد شدن دیتول یهاط یدر مح

مقاله نیمهم است. ا اریبس یکار ات یعمل ن یب وقفه یبرا ییبالا یمرزها نییو تع آلات ن ی ماش یو نگهدار ریتعم یهاتیدر نظر گرفتن فعال ن،ی. بنابراستیپردازش کار قابل قبول ن

مسئله یبرا دیجد یاضیمدل ر کیشود. در مرحله اول، یپردازد. مطالعه در دو فاز انجام می(مFJSP) ریپذانعطاف هیکارگاکار یبندعوامل به مسئله زمان نی با در نظر گرفتن ا

 ک یبا یاندازه واقع با مسائل یبرا نهیراه حل به کیبه یابیحال، دست نیشود. با ایم سهیمقا Benders هیبا روش تجز یمحاسبات ییتوسعه داده شده و از نظر کارا مورد بررسی

 شنهادیپ مسأله نیحل ا ی(براD-GWOگسسته) یرساز گرگ خاکستنهیبه الگوریتم کیدر مرحله دوم، ن،یدشوار است. بنابرا اریآن بس NP-hardساختار لیبه دل قیروش دق

 Benders هیکوچک، روش تجز یهادکه در نمو دهندنشان میها یافته. اندقرار گرفتهاستفاده مورد افتهیتوسعه یهاتمیعملکرد الگور یابیارز یبرا یعدد یهاشیشده است. آزما

 ن ی ا ،یبه طور کل .کندی بهتر عمل م طیشرا نی در ا D-GWO و الگوریتم دهندی دست م ز خود را ا یی کارا قیدق یهاها، روشداندازه نمو شی، اما با افزاعملکرد بهتری دارد

نشان را یمحصولات فاسد شدن دیتول یبرا ریپذانعطاف هی کارگاکار یبندزمانسیستم آلات و وقفه در نیماش یو نگهدار ریتعم یهاتیدر نظر گرفتن فعال تیمطالعه اهم

 . دهندی را ارائه م یمناسب یهاحلبزرگ راه یهادر نمونه D-GWO تمیکوچک و الگور یهادر نمونه Benders هی و روش تجزی شنهادیپ یاضی. مدل ردهدمی

