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A B S T R A C T  

 

In this article, the central difference Kalman filter (CDKF) has been used to estimate the parameters of 

two different models of synchronous generator (SG) in the presence of noise. It should be mentioned 

that there are different models of synchronous generators with different levels of accuracy for use in 
estimation algorithms. The estimation algorithm in this paper uses a smaller number of measurement 

inputs to estimate the states and unknown parameters for two exact models of the synchronous generator. 
The central difference Kalman filter (CDKF) is a member of the Kalman filter family, which, like the 

unscented Kalman filter (UKF), uses sigma points to model nonlinear equations. The differential Kalman 

filter (CDKF) provides better results than the unscented Kalman filter. In this research, by using two 
synchronous generator models with different parameters in three scenarios, the ability of the Kalman 

filter of the central difference is challenged, which shows that this method is very efficient and reliable. 

doi: 10.5829/ije.2024.37.07a.04 
 

 

Graphical Abstract 

 

 

 

1. INTRODUCTION1 
 

Today and after a long time, power grids are being spread 

and keeping the security issue feels more like it did 
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before. So we need comprehensive and efficient models 

for all components to work together in this set. One of the 

most important parts is the synchronous generator (SG). 

There are many kinds of models used for SGs, and each 
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of these models contains some parameters, that their 

values are playing an important role in grid analysis. 

Usually, some of these parameters are specified by their 

manufacturers and assumed to be constant. However, 

some changes in power or terminal voltage may cause 

special operational point that needs to update these 

parameters. 

The bases of the ways for determination of SG 

parameters in practical mode are discussed in literature 

(1-3) that used in many analysis. In addition, Mouni et al. 

(2) have conducted parameter estimation by applying a 

short circuit and least the square method, which may 

cause damage to the SG’s structure. The other methods 

that are related to the direction of this research discussed 

by Chowdhury and Senroy (4) used five measuring 

quantities of SG and importing them in the unscented 

Kalman filter (UKF); although an example of estimating 

the state of a power system using the Kalman filter are 

given in literature (3) in a basic form. However, it is not 

possible to measure all these quantities at a low cost in 

practice. Appropriate estimation was made by 

Ghahremani and Kamwa (5) Ren et al. (6), for just 

dynamic states of SG with low order models and 

extended Kalman filter (EKF). Huang et al. (7) 

introduced fourth-order model parameters estimation 

with square root unscented Kalman filter (SRUKF) that 

they do not contain more details in comparison with high-

order models of SGs. To fix this issue, Geraldi et al. (8) 

Zhao and Mili (9), Valverde et al. (10) estimated 

parameters or dynamic states with UKF. However, in 

UKF algorithms some coefficients need to be set 

accurately and may be necessary to fix them in other 

equations or different SG’s types. For both parameter and 

state estimation, good results with a modified type of 

UKF to be achieved. Rouhani and Abur (11) dond 

parameter estimation for fully regulated SG, but uses a 

noncomplex model like two axes model with UKF. 

González-Cagigal et al.(12) , Li et al. (13) used cubature 

kalman filter (CKF) to estimate the dynamic state of SG 

in detailed. CKF algorithm for implementation needs a 

powerful computing platform, but can clearly say that the 

results of this filter are one of the most exact results, also 

the phasor measurement units (PMUs) are widely used in 

data acquisition of synchronous generator operation 

parameters, which can capture the dynamic response of 

generators. For many reasons it is hard to transmit 

gigantic volumes of data to the information center due to 

limited communication bandwidth, so to reduce 

communication pressure, an improved regularized 

particle filter (IRPF) is designed to guarantee the 

estimation performance by Bai et al. (14). 

According to reviews, this research is the first 

analysis to challenge the CDKF performance in 

estimating both parameters and dynamic states for two 

different dynamic models. It should be noted that in this 

research, the estimation process will be implemented on 

SGs behaviour consisting of increasing excitation 

voltage and input torque for generator A and instant short 

circuit for another generator (i.e. B). The measurements 

also used in this work is the easily accessible outputs of 

SG. Furthermore, the algorithm used has good stability, 

and even it does not need to specify parameters like UKF, 

and it is compatible with a wide range of dynamic 

equations. Also Using the CDKF filter in the hybrid 

form, where the discrete measurements are placed next to 

the continuous state equations that are known as 

HCDKF, and because discrete measurements are used, 

the answers are closer to reality. 

The remaining parts of this work are organised as 

follows. Section 2 is allocated to describe and formulate 

the CDKF algorithm and after that in section 3 presents 

the models of SG used in the estimation process. Match 

the models with the CDKF algorithm for dual estimation 

described in section 4. Two study cases, including 

generators A and B with their details for testing the 

accuracy of the process, is presented in section 5. The 

conclusion and recommendation are obtained from the 

results presented in section 6. 

 

 
2. CENTRAL DIFFERENCE KALMAN FILTER 

 
The basis of all Kalman filter derivatives goes back to its 

linear type and is used to filter noisy data, produce 

nonobservable states and forcast future state (15). But for 

nonlinear states, these particle filters have the ability to 

estimate states with different tension that can be 

considerd (16, 17). In nonlinear forms of this filter, the 

central difference Kalman filter (CDKF) is one of the 

exact forms with good results. For implementing this 

filter to SG’s dynamic, a complete description of the 

states and measurements is required. Equations 1 and 2 

represent the usual form of the states and measurement, 

Also, special attention should be paid to the discontinuity 

and continuity of these equations with respect to time, 

which will be explained more (18, 19). 

(1) ẋ(t) = f(x(t), u(t)) + v(t) 

(2) y(tk) = h(x(tk), u(tk)) + n(tk) 

where x(t) represents a state vector, u(t) is the system 

input, and v(t) is the process noise which is assumed to 

be Gaussian with covariance Rv. These values together 

form a continuous nonlinear function as f. In the second 

equation, y(tk) represents available measurement which is 

described by the function h. The measurement noise n(tk) 

is assumed to be Gaussian with the covariance Rn at 

instant tk. Since this filter is supposed to be implemented 

on generator equations, a hybrid form of the filter should 

be mentioned. Generators like many nonlinear systems 

have continuous state equations and discrete 

measurement equation. Because sensors which record the 

measurements based on a sample time and finally 
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generate a data series with a specified step, so the 

measurement equation is modified as follows (20): 

(3) yk = h (xk, uk) + nk 

If the EKF algorithm was used to estimate, Equation 

1 should linearize and then enter into the process (21). 

However, in CDKF, the state equation evaluates in a 

continuous nonlinear form, that is based on Sterling’s 

polynomial interpolation functions (16). This method is 

known for approximating nonlinear function and uses a 

finite number of the main function evaluations instead of 

analytical derivatives. For scaler form and if supposed 

that g(x) is a nonlinear function with a random variable x 

and its mean x̄, the 2nd order case is given by: 

(4) g(x) = g(x̄) + D̃Δxg + 
1

2!
D̃2

Δxg 

where D̃Δxg is the first and D̃2
Δxg is the second-order 

central divided difference operators and given by: 

(5) D̃Δxg = (x-x̄) 
g(x̄+h) - g(x̄-h)

2h
 

(6) D̃2
Δxg = (x-x̄)2 

g(x̄+h) + g(x̄-h) - 2g(x̄)

h
2  

h is known as interval length in these equations, except 

that, the derivatives are not analytically solved by 

extending the sterling formula to make a multi-

dimensional mode. It’s necessary to provide a new 

variable that is stochastically decoupled. So z can be 

expressed as Equation 7 and then put in a nonlinear 

function to create g̃(z) in Equation 8. 

(7) z = S-1
x x 

(8) g̃(z) = g(Sx z) = g(x) 

where Sx is obtained from the Cholesky factorization of 

covariance matrix x called Px. Furthermore, by putting 

this transformation in the sterling formula instead D̃Δxg & 

D̃2
Δxg, it’s easy to calculate mean, covariance and cross-

covariance, which is summarized in two stages in the 

following. At first, it is necessary to specify initial values 

as below: 

(9) x̂0 = E[x0] 

(10) Px0 = E[(x0-x̂0) (x0-x̂0) T] 

where x̂0 is the initial estimation or mean value for the 

first step and Px0 is the initial estimation covariance that 

can have a significant influenced on the estimation result. 
 

2. 1. Time Update      Time update in CDKF is similar 

to UKF and starts by specifying the number of sigma 

points which have 2L+1 points for each instant k. L is the 

state space dimension or in other words, the number of 

states. x̂k-1 is the previous value of estimation to calculate 

sigma points (xk-1) as follows: 

(11) xk-1 = [x̂k-1     x̂k-1+h√Pxk+1
    x̂k-1-h√Pxk-1

 ] 

Now it’s time to propagate sigma points through a state 

equation that can obtain, 

(12) xk|k-1 = f(xk-1, uk-1) 

Then, using these points to calculate a priori estimation 

of the mean (x̂-
k) and covariance (P̂xk) as follows: 

(13) x̂k = ∑ wi

(m)
xi,k|k-1

2L
i=0  

(14) 
Pxk=∑ [L

i=1 wi

(c1)
(xi,k|k-1-xi+L,k|k-1)

2
+ 

   wi

(c2)
(xi,k|k-1+xi+L,k|k-1-2x0,k|k-1)

2
] + Rv 

where wi
(m) is the weighting vector of mean and wi

(c1) & 

wi
(c2) are weighting vectors of covariance and calculated 

by Equation 15. In addition, the power of two in Equation 

14 represents the outer product. 

(15) 

w0
(m) = 

h
2
-L

h
2  

wi
(m) = 

1

2h
2      i = 1,…, 2L 

wi
(c1) = 

1

4h
2     i = 1,…, 2L 

wi
(c2) = 

h
2
-1

4h
2     i = 1,…, 2L 

 
2. 2. Measurement Update       In this stage, sigma 

points must be recalculated, but this time with prior 

estimation (x̂-
k) and its covariance (P̂xk) that comes from 

the previous stage as follows: 

(16) x*
k|k-1 = [x̂-

k     x̂-
k + h√p

xk

-      x̂-
k - h√p

xk

-  ] 

Then new sigma points (x*
k|k-1) are propagated trough 

measurement function as Equation 16. 

(17) yk|k-1 = h(x*
k|k-1) 

With the weights were calculated in Equation 15, mean 

(ŷ-
k), covariance (p

yk
) and cross-covariance (p

xkyk
) Can be 

easily found in Equation 18. 

(18) 

  ŷ-
k = ∑ wi

(m)
yi,k|k-1

2L
i=0  

 P̂y
k
=∑ [L

i=1 wi

(c1)
(y

i,k|k-1
-y

i+L,k|k-1
)
2
+ 

  wi

(c2)
(y

i,k|k-1
+y

i+L,k|k-1
-2y

0,k|k-1
)
2
]+Rn 

  p
xky

k

= √w
1

(c1)
p

xk

-  [y
1:l,k|k-1

 - y
l+1:2L,k|k-1

]T 

And in the last step, one of the filter’s output that named 

Kalman gain (k) is calculated in Equation 19. 

(19) Kk = p
xky

k

 p
y

k

-1
 

Then the final results of the estimation process (x̂k) as a 

posterior estimation and its covariance (p
xk

) Can be 

obtained, 

(20) x̂k = x̂-
k + kk (yk - ŷ-

k) 
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(21) 𝑝𝑥𝑘
= p

xk

-  - kk pyk

-  kT
k 

where these values are the final estimation for the kth 

instant, and the first step for k+1th. 
 

 

3. SYNCHRONOUS GENERATOR MODELS  
 

One of the most important parts in dual estimation is 

recognizing the dynamic model of the system under 

discussion. In this work, two models of SG are described 

that if not done correctly, can cause bad results. The third 

and seventh order model of SG presented in the next two 

sections.  
 

3. 1. Third-Order Dynamic Model          The third-

order model is the flexible and accessible model in the 

dynamic analysis (19, 22). It’s not very detailed and to 

achieve the equations, some assumptions must be taken. 

For example, neglecting the dynamic changes of stator 

and damper windings, stator resistance is assumed to be 

zero and also rotor speed is considered to be equal with 

synchronous speed (1p.u.). However, using this model is 

favored in the filter and makes it, easy to estimate. The 

equations in this model consist of rotor angle (δ), rotor 

speed (ω) and transient internal voltage of the armature 

(𝑒𝑞
′ ) that are calculated as follows: 

(22) δ̇ = ω 

(23) ω̇=
1

j
(Tm-Te-Dω)  

(24) ėq
´  = 

1

T´do

 (Efd - eq
´ - (xd - x´d)id) 

To complete the above equations, mention the direct and 

quadrature current (id & iq) and electrical torque (Te) is 

required, which represent in Equations 25 to 27, 

respectively. Unknown parameters and states that should 

be estimated are discussed separately in the following 

sections.  

(25) id = 
eq

´ -v cos δ

x´d

    

(26) iq = 
v sin δ

xq

 

(27) Te = Pe ≅ 
v

x´d

 eq
´  sin δ + 

v2

2
(

1

xq

) 

After determining the state equations, it’s time to specify 

the measurement equations. There are many quantities in 

a generator that have a certain equation, but that’s not 

enough alone. Quantities are selected, which can be 

easily measured. So in this work terminal current (it), 

terminal voltage (vt), electrical power (p
e
) and rotor 

speed (ωr) are used. The following procedure can be 

followed to extract their equations. Equation 28, stator 

current is defined. 

(28) it = √id
2+iq

2 

For 𝑣𝑡, it’s needed to calculate direct and quadrature 

voltage as follows: 

(29) vd = (1- 
xe

xq

)vsin δ 

(30) vq = (1- 
xe

x´q

)vcos δ
xe e´q

x´d

 

and then put them in Equation 31 to form the following 

equation. 

(31) vt = √vd
2+vq

2 

The Equations 23 and 27 can be used for ωr and p
e
 

respectively to establish a good connection between the 

states and measurement equations. In addition, this 

combination gives accurate results in the estimation 

process. All equations in this section are implemented on 

generator A and the details are given in the appendix. 
 

3. 2. Seventh-Order Dynamic Model         The 

seventh-order model has more details than the third-order 

model. That is why implementing the estimation 

algorithm for this model is a challenging issue. There are 

five electrical equations and two mechanical equations in 

this model which form the dynamic states. Unlike the 

third-order model, the damper winding behavior is not 

neglected here. Krause et al. (23) is used to review these 

equations. The magnetic flux of the stator, rotor and 

damper windings are considered as electrical equations 

and written as follows: 

(32) φ̇
qs

 = ωb[vq- 
ωr

ωb

 φ
ds

+ 
rs

xls

 (φ
mq

- φ
qs

)] 

(33) φ̇
ds

 = ωb[vd - 
ωr

ωb

 φ
qs

+ 
rs

xls

 (φ
md - φds

)] 

(34) φ̇
kq

 = ωb[vkq+ 
rkq

xlkq

 (φ
md

 - φ
kq

)] 

(35) φ̇
kd

 = ωb[vkd+ 
rkd

xlkd

 (φ
md

 - φ
kd

)] 

(36) φ̇
fd

 = ωb[vfd+ 
rfd

xlfd

 (φ
md

 - φ
fd

)] 

In coordinates transformation from abc to qdo the 

magnetic flux of the o axis (φ
os

) becomes zero. φ
md

 and 

φ
mq

 are defined as middle variables to make writing 

equations easier and calculated as follows: 

(37) 

 φ
mq

 = xaq(
 φ

qs

xls

 + 
φ

kq

xlkq

) 

 φ
md

 = xad( 
φ

ds

xls

 + 
φ

kq

xlkq

 + 
φ

fd

xlfd

) 

 xaq = (
1

xmq

 + 
1

xls

 + 
1

xlkq

)-1 

 xad = (
1

xmd

 + 
1

xls

 + 
1

xlkq

 + 
1

xlfd

)-1 
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and mechanical equations also calculated as: 

(38) (
ωr

ωb

)
̇

 = 
1

2H
 (TL-Te) 

(39)   δ̇ = ωb( 
ωr

ωb

 – 1) 

where ωb is the synchronous speed and equal to 2𝜋f. 

Now, and after completing the state equations, it is time 

to choose the measurable quantities. 

In this model, rotor speed, field winding current (ifd), 

stator voltage and current were chosen, and they are 

calculated according to Equations 39, 40, 28 and 31, 

respectively. Except that the direct and quadrature 

voltages are calculated with Equations 41 and 42. 

(40) ifd = 
1

xlfd

 (φ
fd - φmd

) 

(41) vd = vsin δ - xeiq 

(42) vq = vcos δ - xeid 

As it was reviewed, this model has seven states and 

nine parameters which should be estimated separately. 

These equations together, form the structure of generator 

B, which its real values for simulation are listed in the 

appendix. 

 
 
4. IMPLEMENTATION OF CDKF 
 

The CDKF is the most accurate filter among all sigma 

point Kalman filters and uses the Sterling interpolation 

formula. This filter has the computational complexity in 

the order of EKF but achieves a second or higher-order 

accuracy in the posterior mean and covariance which can 

be observed in some recent works (24). Any filter from 

sigma points filters or even a linear or nonlinear form of 

them can be used for state, parameter and dual 

estimation. However, for each of them, it is necessary to 

modify the base filter’s structure. There are two 

approaches for dual estimation. One of them uses two 

filters that work together to estimate states and 

parameters. The other method uses just one filter, and the 

equations are written in such a way that states and 

parameters are estimated simultaneously. The second 

type is used in this work. Dual estimation has its 

difficulties; for example, González-Cagigal et al. (12) 

used two steps to estimate. In the first step, implement 

the algorithm on a simple model and then add other 

components and estimate whole parameters. However, in 

this work, the estimation process is implemented on 

complete forms of equations. Furthermore, to understand 

the structure of dual estimation in the form of a joint 

filter, Qi et al. (25) have used. According to the state 

equations from section (3), unknown states in third and 

seventh-order models of SG can be written as: 

x(3th-order)
T  = [δ, ωr, e´q] 

and 

x(7th-order)
T  = [φ

qs
, φ

ds
, φ

kq
, φ

kd
, φ

fd
, ωr, δ] 

respectively. In addition, the unknown parameters vector 

(w) for the mentioned models are 

w(3th-order)
T  = [j, D, T´do, xd, xq, x´d] 

and 

w(7th-order)
T  = [rs, rkq, rkd, rfd, xls, xlkq, xlkd, xlfd, H] 

then the augmented vector of states and parameters 

(xaug=[xT, wT]
𝑇
) must be formed, which is an important 

part of the estimation process. The size of the augment 

vector for the third-order model is L(3th-order) = 9 and 

L(7th-order) = 16 for the other. Now the augment vector 

should be replaced with the state vector in Equations 3 

and 1 to perform the new structure as follows: 

(43) [
xk

wk
] = [

(f(xk,uk,wk)
Iwk

] [
vk

rk
] 

(44) y
k
 = [1 0 … 0] [

xk

wk
]+ nk 

where 𝑟𝑘 is the parameters noise and depending on their 

equation, their values are set. For the measurement vector 

y
(3th-order)
T = [ωr, Is, vt, pe

] is used for generator A and 

y
(7th-order)
T = [ωr, Is, vt, if] is used for generator B, which 

their equations have already been specified. Finally, it 

should be noted that the input vector (u) consists of 

excitation voltage (vf) and input torque (TL) in case (1) 

and terminal voltage in case (2). 

 

 

5.CASE STUDIES 

 

CDKF algorithm is tested on generators A & B, which 

reviewed their equations in the previous sections. For 

measuring the output signals of generators, their structure 

was simulated in Matlab’s code environment. To better 

determination of each case’s details, two sections are 

considered. 

 

5. 1. Case1: Generator A         As shown in Figure 1, 

generator A connected to an infinite bus in a steady state 

condition through a line with impedance j0.2 p.u. 

Generator outputs, which should enter to estimation 

process, are recorded by sensors at sample time ∆t = 1 

ms. They will be ready to use after the noise is added to 

them, which is shown in Figure 2. The additional noise 

has a Gaussian distribution with zero mean and standard 

deviation Rn = 10-5. 

The algorithm performance will be challenged in two 

changes. The first one is increasing the field voltage by 

20% its real value at second 2, and after 10 seconds, the 
next change will happen with an increase of 2% in input 
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Figure 1. Structure of the system under study 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Diagrams of measurement changes for 20 seconds 

in generator A (a) Real and noisy values of rotor speed (b) 

Real and noisy values of terminal current (c) Real and noisy 

values of terminal voltage (d) Real and noisy values of 

electrical power 

torque. Steady state calculation before changes take 

effect, listed in the appendix.  

In this case, process noise (rk) that being in state 

equations, is specified by its covariance matrix (Q
x
) and 

also the parameter noise with covariance matrix (Q
w

). 

These covariance matrixes combined each other as a 

diagonal form that, being ready for the dual estimation 

purpose as Q
CDKF

= diag([Q
x

T, Q
w

T ]). The usual value of 

Q
x
 in the UKF algorithm is 10-6 like Qi et al. (25), but in 

this work for better results, Q
CDKF

 consider as: 

Q
CDKF

T  = diag ([10-6, 10-6, 10-7, 10-5, 10-5, 10-6, 10-5, 10-5]) 

The initial value of parameters is an important issue 

in the implementation algorithm. For this case, initial 

values are set at 80% and 130% of their real values, and 

for both of them, estimation results for states and 

parameters are shown in Figures 3, 4 and 5. Their results 

are named HCDKF, because the filter reformed for the 

SG’s equations in hybrid structure and defined in section 

2. In addition, the initial estimation error covariance, 

which indicates the confidence to the initial parameters 

is a diagonal matrix as: 

p
x0

T = diag ([10-5, 10-5, 10-5, 10-3, 10-3, 10-4, 10-3, 10-3]) 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Diagrams of state estimations in generator A (a) 

Diagrams of true and estimated values of δ (b) Diagrams of 

true and estimated values of ωr (c) Diagrams of true and 

estimated values of 𝑒𝑞
′   
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(a) 

 
(b) 

 
(c) 

Figure 4. Diagrams of parameters estimation in generator A 

(a) Diagrams of true and estimated values of J (b) Diagrams 

of true and estimated values of D (c) Diagrams of true and 

estimated values of Tdo
′  

 

 

For better comparison, the final estimated values in 

the second 20 are listed in Table 1. Two rows of this table 

are allocated to UKF estimation with similar noise to  

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Diagrams parameter estimations in generator A (a) 

Diagrams of true and estimated values of xd (b) Diagrams of 

true and estimated values of xq (c) Diagrams of true and 

estimated values of xd
′  

 

 

CDKF and tunable parameters 𝛼 = (0.5), 𝛽 = (2) and 𝜅 = 

(-6). The only tunable parameter in CDKF is h, which is 

equal to √3. The time duration (20 S) seems to be 

sufficient because the filter responses are being fixed. As 

it seen, estimation values are very close to the real values, 

also tracking states by the filter is admirable. On the other 

hand, to evaluate the estimation accuracy, relative errors 

for the last data in the filter’s memory are calculated and 

listed in Table 2. 

 

 
TABLE 1. Estimations of CDKF and UKF for generator A 

parameters in two initial conditions 

Parameters 
Real 

values 

CDKF estimations UKF estimations 

80% 

initial 

valve 

130% 

initial 

value 

80%  

initial 

valve 

130% 

initial 

value 

J  (p.u.) 0.0252 0.025193 0.0251217 0.025258 0.026209 

D (p.u.) 0.05 0.049956 0.050007 0.050016 0.050336 

𝐓𝐝𝐨
′ (s) 0.1310 0.131622 0.130642 0.12787 0.126155 

𝐱𝐝 (p.u.) 2.072 2.07196 2.071871 2.07199 2.092736 

𝐱𝐪 (p.u.) 1.559 1.55959 1.56673 1.55335 1.56293 

𝐱𝐝
′ (p.u.) 0.568 0.568036 0.571634 0.56776 0.56858 

 

 
TABLE 2. Relative errors for CDKF and UKF estimations in 

generator A with two initial conditions 

Parameters 

CDKF relative errors 

(%) 

UKF relative errors 

(%) 

80% initial 

valve 

130% initial 

value 

80% initial 

valve 

130% 

initial value 

J  (p.u.) 0.0253 0.3104 0.2337 4.004 

D (p.u.) 0.08161 0.0159 0.0321 0.6735 

𝐓𝐝𝐨
′  (s) 0.4753 0.2727 2.3819 3.6981 

𝐱𝐝 (p.u.) 0.0015 0.062 3.53×10-5 1.0008 

𝐱𝐪 (p.u.) 0.0383 0.4961 0.3472 0.2525 

𝐱𝐝
′ (p.u.) 0.6440 0.6399 0.0409 0.1073 
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5. 2. Case2: Generator B           For generator B, using 

the same connection to the grid as generator A, but the 

difference is that, in this case, a three-phase short circuit 

occurred at generator terminal in second 1 and cleared in 

0.3 second later. Measurements change with the added 

noise to them showed in Figure 6. The noises have a 

Gaussian distribution with zero mean and standard 

deviation Rn = 10-5.  

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Diagrams of measurement changes for 30 seconds 

in generator B a) Real and noisy values of rotor speed b) 

Real and noisy values of terminal current c) Real and noisy 

values of terminal voltage d) Real and noisy values of filed 

current 

Since this model has more details, the generator’s 

operation is simulated for 30 seconds and filter should 

estimate states and parameters in this duration. Process 

and measurement noises are defined by 16×16 diagonal 

matrix (Q
CDKF

) and in this case, 

Q
CDKF

T  = diag ([10-6, 10-5, 10-5, 10-5, 10-6, 10-6, 10-6, 

10-7, 

                         10-8, 10-7, 10-8, 10-6, 10-6, 10-6, 10-6, 

10-7]) 

The initial values of parameters set 90% and 120% of 

their real values and the covariance error of the initial 

estimation (Px0
) defines as: 

Px0

T  = diag ([10-6, 10-6, 10-6, 10-6, 10-6, 10-6, 10-6, 10-4, 

104, 10-4, 10-4, 10-4, 10-4, 10-4, 10-4, 10-4]) 

with these values for noise and initial objects, as 

mentioned above, Figures 7 and 8 show the states and 

parameter estimation with both initial values of 

parameters. And Figures 9 and 10 show the performance 

of the filter to estimate the parameters. The result figures 

for this model, which are estimated by only four 

measurements signal are very acceptable. 

The last estimation in 30 seconds for CDKF with h = 

√3 and for UKF with α = (1), 𝛽 = (2) and 𝜅 = (-13) with 

similar noises to the CDKF process are listed in Table 3. 

For better comparison, relative and definite errors are 

 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 7. Diagrams of state estimations in generator B (a) 

Diagrams of true and estimated values of φqs  (b) Diagrams 

of true and estimated values of φds (c) Diagrams of true and 

estimated values of φkq (d) Diagrams of true and estimated 

values of φkd 
 

 

presented in Table 4; which shows CDKF has done its 

job properly and in some parameters better than UKF  
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. Diagrams of state and parameter estimations in 

generator B (a) Diagrams of true and estimated values of 

φfd (b) Diagrams of true and estimated values of ωr (c) 

Diagrams of true and estimated values of δ  (d) Diagrams of 

true and estimated values of rs 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Diagrams of parameter estimations in generator B 

(a) Diagrams of true and estimated values of rkq (b) 

Diagrams of true and estimated values of rkd (c) Diagrams 

of true and estimated values of rfd  (d) Diagrams of true and 

estimated values of xls 

 

 

except rs. However, the important thing about the filter is 

the number of tunable parameters and its compatibility 

with many structures. 
 

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 10. Diagrams of parameter estimations in generator 

B (a) Diagrams of true and estimated values of xlkq (b) 

Diagrams of true and estimated values of xlkd (c) Diagrams 

of true and estimated values of xlfd (d) Diagrams of true and 

estimated values of H 

 

 

Steady states equations and real values of generators 

A and B defined in Tables 5 and 6. 

 

 
TABLE 3. Estimations of CDKF and UKF for generator B 

parameters in two initial conditions 

Parameters 
Real 

values 

CDKF estimations UKF estimations 

90% 

initial 

valve 

120% 

initial 

value 

90% 

initial 

valve 

120% 

initial 

value 

𝒓𝒔  (p.u.) 0.003 0.00676 0.006953 0.0306 0.00287 

𝒓𝒌𝒒 (p.u.) 0.0178 0.001742 0.001826 0.001753 0.00167 

𝒓𝒌𝒅 (p.u.) 0.0133 0.012947 0.013647 0.013618 0.01267 

𝒓𝒇𝒅 (p.u.) 0.000929 0.000932 0.000928 0.000932 0.000893 

𝒙𝒍𝒔 (p.u.) 0.19 0.18988 0.189887 0.18989 0.18060 

𝒙𝒍𝒌𝒒 (p.u.) 0.8125 0.80454 0.82359 0.8176 0.77187 

𝒙𝒍𝒌𝒅 (p.u.) 0.08125 0.080166 0.08463 0.08320 0.07719 

𝒙𝒍𝒇𝒅 (p.u.) 0.1414 0.139176 0.14650 0.14417 0.14037 

H (s) 5.6 5.4320 5.8520 6.1600 5.3200 

TABLE 4. Relative errors for CDKF and UKF estimations in 

generator B with two initial conditions 

Parameters 
Real 

values 

CDKF relative 

errors (%) 

UKF relative 

errors (%) 

90%  

initial 

valve 

120% 

initial 

value 

90%  

initial 

valve 

120% 

initial 

value 

𝒓𝒔  (p.u.) 0.003 125.25 131.79 2.003 4.2141 

𝒓𝒌𝒒 (p.u.) 0.0178 2.1175 2.6159 1.447 5.6456 

𝒓𝒌𝒅 (p.u.) 0.0133 2.9508 2.3097 2.095 4.9994 

𝒓𝒇𝒅 (p.u.) 0.000929 0.3828 0.0204 0.3532 3.8986 

𝒙𝒍𝒔 (p.u.) 0.19 0.0610 0.0593 1.959 4.945 

𝒙𝒍𝒌𝒒 (p.u.) 0.8125 0.9796 1.3652 1.997 4.9996 

𝒙𝒍𝒌𝒅 (p.u.) 0.08125 1.3337 4.1670 2.067 4.9939 

𝒙𝒍𝒇𝒅 (p.u.) 0.1414 1.5528 3.6079 0.0919 0.7246 

H (s) 5.6 2.9997 4.5000 1.998 5.000 

 

 
6.CONCLUSION 

 
In this paper, a CDKF algorithm is implemented on two 

dynamic models of different generators, with the purpose 

of dual estimation of states and parameters. 

Although many kinds of Kalman estimation 

algorithms EKF, UKF and CKF with different levels of 

accuracy tested on SG’s equations. In each of them, some 

parameters have to be set. While in CDKF just by tuning 

one parameter can achieve good results the same as other 

methods. In addition, the 7-order model used in this work 

has 16 unknown states and parameters which are 

estimated only by four external measurements from 

accessible quantities of the generator. 

The case studies have shown that the algorithm has 

acceptable accuracy in different working conditions and 

also in different initial values of parameters for the first 

step of estimation. Furthermore, in some parameters, it 

works better than UKF. 
Also, due to the volume of equations and 

computational complexity of the CDKF algorithm, 

special attention can be paid to the implementation of this 

process on a low-cost and powerful computing platform 

such as PIC as future activities, and its results will be 

evaluated in the form of another research. 
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8. APPENDIX 
 

The main variables of 3-order model are: 

𝑒𝑞
′             Transient internal voltage of armature 

δ              Rotor angle  

ωr           Rotor speed 

Efd          The equivalent EMF in the excitation coil 

Te           Output electrical torque 

vt            Generator terminal voltage 

V            Infinite bus voltage 

id, iq       Direct and quadrature axis stator currents 

𝑇𝑑𝑜
′          Direct axis transient time constant 

𝑥𝑑
′           Direct axis transient reactance 

J            Rotor inertia 

D           Damping factor 

xd          Direct axis reactance 

xq          Quadrature axis reactance 

 

The main variables of 7-order model are: 

φ
qs

          Quadrature axis magnetic flux 

φ
ds

          Direct axis magnetic flux 

φ
kq

          Quadrature axis damper magnetic flux 

φ
kd

          Direct axis damper magnetic flux 

φ
fd

          Filed winding magnetic flux 

ifd           Filed winding current  

rs            Stator resistance  

rkq          Quadrature axis damper resistance 

rkd          Direct axis damper resistance 

rfd           Field winding resistance 

xls           Stator leakage reactance 

xlkq         Quadrature axis damper leakage reactance 

xlkd         Direct axis damper leakage reactance 

xlfd          Filed winding leakage reactance  

H            Inertia constant  

vq           Quadrature axis voltage 

vd           Direct axis voltage 

vkq         Quadrature axis damper voltage 

vkd         Direct axis damper voltage 

vfd          Field winding voltage 

θ            Generator voltage angle  

 

 

TABLE 5. Generator A [20] 

Real values Steady state calculations 

ωb = 120×π (rad/s) 

v =1 (p.u.)   

xe= 0.2 (p.u.)   

is=
s

v
 = 1 (p.u.)   

θ = cos-1 (
(Tm-D×1)

s
)  = 0.7227 (p.u.)   

δ= tan-1 ( 
xq×is× cos θ

v+xq× sin θ
) = 0.5223 (p.u.)   

𝜔 = 1 (pu)   

Efd=v× cos δ +xq×is× sin(δ+θ) = 2.8297 (p.u.)   

e´q=v× cos δ +x´d×is× sin(δ+θ) = 1.4048 (p.u.)   

S = 1 (p.u.) 

Tm = 0.8 (p.u.) 

J = 0.0252 (p.u.) 

𝐷 = 0.05 (p.u.) 

x´d = 0.568 (p.u.)   

xd = 2.072 (p.u.)  

xq = 1.559 (p.u.)   

T´do = 0.1310 (s) 

 

 

TABLE 6. Generator B [21] 

Real values Steady state calculations 

S = 835×1000000 (VA) xls = 0.19 (p.u.) θ= cos-1(PF)= 0.4510 (p.u.) 

vas= 1 (p.u.) 

ias= cos θ -(sin θ ×1)i= 

0.90 – 0.435 i (p.u.) 

Ea=vas+(rs×xq×1)i×ias= 

1.787 + 1.618 i (p.u.) 

δ=∡(Ea) = 0.7359 (p.u.) 

ids=- sin(-θ-δ) = 0.9272 (p.u.) 

iqs= cos(-θ-δ) = 0.3745 (p.u.) 

xmd=xd+xls = 1.61 (p.u.) 

xmq=xq+xls = 1.61 (p.u.) 

Efd=|Ea|+(xd-xq)×ids = 2.4114 (p.u.) 

ifd=
Efd

xmd
 = 1.4977 (p.u.) 

ikq=ikd=ios=0 (p.u.) 

φ
qs

=-xq×iqs+xmq×ikq = - 0.6741 (p.u.) 

φ
ds

=-xd×ids+xmd×ikd+xmd×ifd = 0.7423 (p.u.) 

φ
kq

=xlkq×ikq+xmq×(-iqs+ikq) = - 0.6029 (p.u.) 

φ
kd

=xlkd×ikd+xmd×(-ids+ifd+ikd) = 0.9185 (p.u.) 

φ
fd

=xlfd×ifd+xmd×(-ids+ifd+ikd) = 0.1303 (p.u.) 

ωr = 1 (p.u.) 

Tm=φ
ds

×iqs-φqs
×ids = 0.9030 (p.u.) 

vLL = 26000 (v) 𝑥𝑑 = 1.8 (p.u.) 

vs =
𝑣𝐿𝐿

√3
 (v) rfd = 0.000929 (p.u.) 

PF = 0.9 xlfd = 0.1414 (p.u.) 

ωb= 377 (rad/s) rkd = 0.01334 (p.u.) 

P = 2 xlkd = 0.08125 (p.u.) 

H = 5.6 (s) xq = 1.8 (p.u.) 

xe = 0.2 (p.u.) rkq = 0.00178 (p.u.) 

rs = 0.003 (p.u.) xlkq = 0.8125 (p.u.) 
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Persian Abstract 

 چکیده 
( برای تخمین پارامترهای دو مدل مختلف ژنراتور سنکرون در شرایط وجود نویز استفاده شده است. قابل ذکر است که  CDKFدر این مقاله، از فیلتر کالمن تفاضل مرکزی ) 

در این مقاله از تعداد کمتری ورودی جهت    نیتخم  تم یالگورمدل های مختلفی از ژنراتور سنکرون با سطوح مختلف دقت برای استفاده در الگوریتم های تخمین وجود دارد.  

(، از اعضای خانواده CDKF)  اندازه گیری برای تخمین حالت ها و پارامترهای ناشناس برای دو مدل دقیق از ژنراتور سنکرون استفاده می کند. فیلتر کالمن تفاضل مرکزی

( نتایج بهتری  CDKFی کند. فیلتر کالمن تفاضلی )، از نقاط سیگما برای مدل سازی معادلات غیر خطی استفاده م(UKF)  یکالمن خنث  لتریهمانند ففیلترهای کالمن بوده که  

کالمن تفاضل    لتریفارائه می دهد. در این تحقیق، با استفاده از دو مدل ژنراتور سنکرون با پارامترهای مختلف در سه سناریوی متفاوت، توانایی     یکالمن خنث  لتریفنسبت به   

 .به چالش کشیده می شود، که نشان می دهد این روش، بسیار کارا و قابل اطمینان است یمرکز
 
 

 
 

 

 


