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A B S T R A C T  
 

 

The presents study numerically investigates the fiber-reinforced polymer (FRP) retrofitted short-

damaged reinforced concrete (RC) columns subjected to axial compression load. The main parameter 

considered to evaluate the effectiveness of FRP retrofitting on circular columns with different aspect 
ratios, concrete grade, and FRP material. To simulate the behaviour of a short RC column under a 

uniaxial compression load, a finite element model of the column was developed. The model was then 

modified to simulate the various level of damage to the column and the behaviour of the column under 
uniaxial load. The effectiveness of FRP retrofit was studied comparing the behaviour of the retrofitted 

column to the damaged column. For M20 concrete column retrofitted with carbon fiber reinforced 

polymer (CFRP) showed a higher strength (2 to 3 times) than glass fiber reinforced polymer (GFRP) 
retrofitted columns. For M30 concrete, the range is quite similar (1.5 – 2.3 times more). The effectiveness 

of both FRPs retrofitted columns increases with increasing aspect ratio from 2 and 3, but slightly 

decreases for an aspect ratio of 4 compared to the damaged specimen. The maximum effectiveness 

achieved for CFRP retrofitted columns is of 19.45% and for GFRP retrofitted column is of 10.71%, and 

the other grade of concrete (M30) followed a similar trend. The load-bearing capacity of columns has no 

significant effect by the increase in aspect ratio from 2 to 4.  

doi: 10.5829/ije.2024.37.10a.02 
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NOMENCLATURE 

dt Tension damage variable Asc Area of steel in compression 

dc Compression damage variable fy  Yield strength of steel 

E1, E2 Modulus of elasticity of FRP fck Characteristic compressive strength of concrete 

G12, G13, and G23 Shear modulus of FRP Ac Area of concrete 

fc
′ Maximum compressive strength Greek Symbols 

Ag Gross area of RC column μ12 Poisson’s ratio of FRP 
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1. INTRODUCTION 
 
There are numerous applications of fiber reinforced 

polymer (FRP) composites for strengthening of damage 

structural elements (1, 2). FRP composites provide many 

benefits, such as high strength-to-weight ratio, resistance 

to corrosion, and ease of installation (3-6). Yassari and 

Ghoulbzouri (7) numerically studied the behaviour of 

fiber-reinforced concrete subjected to cyclic loads using 

concrete damaged plasticity. They found that the 

concrete damaged plasticity improves the prediction of 

dynamic performance of fiber-reinforced concrete 

structures. Naji et al. (8) investigated the axial behaviour 

of steel fibers concrete filled steel tubes  (CFST) axial 

load capacity, ductility, and failure modes of different 

sizes and shapes. They reported that adding steel fibres 

resulted an increase in axial load capacity, and the 

ductility of circular CFST columns is superior compared 

to square columns. Glass fiber-reinforced polymer 

(GFRP) is increasingly used in construction due to their 

unique but valuable properties compared to conventional 

materials. GFRPs are more prevalent, particularly for 

non-structural parts and secondary constructions owing 

to their cheaper rate (9-11). GFRP and carbon fiber-

reinforced polymer (CFRP) are among the different 

forms of FRP utilized for the major repair and 

strengthening of RC components such as slabs, beams, 

and columns (12-15). Jabbar et al. (16) presented a 

comprehensive analysis using advanced numerical 

simulations to unravel the complexities of shear 

mechanisms in high-strength concrete. Methodological 

rigor and model validation increased the credibility of the 

paper and ensured the reliability of the findings. Their 

contribution to a comprehensive understanding of the 

factors influencing shear behavior is noteworthy, 

providing valuable insights for optimizing high-strength 

concrete beam design. When constructing a structure or 

expanding an existing one, RC columns are among the 

most vital structural components. A building may 

partially or completely collapse if the RC column fails or 

was not intended to withstand the appropriate load 

capacity. Several causes contribute to the worsening of 

load-displacement behavior in RC concrete columns, like 

preloading, design or construction flaws, alterations to 

the system's structure, deterioration brought on by 

prolonged exposure to harsh conditions or by accidental 

overuse, design code modifications, failure to implement 

a preventative maintenance plan, stress deformation due 

to earthquakes and exposure to extreme temperatures 

(17-20). Aspect ratio is also one of the influence factors 

for the load-carrying capacity of existing structures. The 

aspect ratio will also significantly affect the gaining 

strength of retrofitted structures (21). Till now most of 

the researchers have done small aspect ratios such as less 

than 1.5, which is suggested by the American concrete 

institute (ACI) and also most of the researchers 

performed on plain cement concrete (6). Many 

researchers used an aspect ratio of less than 1.5 for their 

study, whereas ACI (22) recommended using an aspect 

ratio of 1.5 due to the limited amount of experimental 

data. Even when the aspect ratio was more than 3, 

researchers found that adding transverse fiber sheets to 

rectangular RC columns increased their axial strength 

(6).  

Many researchers have looked at the impact of aspect 

ratios on columns made of plain cement concrete, but 

there is relatively little information on reinforced steel 

concrete. For their investigations, most of the authors 

selected an aspect ratio of 1.5 to 2. Till now a few 

researchers have investigated more than 2 aspect ratios. 

The existing research predominantly emphasizes aspect 

ratio's impact on retrofitted RC column behavior, while 

the effect of an aspect ratio along with preloading 

conditions are not studied. A thorough investigation into 

these aspects is essential for an in-depth study of strength 

parameters in such columns. A comprehensive 

investigation into these aspects is essential for an in-

depth knowledge of strength parameters in such columns. 

The significance of this research lies in its comprehensive 

numerical analysis of FRP retrofitted short RC circular 

columns. By systematically varying slenderness ratios, 

grade of concrete, and different FRP materials. It 

provides valuable insights into the behavior and 

performance of retrofitted columns under uniaxial 

compressive load. Details of work as flow chart are 

shown in Figure 1. 
 

 

2. MATERIAL PROPERTIES UTILIZED IN THIS 
STUDY 
 

The short RC columns are modelled using ABAQUS in 

this study. Concrete modelling in this software is based 

on the concrete damage plasticity model. The bilinear 

stress strain model, is used to modelled reinforcing bars. 

The properties of FRP materials are chosen using 

experimental data gathered from literatures. 

 

2. 1. Concrete Damage Plasticity Model              In 

this study, the concrete damaged plasticity (CDP) model 

of Carreira and Chu (23) is used. The CDP model is 

developed for applications where the concrete is exposed 

to different type loads and assumes scalar (isotropic) 

damage. The CDP model is a continuum-based concrete 

damage model which can be used to represent concrete 

and other semi-brittle materials in various constructions 

(shells, beams, and solids) (24). It considers cracking 

from tensile stress and crushing of concrete due to 

compressive stress as the primary failure mechanisms. 

Two hardening factors regulate the evolution of the yield 

surface under compression and tension loading 

(compression damage variable (dc), tension damage 
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Figure 1. Flow chart of work 

 

 

variable (dt) respectively (24, 25). Elkady (26) used the 

MATLAB Code to create a concrete damage plasticity 

calculator which was based on Carreira and Chu (23) 

CDP model. As a consequence of this, the concrete 

damage plasticity calculator will produce an output that 

includes all of the concrete damage plasticity 

characteristics such as compression, tension, dc, and dt 

behavior for the specific grade of concrete. The CDP 

model is a continuum-based concrete damage model. It 

considers cracking from tensile stress and crushing of 

concrete due to compressive stress as the primary failure 

mechanisms. In this study, the CDP model given by 

Carreira and Chu (23) is used. Elkady (26) used the 

MatLab Coding software to create a concrete damage 

plasticity calculator shown in Figure 1. Table 1 lists the 

input parameters required by ABAQUS to run the CDP 

model 

Compressive damage variable (dc) 

𝑑𝑐= 1- 
𝜎𝑐

𝜎𝑐𝑢
 

Tensile damage variable (dt) 

𝑑𝑡  = 1- 
𝜎𝑡

𝜎𝑡𝑢
s 

2. 2. Steel Reinforcements             Steel reinforcement 

was employed in RC columns as main rebar’s and tie 

bars. Steel reinforcing bar modelled in using a bilinear 

elastoplastic stress strain model (27). 

 

2. 3. FRP Confined Column          Figure 2 shows how 

FRP confines circular concrete columns (28, 29). The 

confining pressure of concrete is dependent on column 

diameter, elastic modules, and the FRP material's tensile 

strength. Properties of FRP materials in terms of their 

physical and mechanical determined by ASTM D4762-

04 (30). Tables 2 and 3 summaries the parameters of the 

FRP material used in this investigation. 
 
 

3. NUMERICAL MODELLING  
 

In present study two different grade of concrete, two 

different type of FRP materials and three different aspect 
 

 

 
Figure 2. FRP Confinement action (29) 

 

 

TABLE 1. Plasticity parameters (24, 25, 27) 

Parameter Values 

Eccentricity 0.10 

Dilation angle 30o – 40o 

K 2/3 

fb0/fc0 1.1667 

 

 

TABLE 2. Mechanical properties of FRP (30-32) 

 
E1 

(GPa) 

E2 

(GPa) 

G12 

(GPa) 

G13 

(GPa) 

G23 

(GPa) 
𝝁𝟏𝟐 

CFRP 126.00 11.00 6.60 6.60 4.60 0.28 

GFRP 48.00 12.00 6.00 6.00 4.00 0.28 

 

 

TABLE 3. Strength parameters of FRP (27, 30, 32)  

 CFRP GFRP 

Longitudinal tensile strength, XT (MPa) 1950 1200 

Longitudinal compressive strength, XC (MPa) 1480 800 

Transverse tensile strength, YT (MPa) 48 59 

Transverse compressive strength, YC (MPa) 200 128 

Longitudinal shear strength (MPa) 79 25 

Transverse shear strength (MPa) 79 25 
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ratios are used. Table 4 shows the details of the FRP 

composites and column dimensions. Details about 

reinforcement are listed in Table 5 and Schematic 

diagram is shown in Figure 3. 

 

3. 1. Finite Element Modeling                 An RCC column 

consists of three components: concrete, main rebar, and 

tie bar. The analysis of RC short columns was performed 

using ABAQUS/Explicit with a period of 1 (total time 

step). A three-dimensional (3D) modelling space was 

selected, and the deformable solid extrusion type was 

utilized. The material was defined as elastic-isotropic, 

and the "CDP" material model was chosen from literature 

[24] with its associated characteristics as specified in 

Table 6. This study investigated the M20 and M30 

concrete grades, which had different elastic modulus. 

The column element meshed with a size of 28 (system-

generated value) using hexagonal elements with a sweep 

technique for mesh regulation. The integration modes 

used were explicit, linear, and C3D8R (continuum, 3-D, 

8 nodes, reduced integration) for the parameter “3D 

stress.” To model the reinforcing bars, in three-

dimensional (3D) space was used using deformable wire 

type. The material was characterized as elastic-isotropic, 

and its behavior was modelled as "plasticity." To create 

a realistic RCC column in ABAQUS, the concrete 

column, main bars, and tie bars must be properly 

assembled. The assembly process is illustrated in Figure 

4. 
 

3. 2. Strengthening of RC Circular Columns             3D 

model specimen and deformable shell extrusion type 

were chosen to model the FRP composites. The mesh size 

for seeding was selected 28, and the explicit element, 

linear-reduced integration, and shell family with S4R 

node. A tie constraint was used to attach the FRP sheet to 

the concrete surface, allowing for load transfer between 

the two surfaces while also acting as an adhesive 

material. The FRP wrapping column in ABAQUS is 

depicted in Figure 5, where the green color represents the 

FRP sheet and the white color represents the RCC 

column.  

 

3. 3. Validation of RC Column with Experimental 
Results             Carreria and Chu (23) CDP model was 

used in order to create the model for the concrete column. 

As shown in Figure 6 the numerical result was validated 

 

 
TABLE 1. Short RC column details 

Grade of concrete M20, M30 

Type of FRPs CFRP, GFRP 

Aspect ratios 

2(200×400) 

3(200×600) 

4(200×800) 

TABLE 5. Details of reinforcement bars 

Elastic Modulus (MPa) 210000 

Yield strength of main rebar (MPa) 415 

Yield strength of tie rebar (MPa) 250 

Area of main rebar (mm2) 113 

Area of tie bar (mm2) 28 

Poisons ratio of steel 0.30 

 

 

 
Figure 3. Schematic diagram of c/s and reinforcements a 

different aspect ratio of circular RC columns 

 

 
TABLE 6. Concrete material properties 

Mass density (ton/mm3) 2.5 ×10-9 

Elastic modulus (MPa) 5000 √𝑓𝑐𝑘 

Poisons ratio of concrete 0.20 

 

 

 
Figure 4. FEM modelling of circular columns 

 

 

 
Figure 5. Strengthening of RC circular columns 

 

 

with the experimental data reported by Ghali et al. (33). 

The variation of the experiment and numerical results 

was 2.02%. Maximum load carrying capacity of 
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unconfined RC columns was calculated using ACI318R 

(34) and IS 456 (35). 
 

 

4. RESULT AND DISCUSSIONS                                   
 

The results were recorded at each step of the process for 

comparison purposes. In stage-1, the axial load was 

applied numerically on the columns and the maximum 

load carrying capacity was calculated as depicted in 

Table 6Error! Reference source not found.. In stage 2, t

o generate damaged in columns, The preload was applied 

on the columns as shown in Table 6. In stage 3, the 

process of repairing the damaged columns involved 

wrapping them with FRPs. The repaired columns were 

then subjected to further loading until they failed. Table 

7 shows the comprehensive summary of stage 3, along 

with a detailed description of the data collected from 

ABAQUS.                                      
 

4. 1. Results of Axial Load Carrying Capacity of 
Unconfined Columns              This section of the paper 

describes the findings of a study conducted on the axial 

load-carrying capacity of an unconfined RC column. The 

results obtained through the numerical investigation are 

presented about factors such as the grade of concrete and 

aspect ratio. 

 

4. 1. 1. Grade of Concrete            Figure 7 depict the 

increase in load-carrying capacity of the various RC 

columns. Results showed that when the grade of concrete 

is upgraded from M20 to M30, there is a significant 

increase in the load-carrying capacity of different RC 

columns. For C2, it increases by 34.95%; for C3, it 

increases by 34.72%; and for C4, it increases by 36.59%. 

According to the study, increasing the concrete grade 

from M20 to M30 results in a significant increase in the 

load-carrying capacity of various RC columns. Overall, 

the current study adds to the existing literature on RC 

column load-carrying capacity and emphasizes the 

importance of considering concrete grade when 
 

 

 
Figure 1. Stress strain relationship of circular column 

(Validation model) 

TABLE 7. Columns maximum load carrying capacity obtained 

using ABAQUS 

Column 

Specimens 

Maximum stress 

(MPa) 

Preload proposal on 

the columns (kN) 

M20 M30 M20 M30 

C2 30.24 40.82 665.08 897.73 

C3 29.72 40.03 653.73 880.43 

C4 29.90 40.87 657.68 898.80 

 

 

 
Figure 7. A comparison of the load-carrying capacity of 

columns of different concrete grades  

 

 

designing for load-bearing capacity. The study's findings 

have implications for the design of RC structures and 

could be used to help develop building codes and 

standards. 

 

4. 1. 2. Aspect Ratio         As the aspect ratio of circular 

columns increases from 2 to 3, the load-carrying capacity 

of the columns decreases for M20 and M30 grades of 

concrete, respectively. The reduction is 1.82% for M20 

and 1.98% for M30 grades of concrete. However, as the 

aspect ratio further increases from 3 to 4, the load-

carrying capacity of the columns improves. the capacity 

increases by 0.64% for M20 and 2.06% for M30 grades 

of concrete, as shown in Figures 8 and 9.  

 

4. 2. Results of Axial Load Carrying Capacity of 
Confined Columns            This section describes the 

results of axial load-carrying capacity of CFRP and 

GFRP confined RC columns obtained from the numerical 

investigation. The analysis is based on various factors, 

including aspect ratio, grade of concrete and type of FRP. 

 

4. 2. 1. Grade of Concrete             The impact of aspect 

ratio on the load-carrying capacity for a specific grade of 

concrete and type of FRP is negligible. Regardless of the 

aspect ratio, the load-carrying capacity of columns 

wrapped with CFRP and GFRP sheets for M20-grade 

concrete is almost identical. The maximum load-carrying 

capacities for C2, C3, and C4 columns range from 1115 

kN to 1124 kN for M20CFRP and from 1015 kN to 1040 

kN for M20 GFRP. For M30CFRP and M30GFRP, the 
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Figure 2. Load-carrying capacity comparison with different 

aspect ratios of M-20 columns 

 

 

 
Figure 3. Load-carrying capacity comparison with different 

aspect ratios of M-30 columns 

 

 

maximum load-carrying capacities for C2, C3, and C4 

columns are between 1350 kN to 1365 kN and 1312 kN 

to 1325 kN, respectively. The stress-strain behavior of 

circular RC columns for various concrete grades is 

depicted in Figures 10 and 11. From the results presented 

in Figures 12 and 13, it can be inferred that CFRP-

strengthened columns exhibit better performance than 

GFRP-strengthened columns. Nevertheless, it is worth 

noting that both types of FRP materials can enhance the 

load-carrying capacity of M20 and M30-grade concrete. 

 

4. 2. 2. Aspect Ratio            The load-carrying capacity 

of a C2 column wrapped with CFRP is 10.73% higher for 

M20 grade concrete and 2.89% higher for M30 grade 

concrete, C3 column wrapped with CFRP is 7.83% 

higher for M20 grade concrete and 3.01% higher for M30 

grade concrete, and C4 column wrapped with CFRP is 

7.69% higher for M20 grade concrete and 3.18% higher 

for M30 grade concrete than a column wrapped with 

GFRP. When the concrete grade is increased from M20 

to M30, the C2 column load-carrying capacity increases 

by 20% for CFRP wrapped columns and by 29% for 

GFRP strengthened columns. C3 column load-carrying 

capacity increases by 22% when wrapped with CFRP and 

by 28% when strengthened with GFRP. The load-

carrying capacity of C4 columns increases by 21% when 

wrapped with CFRP and by 26% when strengthened with 

GFRP. Figures 14, 15 and 16 illustrate stress strain 

curves for circular RC columns with various aspect 

ratios. 

 

4. 2. 3. Type of FRP              Figure 17 depicts the variation 

in an aspect ratio of circular columns reinforced with 

CFRP, which shows an increase until it reaches C3, after 

which it starts to decline. On the other hand, Figure 18 

illustrates a circular column reinforced with GFRP, in 

which the aspect ratio continues to increase continuously 
 

 

TABLE 8. Summary of stage 3 output data 

Column 

specimen 

ID 

Unconfined 

column 

maximum stress 

(MPa) 

Confined column 

maximum stress 

(MPa) 

% of increment 

strength carrying 

capacity 

CFRP GFRP GFRP CFRP 

M20 

C2 30.24 35.78 32.30 06.82 18.30 

C3 29.72 35.50 32.91 10.71 19.41 

C4 29.90 35.64 33.07 10.58 19.17 

M30 

C2 40.82 42.97 41.76 2.30 5.26 

C3 40.03 43.44 42.17 5.34 8.50 

C4 40.87 43.35 42.52 4.04 6.07 

 
 

 
Figure 10. Stress-strain response of confined circular RC 

columns (M20) 

 

 

 
Figure 11. Stress-strain response of confined circular RC 

columns (M30) 
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Figure 12. Load carrying capacity of confined and 

unconfined column specimens (M20) 

 

 

 
Figure 13. Load carrying capacity of confined and 

unconfined column specimens (M30) 

 

 

 
Figure 14. Stress – strain behaviour of confined C2 RC 

column 

 

 
Figure 15. Stress – strain behaviour of confined C3 RC 

column 

 
Figure 16. Stress strain behaviour of confined C4 RC 

column 

 

 

 
Figure 17. Stress-strain behavior of circular columns 

strengthened with CFRP 

 

 

 
Figure 18. Stress-strain behavior of circular columns 

strengthened with GFRP 

 

 

until it reaches C4. It can be observed that the load-

carrying capacity of a column is directly proportional to 

the grade of concrete, as evidenced by the performance 

of the CFRP-strengthened column. FRP-strengthened 

columns' load-bearing capacity depends on concrete 

strength, with higher grades carrying more.  
 
 

5. CONCLUSIONS  
 

The present research focused on the numerical 

investigation on the effects of grade of concrete, aspect 
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ratio (2, 4 and 6) of the column, and type of FRP used for 

column wrapping. Based on the numerical investigation, 

the following conclusions are drawn: 

• Increasing the concrete grade from M20 to M30, 

38% in the maximum load capacity of both square 

and circular columns increased. These findings 

suggest that the load-bearing capacity of concrete is 

directly correlated with its grade, irrespective of The 

numerical results obtained from ABAQUS reveals 

that the load-carrying capacity of columns is 

underestimated by IS 456 and ACI 318R standards, 

as these standards are designed with the factor of 

safety. 
• When the aspect ratio increases from AR2 to AR4, 

the load-carrying capacity reaches about 1120 kN 

(M20), and 1340 kN (M30). 19.17% for (CFRP-

M20) and 10.58% for (GFRP-M20), 6.07% for 

(CFRP-M30) and 4.04% for (GFRP-M30). 

• The aspect ratio has minimal impact on the load 

capacity of both confined and unconfined circular 

columns, which remains consistent across various 

aspect ratios. 

• CFRP wrapping columns have superior axial 

loadcolumn geometry.        

• -Carrying capacity performance when compared to 

GFRP confinement columns. 

• When the grade of concrete is upgraded from M20 

to M30, circular columns reinforced with CFRP 

show greater improvement in strength compared to 

those reinforced with GFRP. 
• The study showed the importance of the grade of 

concrete and aspect ratio in the behaviour of 

confined RC columns, which should be considered 

when designing these structures. 
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Persian Abstract 

 چکیده 

را که تحت بار فشاری محوری قرار دارند،  (FRP)شده با الیاف  سازی شده با پلیمر تقویت مقاوم  (RC)دیده کوتاه  های بتن مسلح آسیبمطالعه حاضر به طور عددی ستون 

برای   .FRPبر روی ستون های دایره ای با نسبت های مختلف، عیار بتن و مواد    FRPکند. پارامتر اصلی در نظر گرفته شده برای ارزیابی اثربخشی مقاوم سازی  بررسی می 

کوتاه تحت یک بار فشرده سازی تک محوری، یک مدل المان محدود از ستون توسعه داده شد. سپس مدل برای شبیه سازی سطوح مختلف    RCشبیه سازی رفتار یک ستون  

با مقایسه رفتار ستون مقاوم سازی شده با ستون آسیب دیده مورد مطالعه قرار   FRPآسیب به ستون و رفتار ستون تحت بار تک محوری اصلاح شد. اثربخشی مقاوم سازی  

شده شده پلیمری تقویت های تقویتبرابر( نسبت به ستون 3تا  2استحکام بالاتری ) (CFRP)شده با فیبر کربن شده با پلیمر تقویت سازی مقاوم M20گرفت. برای ستون بتنی 

با افزایش نسبت ابعاد   FRPبرابر بیشتر(. اثربخشی هر دو ستون مقاوم سازی شده با    2.3  -  1.5، دامنه کاملاً مشابه است )M30نشان داد. برای بتن   (GFRP)با الیاف شیشه  

 CFRPشده با  سازیهای مقاومآمده برای ستون دستنسبت به نمونه آسیب دیده اندکی کاهش می یابد. حداکثر اثربخشی به  4افزایش می یابد، اما برای نسبت ابعاد    3و    2از  

روند مشابهی را دنبال کرد. ظرفیت باربری ستون ها با افزایش نسبت   (M30)درصد است و گرید دیگر بتن    GFRP 10.71شده سازیهای مقاومدرصد و برای ستون   19.45

 تأثیر معنی داری ندارد.  4به  2تصویر از 
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