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A B S T R A C T  

 

In addressing the critical challenge of developing sustainable energy solutions for electric vehicle (EV) 
battery charging, this study introduces an innovative direct current (DC) microgrid system optimized for 

areas with high solar irradiance, such as Ain El Ibel, Djelfa. The research confronts two primary 

difficulties: maximizing solar energy utilization in the microgrid system and ensuring system stability 
and response accuracy for reliable EV charging. To tackle these challenges, the study presents two 

original achievements. Firstly, it develops a neural network-enhanced Maximum Power Point Tracking 

(MPPT) controller, which is further optimized with Particle Swarm Optimization (PSO) to increase the 
efficiency of solar energy capture. Secondly, it refines the system's reliability through the advanced 

calibration of a Fractional Order Proportional-Integral (FOPI) controller using the Grey Wolf 

Optimization (GWO) technique, marking a notable improvement in microgrid system stability and 
response accuracy. The integration of a solar panel array, battery storage, and a supercapacitor, coupled 

with these advanced optimization techniques, exemplifies a significant leap forward in enhancing 

efficiency and reliability of EV battery charging through renewable energy sources. Comprehensive 
simulation and evaluation of the system underscore its superiority over conventional methods, 

demonstrating the effectiveness of combining neural network-based optimization with PSO and GWO. 

This breakthrough not only advances the field of renewable energy, particularly for solar-powered EV 
charging stations, but also aligns with global efforts towards sustainable transportation solutions.  

doi: 10.5829/ije.2024.37.10a.03 
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NOMENCLATURE 

𝐷𝛼, 𝐷β, 𝐷δ 
The distance between the prey and the alpha, beta and 
omega wolves 

𝐼𝑠𝑐  The short circuit current 

A, C Victors 𝐼𝑝𝑣  The light-generated current 

G Irradiance 𝐼𝑠   The reverse saturation current 

I The output current of the PV cell. 𝑅𝑝  The shunt resistance 

T Temperature 𝑅𝑠  The series resistance 

𝑊  Inertia weight 𝑁𝑠  The number of cells connected in series 

𝐶(𝑠)  the controller function in the Laplace domain 𝑋𝛼, 𝑋𝛽, 𝑋𝛿 The position of alpha, beta and omega wolves 

𝑋(𝑡)  The position of the wolf in the current iteration 𝐾𝑝  Proportional gain 

c1 Cognitive coefficient 𝐾𝑣  Represents the ratio of open voltage circuit 

c2 Social coefficient 𝐾𝑖  Integrator gain 

𝑥𝑖
𝑡  The previous position 𝐾1  Represents the ratio of short circuit current 

𝑥𝑖
(𝑡+1)

  The updated position 𝑉𝑜𝑐  The open circuit voltage 

𝑣𝑖
𝑡  The previous velocity k Boltzmann constant 

𝑣𝑖
(𝑡+1)

  The updated velocity q Charge of an electron 1.602 *10^-19  C  

𝑟1, 𝑟2  random numbers within the range [0, 1] 𝐷𝛼, 𝐷β, 𝐷δ 
The distance between the prey and the alpha, beta 

and omega wolves 

𝑥𝐵𝑒𝑠𝑡𝑖
𝑡   The particle's best position Greek Symbols 

𝑔𝐵𝑒𝑠𝑡𝑖
𝑡  The global best position 𝜆  The fractional order of the integral part (0 < λ ≤ 1) 

𝐺𝑛  Nominal irradiance ∆𝑇  The variation of temperature 

 

 

1. INTRODUCTION 

 

The urgency to address environmental challenges and the 

volatile dynamics of fossil fuel markets have catalyzed 

the need for sustainable energy solutions (1). Among 

these, solar photovoltaic (PV) systems emerge as a viable 

alternative (2), particularly in geographically 

advantageous regions like Ain El Ibel which is located in 

the south of Algeria, at latitude 33.15 N longitude 4.68 E 

and altitude 361 m, known for their abundant solar 

resources (3). The integration of solar PV systems into 

the energy mix is critical in transitioning towards a more 

sustainable energy future (4). However, the reliability of 

these systems is frequently compromised by fluctuating 

weather patterns, a phenomenon that substantially 

impairs their efficiency and leads to significant power 

losses (5). Such variability poses a considerable obstacle 

to the consistent performance of solar PV systems, 

especially in applications demanding high reliability, 

such as electric vehicle (EV) charging stations (6). 

Recent studies have significantly contributed to 

enhancing photovoltaic (PV) systems' efficiency through 

various methods. One study focused on improving the 

accuracy of state-of-charge predictions for lead-acid 

batteries, vital for prolonging battery life in renewable 

energy systems (5). Another research explored cooling 

PV panels using nanofluids, showing that ZnO 

nanofluids in a rectangular spiral configuration could 

significantly increase electrical efficiency (2). 

Additionally, the development of carbon-free gas 

diffusion electrodes with Ni and Co-based bifunctional 

electrocatalysts for zinc-air batteries was investigated, 

offering improved stability and efficiency for energy 

storage (7). 

In this study two sophisticated optimization 

algorithms have been implemented: Particle Swarm 

Optimization (PSO) tuning a single hidden layer neural 

network and Grey Wolf Optimization (GWO) tuning a 

fractional order PI controller. These algorithms are 

utilized to enhance the operational efficiency of a 

specifically designed microgrid system dedicated to EV 

charging (8). The microgrid system, conceptualized for 

the high solar radiation in this region of Ain El Ibel, is an 

exemplary model of integrating renewable energy 

sources into modern infrastructures which has the 

following characteristics: Insulation time 3376 

hours/year, Global irradiation received on a horizontal 

surface 2065 kWh/m²/year, Global irradiation received 

on a surface inclined to the latitude of the location 2399 

kWh/m²/year, Energy produced 1613 MWh/MWp/year, 

"CO2" Carbon dioxide avoided 643.86 Tone/year, "C" 

Carbon avoided 175.57 Tone/year (7). By optimizing the 

performance of this microgrid, the study seeks to not only 

improve the efficiency and reliability of solar PV systems 

but also contribute to the broader goal of advancing 

renewable energy technologies for sustainable 

development. The  integration of PSO and GWO in this 

context offers  insightful perspectives on the optimization 

of energy systems under variable environmental 

conditions, thereby paving the way for more robust and 

efficient  renewable energy solutions in the face of global 

climate change challenges. 

 

 

2. COMPREHENSIVE ANALYSIS OF 
PHOTOVOLTAIC SYSTEMS IN MICROGRIDS 
 

At the core of microgrid technology is the photovoltaic 

(PV) system, a pivotal component that harnesses solar 

radiation and transforms it into usable electrical energy. 

The intricate interplay between solar radiation and PV 

cells is fundamental to the generation of electricity in 



B. Younes et al. / IJE TRANSACTIONS A: Basics  Vol. 37, No. 10, (October 2024)   1891-1900                                     1893 

 

these systems. To attain maximum power output from PV 

systems, it is imperative to delve into detailed design 

methodologies (9) and implement sophisticated control 

strategies as illustrated in Figure 1 that represent 

equivalent electrical representation of a Photovoltaic Cell 

(10) (11). 

Based on the equivalent circuit depicted in Figure 1, 

the subsequent equations are derived (10): 

𝐼 = 𝐼𝑝𝑣 − 𝐼𝑆 (𝑒
𝑞(𝑉+𝑅𝑠𝐼)

𝑁𝑠𝐾𝑇𝑎 − 1) −
𝑉+𝑅𝑠𝐼

𝑅𝑝
  (1) 

𝐼𝑝𝑣 =
(𝐼𝑝𝑣+𝐾1∆𝑇𝐼)𝐺

𝐺𝑛
  (2) 

𝐼𝑆 =
𝑛+𝐾1∆𝑇𝐼

𝑒

(

𝑉𝑜𝑐,𝑛+𝐾𝑉∆𝑇
𝑁𝑠𝐾𝑇𝑎

𝑞
)−1

  
(3) 

This necessity stems from the substantial influence 

that environmental variables exert on the performance of 

PV systems (9). 

Several elements should be analyzed to fully 

understand PV systems in microgrids. These elements 

include the physical properties of the PV cells (9), the 

layout of the solar panel arrays, and their interconnection 

with energy storage and other power-generating 

components in the microgrid (12). Additionally, the 

effectiveness of PV systems is heavily contingent upon 

optimal alignment with environmental conditions such as 

solar irradiance (13), temperature fluctuations, and 

shading effects (14), all of which can markedly affect the 

energy output. 

Table 1 encapsulates the salient electrical 

characteristics of a typical PV panel, which are vital for 

the effective operation and integration of the panel within 

a microgrid. Table 1 delineates parameters such as the 

maximum power output, open circuit voltage, short 

circuit current, and more. These parameters are essential  
 

 

 
Figure 1. Equivalent electrical model of PV cell 

 

 

TABLE 1. PV panel parameters (10) 

Module data Value 

Maximum Power (W) 10.024 

Open Circuit Voltage (V) 21.9 

Short Circuit Current (A) 0.71 

Maximum Voltage (V) 17.9 

Maximum Current (A) 0.56 

for determining the panel's capacity to convert solar 

energy into electrical energy under different 

environmental conditions. Understanding these metrics is 

crucial for the design and optimization of PV systems 

within microgrids (10). 

Advanced control mechanisms, therefore, play a 

critical role in ensuring that PV systems operate at their 

highest efficiency (14). These mechanisms must be adept 

at adapting to changing environmental conditions, 

managing energy flow within the microgrid, and 

maintaining a stable and reliable power supply (12). This 

level of control is achieved through the implementation 

of cutting-edge technologies such as Maximum Power 

Point Tracking (MPPT) (9) and sophisticated 

metaheuristic algorithms that adapt to environmental 

variations (13). 

In conclusion, incorporating solar panel (PV) systems 

into smaller, localized power networks (microgrids) is a 

complicated but crucial task in the field of renewable 

energy (15). Achieving optimal functionality demands 

not only a comprehensive understanding of the 

interdependencies between solar radiation and PV 

technology (9) but also necessitates the deployment of 

advanced control systems (14). These elements together 

form the cornerstone for the efficient and sustainable 

operation of micro grids in harnessing solar energy. 

 
 
3. ADVANCED STRATEGIES IN MPPT AND 
CONTROL OPTIMIZATION 
 

The use of Maximum Power Point Tracking (MPPT) 

techniques is a vital aspect in optimizing the efficiency 

of photovoltaic (PV) systems. These techniques are 

designed to ensure that PV systems consistently operate 

at their maximum power output, a crucial factor in overall 

effectiveness of solar energy harvesting. Traditional 

MPPT methodologies, such as Perturb and Observe 

(P&O) and Incremental Conductance (INC) approaches, 

have established their utility in this domain. However, 

these classical methods have demonstrated certain 

limitations, particularly when subjected to rapidly 

changing environmental conditions, which can impact 

the energy harvesting efficiency of PV systems (16). 

In response to these challenges, this study introduces 

an innovative approach by integrating an Artificial 

Neural Network (ANN)-based MPPT system in 

conjunction with a Fractional Order Proportional-

Integral (FOPI) controller. This advanced combination is 

tailored to address the shortcomings of conventional 

MPPT methods. The ANN-based MPPT system 

leverages the power of intelligent algorithms to predict 

and adapt to varying solar irradiance and temperature 

conditions more accurately and swiftly (16). This 

predictive capability enables the system to maintain 

optimal operation close to the maximum power point 
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under a wide range of environmental conditions. 

Simultaneously, the FOPI controller, an 

enhancement over the traditional PI controller, offers a 

higher degree of control precision (17). Its fractional 

calculus approach allows for more nuanced adjustments 

in the control mechanism, leading to significant 

improvements in system response time and stability. This 

adaptability is particularly beneficial in managing the 

dynamic and non-linear characteristics of PV systems 

(16). Figure 2 illustrates the FOPI controller model. 

 

3. 1. Fractional Order Concept        
Fractional Calculus: Is an extension of traditional 

calculus Concerning the calculation of derivatives and 

integrals of arbitrary (non-integer) orders. The notation 

generally used is Dα, where α is a real (or complex) 

number. 

Fractional Derivative/Integral: The concept extends 

the order of derivatives and integrals from integers to real 

numbers. In the context of control systems, this allows 

for more flexible and precise system dynamics tuning. 

 

3. 2. Fractional Order PI Controller Model        
Mathematical Form: The general form of a fractional 

order PI controller can be represented as follows (18): 

𝐶(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠λ
  (4) 

Integral Term with Fractional Order: The 
𝐾𝑖

𝑠λ
 term 

represents the fractional integral part of the controller. 

Unlike the traditional integer order integral, this allows 

for more nuanced control action over time, which can be 

particularly beneficial in systems that exhibit anomalous 

behavior or require more precise control. 

Empirical evaluations and simulations, as referenced 

in the study, have showcased that this integrated ANN-

based MPPT and FOPI controller framework markedly 

outperforms traditional methods. The results indicate not 

only enhanced response time but also greater stability in 

the PV system's operation, even under fluctuating 

environmental conditions. These advancements in MPPT 

and control optimization techniques represent a 

significant leap forward in maximizing the efficiency and 

reliability of PV systems. 

 

 

 
Figure 2. Fractional Order PI Controller Model 

4. ENHANCED SYSTEM MODEL AND SIMULATION 
WITH INTEGRATED ENERGY STORAGE 
 

This research encompasses the development of a 

sophisticated micro grid system, extensively modelled 

and simulated using the MATLAB/SIMULINK 

platform. The system's architecture is composed of a 

solar panel array, a DC-DC voltage boost converter, a 

high-efficiency battery (11, 19), and a super capacitor, all 

orchestrated by advanced controllers. This 

comprehensive design integrates diverse energy sources 

and storage mechanisms, ensuring a more resilient and 

efficient energy supply (11). The DC microgrid utilizes a 

Lithium battery, the characteristics are detailed in 

literature (10). 

Table 2 outlines the configuration of the 

supercapacitor employed in this research: 

For safe and efficient use of energy by the battery and 

supercapacitor, a voltage control system is implemented, 

the architecture is depicted in Figure 3 (10). 

A key aspect of the microgrid system is the 

incorporation of both a battery and a supercapacitor. The 

battery serves as a reliable energy storage medium, 

providing sustained power supply and enhancing the 

system's capability to manage load variations (20). The 

supercapacitor, on the other hand, contributes to the 

system's performance by offering rapid charge-discharge 

cycles, ideal for managing short-term power fluctuations. 

This dual-storage approach significantly enhances the 

overall stability and responsiveness of the microgrid (21). 

 

 
TABLE 1. Supercapacitor characteristics (10) 

Super capacitor Parameters Value 

Rated Voltage (V) 16 

Rated Capacitance (F) 58 

Equivalent DC series resistance (Ω) 8.9 × 10−3 

Number of series capacitors 1 

Number of parallel capacitors 1 

Initial Voltage (V) 15 

Operating Temperature (Celsius) 25 

 

 

 
Figure 3. Voltage control for EMS 
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For the optimization of the system's controllers, two 

advanced methods were used: Particle Swarm 

Optimization Artificial Neural Network (PSOANN) (22) 

and Fractional Order Proportional-Integral (FOPI) 

enhanced with Grey Wolf Optimization (23). The 

PSOANN is pivotal in fine-tuning the system's 

operational parameters, leveraging the power of artificial 

neural networks and the global search capability of 

particle swarm optimization (24). This results in a highly 

adaptive and efficient control mechanism, capable of 

responding dynamically to changing environmental and 

load conditions (25). 

The fundamental steps of the Particle Swarm 

Optimization (PSO) algorithm include (26): 

1. Establish the initial position and velocity for each 

particle within the swarm. This is typically done 

randomly within a predefined search space. 

2. Evaluate the fitness of each particle using a 

predefined fitness function. The fitness function is 

typically the output power of the PV system, but it 

can also be the efficiency or another measure of 

performance . 

3. Update the personal best position of each particle 

based on its current fitness. The personal best 

position refers to the most optimal position a particle 

has attained to date . 

4. Update the global best position based on the personal 

best positions of all the particles in the swarm. The 

global best position is the best position achieved by 

any particle in the swarm . 

5. Revise the velocity and location of each particle 

considering its personal best and global best 

positions. The update of each particle's velocity 

involves a specific velocity update equation that 

incorporates its current velocity, personal best 

position, and global best position. Subsequently, the 

particle's position is adjusted in accordance with its 

updated velocity, i.e.: 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
𝑡 + 𝑣𝑖

𝑡  (5) 

𝑣𝑖
(𝑡+1)

= 𝑤𝑣𝑖
𝑡 + 𝑐1𝑟1(𝑥𝐵𝑒𝑠𝑡𝑖

𝑡 − 𝑥𝑖
𝑡) +

𝑐2𝑟2(𝑔𝐵𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡)  
(6) 

6. Repeat steps 2 through 5 until a satisfactory 

operating point is found or a predefined stopping 

criterion is met . 
7. The final position of the particles represents the 

optimal solution.  
In the PSO-tuned ANN-based Maximum Power Point 

Tracking (MPPT) system, the Particle Swarm 

Optimization (PSO) algorithm optimizes the weights and 

biases of the Artificial Neural Network (ANN). This 

optimized ANN is then applied to manage the MPPT 

process (27, 28). The PSO algorithm runs for 100 

iterations with a population size of 100. Key parameters 

include an inertia weight (w) of 1, cognitive coefficient 

(c1) of 1.5, and social coefficient (c2) of 2. At each 

iteration, the performance of the ANN is assessed, 

leading to updates in its weights and biases. 

The PSO-tuned ANN-based MPPT is noted for its 

enhanced performance and robustness compared to 

conventional approaches, making it a promising solution 

for solar power systems (29). The ANN's hidden layer 

comprises 10 neurons. Training data for the ANN is 

generated from measurements of temperature and 

irradiance on the photovoltaic (PV) panel used in the 

simulation. The training method employed is the 

Levenberg-Marquardt algorithm, utilizing 10,000 data 

points, with mean square error serving as the 

performance metric. The weights and biases in the ANN 

are determined using the PSO algorithm (10). Figure 4 

illustrates a flow chart of the proposed PSO-ANN 

algorithm (26). 

Similarly, the FOPI controller, optimized using Grey 

Wolf Optimization, provides a nuanced control strategy 

over the system's power conversion processes. This 

optimization method is modeled after the social hierarchy 

and hunting tactics observed in grey wolves, offers an 

enhanced level of precision in system control, 

contributing to improved stability and efficiency (30). 

The basic steps of the GWO algorithm are (26, 31) : 

1. Initialization: The algorithm starts by generating a 

random population of solutions, called "wolves," 

which represent solutions to the problem . 
2. Fitness evaluation: The fitness of each wolf is 

 
 

 
Figure 4. PSO algorithm (26) 
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3. evaluated based on a predefined objective function. 

The objective function maps the solution represented 

by each wolf to a value that represents its fitness . 

4. Selection: The best wolves, called "alpha wolves," 

are selected based on their fitness. The alpha wolves 

are the ones with the highest fitness values. 

5. Update: The positions of the alpha wolves are used 

to update the positions of the other wolves. The other 

wolves move towards the alpha wolves, with the 

distance and direction of the movement determined 

by a set of random parameters. 

𝐷𝛼 = |𝐶1𝑋𝛼 − 𝑋(𝑡)|  (7) 

𝐷𝛽 = |𝐶2𝑋𝛽 − 𝑋(𝑡)|  (8) 

𝐷𝛿 = |𝐶3𝑋𝛿 − 𝑋(𝑡)|  (9) 

𝑋1 = |𝑋𝛼 − 𝐴1𝐷𝛼|  (10) 

𝑋2 = |𝑋𝛽 − 𝐴2𝐷𝛽|  (11) 

𝑋3 = |𝑋𝛿 − 𝐴3𝐷𝛿|  (12) 

where A and C are vectors calculated as follow: 

𝐴 = 2𝑟1𝑎 − 𝑎   (13) 

𝐶 = 2𝑟2  (14) 

The positions of the wolves are updated as follow: 

𝑋(𝑡 + 1) =
𝑋1+𝑋2+𝑋3

3
  (15) 

6. Repeat: The process of fitness evaluation, selection, 

and update is repeated for a specified number of 

iterations or until a stopping criterion is met . 

7. Result: Once the algorithm has completed its 

iterations, the best solution is returned as the final 

result. This is the position of the wolf with the 

highest fitness value. 

Figure 5 shows the flowchart GWO Based MPPT. 

 
 
5. RESULTS AND DISCUSSION 
 
The simulation stage of the research was significantly 

guided by solar irradiance data specific to Ain El Ibel 

extracted from NASA POWER, Prediction of Worldwide 

Energy Resources during August 2022, a key factor that 

guarantees the precision and applicability of the model. 

By simulating the micro grid under realistic 

environmental conditions, the study provides valuable 

insights into the system's performance, particularly in 

terms of energy conversion efficiency, storage capability, 

and overall stability. This detailed modeling and 

simulation work lays a robust foundation for the practical 

implementation of such micro grid systems, especially in 

 
Figure 5. Flowchart GWO Based MPPT (26) 

 
 

regions with significant solar energy potential, paving the 

way for more sustainable and reliable energy solutions. 

Simulations revealed that the ANN-based MPPT with 

the FOPI controller outperformed classical techniques, 

delivering higher precision and stability. The 

optimization algorithms significantly reduced 

oscillations, a common issue with traditional MPPT 

methods, thereby enhancing power extraction efficiency. 

The EV battery load power is shown in Figure 6. 

Observation: Figure 6 likely illustrates the variation 

in power demand by the EV over time . 

Analysis: Key points to consider are the peaks in 

power demand, which could indicate moments of high 

energy usage of 30 KW, possibly due to acceleration or 

uphill driving. The consistency or variability of these 

peaks can inform the robustness of the microgrid in 

handling fluctuating loads. Figure 7 demonstrates the EV 

battery load current. 

 

 

 
Figure 6. EV battery Load Power 
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Figure 7. EV battery Load Current 

 

 

Observation: Figure 7 shows the current drawn by the 

EV, which is directly related to its power consumption.   

Analysis: Sudden spikes or consistently high current 

of 71 A draw may indicate demanding driving conditions 

or potential inefficiencies in the EV's power usage. This 

could also stress the microgrid’s energy storage and 

distribution components 

Observation: Figure 8 represents the battery load 

voltage supplied to the EV . 

Analysis: Stability in voltage is crucial for the safe 

and efficient operation of the EV. Voltage fluctuations 

might indicate issues with the microgrid's ability to 

maintain a stable output under varying load conditions 

with maximum value of 425 V. 

Figure 9 shows Ain Ibel Irradiance. Observations from 

the above graph include: 

1. Fluctuations: The solar irradiance exhibits 

considerable fluctuations within a relatively short 

time frame, suggesting that the conditions during 

the measurement period were highly variable. This 

could be due to cloud cover, atmospheric 

conditions, or other environmental factors affecting 

the sunlight reaching the sensor . 

2. Trends: There are periods where the irradiance 

increases sharply, for instance, around the 10-second 

mark and again near the 30-second mark.  

 

 

 
Figure 8. EV battery Load Voltage 

 
Figure 9. Ain Ibel Irradiance's. 

 

 

There are also noticeable drops, such as the one 

occurring just before the 20-second mark . 

1. Peak Values: The highest irradiance value recorded 

in this interval is just above 420, while the lowest 

dips to around 330. The range of variability is quite 

broad, indicating a difference of about 90 units of 

irradiance, which can significantly impact solar 

power generation . 

2. Time Intervals: The rapid changes in irradiance 

suggest that the data collection was done at high-

frequency intervals, capturing the variability in fine 

detail. 

Analysis: The information displayed in this graph is 

sourced from the NASA Power, Prediction of Worldwide 

Energy Resources website, specifically for the city of Ain 

Ibel in August 2022 and it could be crucial for 

understanding the performance of solar PV systems in 

Ain Ibel.   

The significant variability in irradiance can affect the 

efficiency and predictability of solar power generation. 

For instance, power output from a PV system would 

mirror this variability, with moments of high productivity 

when irradiance peaks and reduced output when it falls. 

For applications sensitive to power consistency, such 

as EV charging stations mentioned in the context of your 

article, this variability could pose challenges. The 

systems would need to be designed to either store excess 

energy during peaks or to manage usage during troughs, 

possibly using batteries or supercapacitors as part of a 

microgrid system. 

In conclusion, the graph underscores the importance 

of considering environmental factors when designing and 

deploying solar energy systems. Moreover, it highlights 

the need for advanced control systems, like MPPT with 

optimization algorithms, to manage the variability in 

solar irradiance effectively. This is especially relevant for 

regions like Ain Ibel, where the solar potential is high, 

but the consistency of available sunlight may be 

compromised by environmental fluctuations. 

Observation: Figure 10 shows the DC grid battery 

SOD. This plot likely represents the battery's state of 
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Figure 1. DC grid battery SOD 

 

 

discharge over time . 

Analysis: Patterns in the SOD can indicate the 

battery’s health and its usage efficiency with coefficient 

of 0.05. Rapid discharges might suggest heavy reliance 

on the battery, possibly due to inadequate power 

generation from other sources like PV panels. The super 

capacitor SOD is shown in Figure 11. 

State of Discharge (SOD) Curve Analysis: 

The SOD curve of a supercapacitor is nonlinear, as 

depicted in the graph. This is characteristic of the 

discharge behavior of supercapacitors, differing from the 

linear discharge curves of traditional batteries. 

Supercapacitor Performance: 

The relatively steep initial slope indicates a rapid 

initial release of energy, which then tapers off. This is 

typical of supercapacitors, which are designed to deliver 

quick bursts of energy rather than prolonged power 

output . 

Efficiency and Power Management: 

The shape of the curve suggests that the 

supercapacitor is effectively delivering power. In 

applications where energy demand peaks for short 

durations, supercapacitors excel by rapidly supplying the 

needed energy without the long-term energy density that 

batteries provide . 
 

 

 
Figure 2. Super capacitor SOD 

Implications for Energy Systems: 

The usage pattern indicated by the SOD curve 

suggests that the supercapacitor can handle sudden spikes 

in power demand, which is essential for stabilizing power 

grids or in applications such as regenerative braking 

systems in electric vehicles, where they absorb and then 

quickly release energy. Figure 12 shows the EV battery 

SOC. 

Observation: This plot indicates the state of charge of 

the EV's battery. 

Analysis: The SOC is a crucial metric for the EV's 

operational range. Variations in the State of Charge 

(SOC) provide insights into the charging and discharging 

patterns, which are affected by driving behaviors as well 

as the efficiency of the microgrid's power management 

system. 

 

 

6. GENERAL DISCUSSION 
 

System Integration: The interplay among the PV panels, 

batteries, supercapacitor, and the EV load needs to be 

managed efficiently. The PSO-tuned neural network for 

MPPT is a critical component here, optimizing power 

flow under varying conditions. 

Efficiency and Stability: Ensuring minimal energy 

loss during conversion and distribution, and maintaining 

system stability under different loads and generation 

conditions are key challenges . 

Resilience and Adaptability: The system’s ability to 

adapt to changing conditions like variable solar 

irradiance and fluctuating EV load demands is crucial for 

its long-term sustainability and reliability. 

 

 

7. CONCLUSION 
 
This comprehensive study successfully highlights the 

enhanced performance of an optimized microgrid 

system, specifically designed for electric vehicle (EV) 

battery charging in the variable weather conditions of Ain 
 

 

 
Figure 3. EV battery SOC 
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El Ibel. The implementation of a particle swarm 

optimization tuning Artificial Neural Network (ANN)-

based Maximum Power Point Tracking (MPPT) system, 

in synergy with the Fractional Order Proportional-

Integral (FOPI) controller optimized using grey wolf 

algorithm, stands out as a robust and innovative solution. 

This approach significantly enhances the effectiveness 

and dependability of photovoltaic (PV) systems in 

regions experiencing fluctuating solar irradiance, like 

Ain El Ibel . 

The findings of this study bear significant 

implications for the future of renewable energy 

harvesting, particularly in high-irradiance regions. The 

application of this optimized microgrid system opens up 

new possibilities for establishing sustainable EV 

charging stations, not only in Ain El Ibel but also in other 

regions with similar solar profiles. This could catalyze a 

transformative shift in the adoption of electric vehicles, 

supporting a more sustainable transportation sector. Ain 

El Ibel, with its unique environmental conditions, serves 

as an ideal model for deploying such advanced energy 

systems, setting a precedent for similar initiatives 

globally. Looking ahead, future work could focus on 

expanding the application scope of this technology. This 

includes integrating the microgrid system with smart grid 

technologies to further enhance its efficiency and 

adaptability to varying load demands. Additionally, 

exploring the scalability of the system for larger or more 

diverse energy applications could provide valuable 

insights. Investigating the long-term operational 

resilience and cost-effectiveness of the system in real-

world conditions will also be crucial in assessing its 

viability for widespread implementation. 
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Persian Abstract 

 چکیده 

را    یا( نوآورانهDC)  میمستق  انیجر  دیکروگری م  ستمیس  کیمطالعه    نی(، اEV)  یبرق  یخودروها  یشارژ باتر  یبرا  داریپا  یهاتوسعه راه حل  یدر پرداختن به چالش بحران

روبرو است: به حداکثر رساندن استفاده از    یاصل  مشکلبا دو    قیتحق  نیشده است. ا  یسازنهیالابل، جلفا به  نیبالا مانند ع  یدیبا تابش خورش  یمناطق  یکه برا  کندیم  یمعرف

 ی ها، مطالعه دو دستاورد اصلچالش  نیبا ا  ییارویرو  ی. براEVشارژ قابل اعتماد    یبرا  یی و دقت پاسخگو  ستمیاز ثبات س  نانیو اطم  دیکروگریم   ستمیدر س  یدیخورش  یانرژ

  شتر ی( بPSOدسته ذرات ) یسازنهیکه با به دهد،ی را ارائه م  یتوسط شبکه عصب شدهت ی( تقوMPPT) حداکثرنقطه قدرت  یابیکنترلر رد کی. نخست، آن توسعه دهدی ارائه م

 یمرتبه کسر  یانتگرال-یکنترلر نسبت  کی  شرفتهیپ  ونیبراس یکال  قیرا از طر   ستمیس  نانیاطم  تیدهد. دوم، آن دقت و قابل  شیرا افزا  یدیخورش  یجذب انرژ  ییتا کارا  شودیم  نهیبه

(FOPI با استفاده از تکن )یگرگ خاکستر یسازنه یبه کی (GWOبهبود م ) دهدی را نشان م ییو دقت پاسخگو دیکروگری م ستمیدر ثبات س یقابل توجه شرفتیکه پ  بخشد،ی  .

و   یی کارا شیقابل توجه در افزا شرفت یتوجه از پ ابلق یانمونه  شرفته،یپ  یسازنهیبه یهاک یتکن ن یابرخازن، همراه با ا کیو   یباتر یسازره یذخ ،یدیپنل خورش هیآرا کیادغام 

 برد یسوال م  ریز  یمعمول  یهاآن را نسبت به روش  یبرتر  ستمیجامع س  یابیو ارز  یسازهی. شبدهدی را نشان م  ریدپذیتجد  یمنابع انرژ  قی از طر  EV  یشارژ باتر  نانیاطم  تیقابل

  EVشارژ    یهاستگاهیا  یبرا  ژهیبه و  ر،یدپذیتجد  یانرژ  نهینه تنها زم  شرفتیپ  نی. ادهدی را نشان م  GWOو    PSOبا    یبر شبکه عصب  یمبتن  یسازنه یبه  بیترک  یو اثربخش

 همسو است. زین  داریحمل و نقل پا یهاراه حل  یبرا یان جه یهابلکه با تلاش برد،ی م شیرا پ د،یبر خورش یمبتن
 
 


