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A B S T R A C T  
 

 

A multi-phase permanent magnet synchronous motors (PMSM) has applied popularly in the field of 
industry (e.g. trucks, ship propulsion, mining, etc) due to its high torque, efficiency and reliable 

operation.  So far, many researchers have studied the multi-phase PMSM (e.g, a three-phase PMSM, a 

six-phase PMSM) for electric vehicle applications. But, there are still significant limitations in the 
quantity of research on the six-phase PMSMs. Particularly, when researching this type of motor, authors 

mainly have provided specifications of the six-phase PMSMs and then conducted experiments on these 

machines without giving the detailed formulations to analytically compute and design dimensions and 
electromagnetic parameters.  In this research, an analytic model is first developed to determine the main 

parameters of a six-phase surface-mounted PMSM (SPMSM).  The finite element method (FEM) is then 

introduced to simulate and compute electromagnetic parameters, such as the current waveform, back 
electromotive force (EMF), flux density distribution, output torque, cogging torque, torque ripple and 

harmonic components. The development of proposed methods is applied on a practical problem of a six-

phase SPMSM of 7.5kW. 
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1. INTRODUCTION 
 

A six-phase permanent magnet synchronous motor 

(PMSM) has been recently used widely for electric 

vehicle applications. Because these motors have the high 

torque, power density, efficiency, wide speed range, 

reliability, durability and safety (1-5). Therefore, their 

extensive applications have been applied popularly in the 

fields of industrial, medical, aerospace and military 

sectors. Specifically, they are used in applications of 

electric vehicles, electric tractions, collaborative robots, 

drones  electrical drive systems. So far, many 

researchers, designers and manufacturers have also 

studied three phase PMSMs. However, compared to the 

six phase PMSMs, these motors are still limitations for 

the torque and efficiency (6). In order to improve the 

performance and reliability of these machines, a six-

phase PMSM has been proposed to use in applications 

demanding the high torque, efficiency and reliability.  A 

novel configuration for a six-phase direct-drive PMSM 

called the 60° phase-belt toroidal winding configuration 

(60°-TW) was presented (1) via the finite element 

method (FEM) to compute the magnetic field 

distribution, back electromotive force (EMF), cogging 

torque, output torque and efficiency. In this paper, unlike 

conventional methods, each coil in the 60°-TW was here 

wound in the same direction on the stator yoke. Patel et 

al. (2), proposed a novel winding arrangement for the six-

phase PMSM featuring 18 slots and 8 poles. This 

innovative configuration served to eliminate undesirable 

space harmonics within the stator magnetomotive force 

(MMF). Consequently, it leads to enhancements in 

power/torque density and efficiency while concurrently 

reducing eddy current losses in the rotor PMs and copper 

losses in the end windings. In addition, to improve the 

availability of the drive train for electric vehicles (EV) 

applications, this paper presented the concept of 

designing a six-phase PMSM as two distinct three-phase 

windings. A comprehensive investigation was carried out 

to explore various possible phase shifts between these 

two sets of three-phase windings, accounting for their 

slot-pole combinations and winding arrangements. The 

optimal phase shift was then selected through an analysis 

of harmonic distributions and their impact on the 

machine performance.  Scuiller et al. (3)introduced a 

design approach tailored for multi-phase PMSMs 

powered by pulse-width modulation (PWM) voltage 

source inverters. Initially, the potential for enhancing the 

torque density through harmonic utilization is presented. 

Then, the distinctive challenges stemming from the 

PWM-based power supply of multi-phase machines in 

the design process are addressed. Islam et al. (4) 

conducted a performance comparison of a five-phase 

external rotor PM assisted synchronous reluctance motor 

with two distinct winding configurations. In this context, 

a five-phase winding configuration proposed 

enhancements in power density, fault tolerance 

capabilities and the mitigation of torque pulsations, in 

contrast to conventional three-phase windings. 

Additionally, the incorporation of an external rotor 

structure contributes to further increases in power 

density. In, a novel six-phase PMSM with an innovative 

toroidal winding (NTW) configuration was also 

presented by Jin et al. (5) to investigate electromagnetic 

parameters such as the back EMF, cogging torque, torque 

ripple, output torque, losses and magnetic field 

distribution. In this paper, each coil of the NTW is 

uniformly wound onto the stator yoke in the same 

direction. The obtained results enhanced the low-speed 

performance and increased the output torque. They were 

also compared to the traditional six-phase PMSM.  Del 

Pizzo et al. (6) explored two potential electric propulsion 

motor solutions for unmanned aerial vehicles.  It involves 

a comparison of the sizes, weights, and certain 

characteristics between a three-phase PMSM and a six-

phase motor achieved through a suitable rewinding of the 

armature, while maintaining fixed stator and rotor 

magnetic circuits. Won et al. (7) presented an innovative 

electric truck application featuring a six-phase fractional-

slot concentrated winding PMSM. This machine design 

comprised a dual three-phase winding, spaced 75 degrees 

apart. A mathematical model for the six-phase interior 

PMSM (IPMSM) using the -d and-q axis theory was 

conducted (8). This model was subsequently utilized to 

deduce the precise interrelationships among different 

unitized machine parameters, aiming to achieve optimal 

performance in both inverter control (IC) and traction 

scenarios. Cheng et al. (9) analyzed a modeling of a six-

phase surface mounted PMSM (SPMSM) based on the 

equivalent magnetic circuit with the magnetic behavior 

and electrical characteristics.  

Despite many papers have researched on six-phase 

PMSMs as discussed above. However, there are still 

significant limitations in the quantity of research on these 

machines. Particularly, when researching these types of 

motors, authors mainly have provided specifications of 

the six-phase PMSM and then conducted experiments on 

these motors without giving the detailed analytical 

formulations for computing and analyzing their 

electromagnetic parameters.  

In this research, an analytical design is proposed for a 

six phase SPMSM to determine required dimensions and 

electromagnetic parameters as well. Then, the FEM is 

introduced to verify the analytical model via the 

simulation of the current waveform, back EMF, flux 

density distribution, output torque, cogging torque, 

torque ripple and harmonic components.  
 

 

2. MODEL OF A SIX PHASE PMSM  
 

A structure of the six-phase SPMSM with the 60° 

toroidal winding (TW) is depicted in Figure 1.  
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Figure 1. Modeling of the six-phase PMSM with 60°-TW (5) 

 

 

This design consists of an outer rotor core, an inner 

stator core and the distinctive 60°-TW. Unlike the 

conventional winding approach, each coil is wound onto 

the stator yoke in the 60°-TW (5). The structural 

characteristics of the 60°-TW is illustrated in Figure 2. 

The arrangement of stator windings for the six-phase 

PMSM with 60°-TW is illustrated in Figure 3. 

 
 
3. ANALYTICAL DESIGN   
 

In this part, a six-phase outer rotor SPMSM of 7.5kW 

with a 60°-TW configuration is analytically designed. 

The imput parameters of this machine are presented in 

Table 1. 

 

 

 
Figure 2. Structure of simplified stator of the six-phase 

PMSM with 60°-TW (5) 

 

 

 
Figure 3. Arrangement of stator windings (5) 

TABLE 1. Main parameters of outer rotor SPMSM 

Parameters Value Unit 

Continuous power 7.5 kW 

Phase terminal voltage 200 V 

Number of phases 6 phase 

Number of slots 24 slot 

Number of pole pair 4 pole pair 

Rated torque 95.5 N.m 

 

 

In a design process, the determination of parameters 

for PM is extremely an important part of the SPMSM as 

it produces the magnetic field in the air gap. 

The strength of magnetic field due to the PM in the 

SPMSM consists of the width, length, thickness and the 

pole embrace. Figure 4 shows the demagnetization 

curves of polarization (J) and magnetic flux density (B), 

where the PM of NdFeB N38SH with the remanence of 

1.26 T (at 20⁰C) and the normal working point of 0.9 T 

are used in this study. The main dimensions of the 

magnetic core are presented in Figure 5. The magnetic 

flux density in the air gap (𝐵𝑔) is defined as: 

𝐵𝑔 =
4

𝜋
sin(𝛼)𝐵𝑚,  (1) 

where 𝛼 is the half coverage angle defined in electrical 

degree and  𝐵𝑚 is the magnetic field density due to the 

PM. The PM thickness is defined then as: 

𝑑𝑚 =
𝜇𝑚𝑔𝑒𝑓𝑓

𝐵𝑟.4𝑠𝑖𝑛(𝛼)

𝐵𝑔𝜋
−1

  (2) 

where 𝜇𝑚, 𝑔𝑒𝑓𝑓  and 𝐵𝑟  are respectively the permeability 

of PM, length  of effective air gap and remanence of PM. 

The 𝑔𝑒𝑓𝑓  is defined via the air gap length (𝑔) and Carter’s 

factor (𝑘𝑐 ), i.e (10), 

𝑔𝑒𝑓𝑓 = 𝑘𝑐 . 𝑔  (3) 

for 

𝑘𝑐 =
𝜏𝑠

𝜏𝑠−𝛾𝑔
  (4) 

where 𝜏𝑠 is the slot pitch and can be defined as: 

𝜏𝑠 =
𝜋(𝐷𝑖𝑟−2𝑔)

𝑍
  (5) 

 
 

 
Figure 4. Demagnetization curves for N38SH (11) 
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Figure 5. Main dimensions of the magnetic core (top) and 

slot (bottom) 

 

 

where 𝐷𝑖𝑟 is the inner diameter of rotor and and 𝑍 is the 

number of slots. The factor if PM motor (𝛾) is computed 

via the below expression (10): 

𝛾 =
2𝑏𝑠

𝜋𝑔
[arctan (

𝑏𝑠𝑜

2(𝐿+𝑔)
) −

𝐿+𝑔

𝑏𝑠𝑜
ln √1 + (

𝑏𝑠𝑜

2(𝐿+𝑔)
)
2
]  (6) 

where 𝑏𝑠𝑜 is the width of slot opening and 𝐿 is the length 

of PM, which is equal to the length of the both rotor and 

stator. The width of PM (𝑤𝑚) can be now defined: 

𝑤𝑚 =
𝛼𝐷𝑖𝑟

𝑝
  (7) 

where p is the number of pole pair. The volume of the 

armature part being an essential parameter in determining 

the 𝐷𝑖𝑟  and 𝐿 can be calculated as (10): 

𝜋

4
𝐷𝑖𝑟
2 𝐿 =

𝑀𝑛𝑘𝑠𝑎𝑓𝑒

2𝜎𝑚
  (8) 

where 𝑀𝑛 is the rated torque of the motor, 𝑘𝑠𝑎𝑓𝑒  is the 

safe factor (𝑘𝑠𝑎𝑓𝑒  = 2 ÷ 3), 𝜎𝑚 is the value of the shear 

stress of the PM (for material (NdFeB), it can be 𝜎𝑚 = 20 

– 50 kPa). It should be noted that the relation between the 

𝐷𝑖𝑟  and 𝐿 is presented through the shaping coefficient 

(𝑘𝑠ℎ𝑎𝑝𝑒), that is: 

𝑘𝑠ℎ𝑎𝑝𝑒 =
𝐿

𝐷𝑖𝑟
  (9) 

From the Equation 9, the value of 𝐷𝑖𝑟 and 𝐿 can be 

computed.  

In addition, the height of stator yoke (ℎ𝑠𝑦) and rotor 

yoke (ℎ𝑟𝑦) can be respectively determined as: 

ℎ𝑠𝑦 =
𝐵𝑚𝑤𝑚

2𝐵𝑠𝑦
, ℎ𝑟𝑦 =

𝐵𝑚𝑤𝑚

2𝐵𝑟𝑦
  (10a-b) 

where the fields 𝐵𝑠𝑦 and 𝐵𝑟𝑦 are respectively the flux 

densities at the stator and rotor yokes given in Table 2. 

The width of tooth (𝑤𝑡) is now defined: 

𝑤𝑡 =
2𝑝𝐵𝑚𝑤𝑚

𝑍𝐵𝑡
  (11) 

where 𝐵𝑡  is the tooth flux density given in Table 2.  

The number of conductors (𝑁𝑐) per coil is given as: 

𝑁𝑐 =
𝑈𝑝ℎ𝑎𝑠𝑒

2𝜋√2𝑓𝑞𝑘𝑤𝐵𝑔𝑐𝑜𝑠𝛿𝐷𝑖𝑟𝐿
  (12) 

where 𝑈𝑝ℎ𝑎𝑠𝑒 , 𝑓, 𝑞, 𝑘𝑤 and 𝛿 represent the phase voltage, 

frequency, number of slot per pole per phase, winding 

factor and torque angle, respectively. The torque angle 

for SPMSM is usually designed in the range of 15÷30 

degrees. In this study, it is chosen as 20 degrees (2). The 

slot area can be calculated as: 

𝐴𝑠𝑙𝑜𝑡 =
4𝑁𝑐𝐴𝐶𝑢

𝑘𝑓𝑖𝑙𝑙
  (13) 

where 𝐴𝐶𝑢 is the copper area of the conductor and 𝑘𝑓𝑖𝑙𝑙  is 

the slot filling factor.  

As presented in Figure 5, the slot top width (𝑏𝑠1), slot 

bottom width (𝑏𝑠2), slot height (ℎ𝑠) can be calculated as 

the below expressions: 

𝑏𝑠1 =
𝜋(𝐷𝑜𝑠−2ℎ𝑠𝑜−2ℎ𝑤)

𝑍
− 𝑤𝑡  (14) 

𝑏𝑠2 = √𝑏1
2−4𝜋×𝐴𝑠𝑙𝑜𝑡

𝑍
  (15) 

ℎ𝑠 =
2𝐴𝑠𝑙𝑜𝑡

𝑏1+𝑏2
  (16) 

where ℎ𝑠𝑜 and ℎ𝑤 are respectively the height and wedge 

of the slot opening.  

Based on the anaytical calculation process above, the 

required dimensions of a six-phase outer rotor SPMSM 

of 7.5 kW are given in Table 3.  

 
 
4. ANALYSIS OF NO AND FULL LOAD OPERATIONS 
 

In this part, the machine is operated under no-load 

conditions considered as a valuable means of assessing 

the motor magnetic circuit, a crucial element in motor 

 

 
TABLE 2. Value of magnetic Densities of PM machine (5) 

Position Flux density (T) 

Stator yoke 1.0 – 1.5 

Rotor yoke 1.0 – 1.5 

Tooth 1.6 – 2.0 
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TABLE 3. Main dimensions of a six-phase SPMSM of 7.5kW 

Parameters Value Unit 

𝐷𝑖𝑟  224 mm 

𝐿  112 mm 

ℎ𝑟𝑦  19 mm 

𝑔  1 mm 

𝑤𝑚  63,53 mm 

𝑑𝑚  2,5 mm 

𝑤𝑡  10,6 mm 

ℎ𝑠  22,9 mm 

𝑏𝑠1  17 mm 

𝑏𝑠2  11 mm 

𝑏𝑠𝑜  5 mm 

ℎ𝑠𝑜  1 mm 

ℎ𝑤  2 mm 

ℎ𝑠𝑦  19 mm 

𝑁𝑐  44 turn 

𝑛𝑐  224  

 

 
design. This paper focuses on studying the 

electromagntic parameters such as the magnetic flux 

density distribution,  back EMF, output torque, cogging 

torque and torque ripple. Based on the required 

parameters already given in Table 3, a 2-D model of the 

proposed motor is considered for both no and full load 

conditions. 

The no-load back-EMF depedning on several factors 

(such as winding factors, number of turns per phase, 

magnetic flux density in air gap, frequency) is defined as 

follows (2). 

𝐸0 = √2sin (
𝑦

𝜏

𝜋

2
)
1

𝑞
|∑ 𝑒−𝑗𝜃𝑚

𝑁𝑐
𝑚=1 |𝑝𝐵𝑁𝑐𝜏𝑓𝐿  (17) 

where y is the coil pitch, 𝜏 is the pole pitch, f is the 

frequency (Hz), q is the slot number of single  phase per 

pole and 𝜃𝑚 is the electrical angle between adjacent slots. 

The term j is expressed as the current direction (with i = 1 

for the positive current direction and i = −1 for the 

negative current direction). 

The cogging torque is a type of torque appearing on 

the teeth that can lead to the vibration and noise in 

SPMSM (12, 13). When using the SPMSM in variable 

speed drive applications, if the frequency of torque 

fluctuations aligns with the mechanical resonance 

frequency of the stator or rotor, it can amplify the 

vibration and noise originating from the cogging torque. 

Thus, the calculation of the cogging torque is very 

importance in the design and production of high-

performance SPMSMs.  

The expression for the cogging torque (𝑇𝑐𝑜𝑔) is 

computed via the following equations (11, 14-17). 

𝑇𝑐𝑜𝑔(𝜃) = 
2𝐿𝐵𝑔

2𝑍𝑝

𝜋𝜇0𝑁𝐿
(𝑅𝑖𝑛

2 − 𝑅𝑜𝑢𝑡
2 )𝑇𝑘  (18) 

𝑇𝑘 =

∑
𝐾𝑠𝑘

𝑘
sin (𝑘𝑁𝐿

𝑏0

2
)∞

𝑘=1 sin (𝑘𝑁𝐿
𝛼𝑝

2𝑝
) sin (𝑘𝑁𝐿(𝜃 −

𝛼𝑠

2
))  

(19) 

𝐾𝑠𝑘 =
2𝑠𝑖𝑛(

𝑘𝑁𝐿𝛼𝑠

2
)

𝑘𝑁𝐿𝛼𝑠
  (20) 

where 

-  𝐵𝜎  is the maximum magnetic flux density in air gap, 

-  NL is the lowest common multiple of Ns and 2p, 

 - μ0 is the permeability of air, 

 - Rin is the inner radius of the air gap,  

- Rout is the outer radius of the air gap,  

- b0 is the slot opening,  

- αp indicates the pole-arc to pole-pitch ratio,  

- αs is the skewing angle,  

- Ksk is the skew factor. 

 

 

5. SIMULATION RESULTS 
 
Based on the required dimensions obtained from the 

analytical model given in Table 3, the FEM is introduced 

to compute and analyse the electromagnetic parameters 

of the proposed motor. The first step is considered with 

no skewing PM to see the waveform of the back EMF, 

then a skewing PM technique is presentd to improve this 

draw back. 

The 2-D geometry and mesh are presented in Figures 

6 and 7, respectively. Winding configurations of a six-

phase outer rotor SPMSM is presented in Figure 8. The 

direction of currents in the six-phase winding is pointed 

out in Table 4. 

The distribution of back EMF waveform and output 

torque of the six-phase outer rotor SPMSM are shown in 

Figures 9 and 10, respectively. It can be seen that in 

 

 

 
Figure 6. Geometry of the proposed motor in 2D 
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Figure 7. 2D-Mesh on a quarter view of model 

 

 

 
Figure 8. Winding configurations of a six-phase outer rotor 

SPMSM 

 

 
TABLE 4. Direction of currents 

Slots 
Current 

directions 
Slots 

Current 

directions 
Slots 

Current 

directions 

1 
2+ 1+ 

2 
1- 3- 

3 
3+ 2+ 

6- 5- 5+ 4+ 4- 6- 

4 
2- 1- 

5 
1+ 3+ 

6 
3- 2- 

6+ 5+ 5- 4- 4+ 6+ 

7 
2+ 1+ 

8 
1- 3- 

9 
3+ 2+ 

6- 5- 5+ 4+ 4- 6- 

10 
2- 1- 

11 
1+ 3+ 

12 
3- 2- 

6+ 5+ 5- 4- 4+ 6+ 

13 
2+ 1+ 

14 
1- 3- 

15 
3+ 2+ 

6- 5- 5+ 4+ 4- 6- 

16 
2- 1- 

17 
1+ 3+ 

18 
3- 2- 

6+ 5+ 5- 4- 4+ 6+ 

19 
2+ 1+ 

20 
1- 3- 

21 
3+ 2+ 

6- 5- 5+ 4+ 4- 6- 

22 
2- 1- 

23 
1+ 3+ 

24 
3- 2- 

6+ 5+ 5- 4- 4+ 6+ 

 
Figure 9. Back EMF waveform without using the skewing 

technique 

 

 

 
Figure 10. Output torque waveform without using the 

skewing technique 

 

 

Figure 9, the waveform is still non sinusoidal due to 

high harmonic components.  Thus, to make sure that the 

back EMF waveform is sinusoidal, the skewing 

technique for the PM with different angles is proposed as 

in Figure 11. Here, the PM is divided into five segments 

with different angles as given in Table 5. The minimal 

cogging torque with the use of skewing PM technique is 

presented in Figure 12. It should be noted that when the 

skew angle is chosen, the PM skew angle is zero for a 

symmetric case (see Table 5). These angles are chosen 

randomly to show how well the skewing technique could 

bring. However, these angles can be used in an 

optimization process to obtain the best result with the 

minimum torque ripple.  

The map of flux density distribution with the skewing 

PM technique is shown in Figure 13. It can be seen that  
 

 

 

 
Figure 11. PM with the skewing technique 
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TABLE 5. Skewing angle of the PM with five slices 

Segments Angles 

1 -6 

2 -3 

3 0 

4 3 

5 6 

 

 

 
𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑐𝑜𝑔_𝑠𝑙𝑖𝑐𝑒1 + 𝑇𝑐𝑜𝑔_𝑠𝑙𝑖𝑐𝑒2 + 𝑇𝑐𝑜𝑔_𝑠𝑙𝑖𝑐𝑒3

+ 𝑇𝑐𝑜𝑔_𝑠𝑙𝑖𝑐𝑒4 + 𝑇𝑐𝑜𝑔_𝑠𝑙𝑖𝑐𝑒5 

Figure 12. Cogging torque with skewing PM technique 
 

 

 
Figure 13. Flux density distribution with the skewing PM 

technique 
 

 

the maximum value is 2.153 T, which is acceptable. It 

should be also noted that the higher value of flux density 

concentrates on the teeth and the corner of tooth tips due 

to the small area while the other parts of the core have the 

smaller value of flux density. The distribution of flux 

density waveform consisting of both the radial and 

tengential fluxes in the air gap is presented in Figure 14.  

The harmonic compnents for this field is analyzed as 

shown in Figure 15. The flux linkage in no load and full 

load mode waveform and their harmonics order are also 

 
Figure 14. Waveform of air gap flux density 

 

 

 
Figure 15. Harmonic components of the air gap flux density 

 

 

presented in Figures 16 and 17. The back EMF waveform 

after using the skewing technique is shown in Figure 18.  

It can be seen that it is almost sinusoidal, which is the 

expected output result. The harmonic order of the line-

line back EMF with the harmonic distortion of 2.785% is 

shown in Figure 19. The output torque waveform is 

pointed out in Figure 20. Its torque ripple is shown in 

Fugure 21, with the value of under 3.5%. 

The torque ripple holds significant importance in the 

design. One of the main reasons appearing the torque 

ripple is the cogging torque that is presented in Figure 22. 

This outcome signifies the motor's stable and smooth 

operation, a crucial aspect to be attained in the overall 

design. 

 

 

 
Figure 16. Flux linkage waveform 

Middle line

T_cogslice1

T_cogslice2

T_cogslice3

T_cogslice4

T_cogslice5

0 50 100 150 200 250 300 350

Angle (EDeg)

-1

-0.5

0

0.5

1

F
lu

x
 D

e
n
s
it
y
 (

T
)

total air gap flux density

radial air gap flux density

tangential air gap flux density



T. Truong Cong et al. / IJE TRANSACTIONS A: Basics  Vol. 37 No. 07, (July 2024)   1274-1283                                         1281 

 

 
Figure 17. Harmonics order of the flux linkage under no 

load and full load mode 

 

 

 
Figure 18. Back EMF waveform using the skewing 

technique 
 

 

 
Figure 19. Harmonic components of the back EMF 

 

 

 

 
Figure 20. Output torque waveform 

 
Figure 21. Torque ripple waveform 

 

 

 
Figure 22. Cogging torque waveform 

 

 

6. CONCLUSION 

 
In this paper, the required parameters of the 7.5 kW six-

phase outer rotor SPMSM using the PM material of 

NdFeB (N38) have been successfully obtained by the 

analytic model. The FEM has been also applied to verify 

and simulate the electromagnetic parameters of the 

proposed motor, such as the waveform of back EMF,  

output torque torque ripple and cogging torque by using  

the skewing PM technique.  The magnetic flux density in 

air gap, harmonic components of the air gap flux density 

and waveform of flux linkage under no and full load 

operations have been also successfully presented. The 

obtained results can be served as useful reference for 

designers, researchers and manufactures to go on 

completing the prototype of design for the 7.5 kW six-

phase outer rotor SPMSM. This is also a foundation for 

many subsequent studies, including potential research 

areas such as optimizing design calculations using 

optimization methods like genetic algorithms, swarm 

optimization, etc. 

The developed method could be extended for 

calculating the network from equivalent resistances for 

each part of the motor. This process helps determine the 

waveforms of important parameters during the motor's 

operation, such as air gap flux density, dynamic reactance 

waveform, output torque waveform, as well as tooth 

torque waveform. Subsequently, various approaches can 

be proposed to improve the waveforms of these motor 
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parameters, aiming to enhance the overall optimization 

of the motor. 
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Persian Abstract 

 چکیده 

( به دلیل گشتاور بالا، راندمان و عملکرد قابل اعتماد، در زمینه صنعت )مانند کامیون ها، نیروی محرکه کشتی، معدن و  PMSMموتورهای سنکرون آهنربای دائم چند فازی )

شش فاز( را برای کاربردهای خودروهای الکتریکی مورد    PMSMسه فاز،    PMSMچند فازی )به عنوان مثال،    PMSMغیره( کاربرد زیادی دارد. تاکنون، بسیاری از محققان  

های شش فازی وجود دارد. به ویژه، هنگام تحقیق در مورد این نوع موتور،  PMSMهای قابل توجهی در کمیت تحقیقات در مورد  اند. اما، هنوز محدودیتمطالعه قرار داده

های شش فاز را ارائه کرده و سپس آزمایشاتی را بر روی این ماشین ها بدون ارائه فرمول های دقیق برای محاسبه تحلیلی و طراحی   PMSMنویسندگان عمدتاً مشخصات  

( توسعه SPMSMشش فازی روی سطح )  PMSMابعاد و پارامترهای الکترومغناطیسی انجام داده اند. در این تحقیق، ابتدا یک مدل تحلیلی برای تعیین پارامترهای اصلی یک  

(، توزیع  EMFسازی و محاسبه پارامترهای الکترومغناطیسی، مانند شکل موج جریان، نیروی الکتروموتور برگشتی )( برای شبیهFEMداده شد. سپس روش اجزای محدود )

شش    SPMSMشود. توسعه روش های پیشنهادی بر روی یک مشکل عملی  چگالی شار، گشتاور خروجی، گشتاور چرخشی، ریپل گشتاور و اجزای هارمونیک معرفی می 

 کیلووات اعمال می شود.  7.5فازی 

 


