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A B S T R A C T  
 

 

In this work, a Symmetrical Dual Gate Tunnel Field Effect Transistor (SDGTFET) is proposed with gate 

dielectric materials in 10nm technology. The electrical performance parameters of this proposed device 
are investigated using technology computer aided design (TCAD) simulator. The new SDGTFET 

employing with high-k dielectric material such as hafnium oxide (HfO2) and interfacial layer (IL). The 

2nm HfO2 with 30 dielectric constant is used between the interfacial layer and the metal gate on both 
sides of the device. The variation of the drain current with the varying of gate length, effective gate 

materials and effective oxide layer thickness of the device is evaluated in this work. By optimizing the 

proposed device with gate dielectric material the on current gets ∼4.2 times enhanced and the averaged 

subthreshold swing (SSavg) becomes reduced from 90.2 mV/dec to 53.8 mV/dec. Therefore, the 

SDGTFET structure has better performance than single material and double material TFET and shows a 
lower ambipolar current and a better on current to off current ratio. 
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1. INTRODUCTION 
 

An advanced Metal-Oxide-Semiconductor Field-Effect 

Transistor (MOSFET) represents a pivotal innovation in 

the realm of semiconductor technology, revolutionizing 

the design and functionality of electronic devices (1). 

MOSFETs are fundamental building blocks of modern 

integrated circuits, and advancements in their structure 

and materials have been crucial for achieving higher 

performance, increased energy efficiency, and enhanced 

miniaturization in electronic systems. The traditional 

MOSFET consists of a metal gate, an insulating silicon 

dioxide layer, and a semiconductor material, such as 

silicon. The advanced MOSFET has innovations beyond 

the conventional design, such as the integration of high-

k dielectric material being hafnium oxide (HfO2), 

Titanium dioxide (TiO2) and low-k dielectric material 

being silicon dioxide (SiO) and novel materials to 

overcome challenges associated with scaling down 

transistor dimensions (2). This shift is driven by the need 

to reduce the thickness of the gate oxide layer, a critical 

component in MOSFETs, to maintain control over the 

flow of electrical current while avoiding leakage current 

in the device. High-k dielectrics enable the creation of 

physically thinner gate oxides, allowing for better 

electrostatic control and improved transistor performance 

in semiconsuctors (3). The pursuit of smaller transistor 

sizes has led to the development of Fin Field-Effect 

Transistor (FinFET) and nanowire advanced transistor 

architectures. These three-dimensional structures provide 

better control over the flow of electrons, mitigating short-

channel effects and allowing for continued transistor 

scaling. Advanced MOSFET technology is integral to the 

progress of semiconductor manufacturing processes, 

enabling the creation of more powerful and energy-

efficient electronic devices. As semiconductor research 

and development continue to evolve, the exploration of 

new materials, advanced transistor architectures, its 

performance and innovative manufacturing techniques 

will further shape the landscape of advanced MOSFETs, 

influencing the capabilities and efficiency of future 

electronic systems (4). 

The Advanced Tunnel Field-Effect Transistor 

(TFET) represents a cutting-edge development in 

semiconductor technology, pushing the boundaries of 

traditional transistor design to overcome challenges 

related to power consumption and performance scaling 

(5). As an innovative electronic device, the TFET devices 

leverages quantum mechanical tunneling phenomena to 

facilitate low-power operation, making it a promising 

device for applications demanding high energy efficiency 

and improved transistor scaling (6). In contrast to 

MOSFETs, TFETs exploit the quantum tunneling effect, 

allowing electrons to pass through a thin barrier without 

the need for high thermal energy (7). This unique an 

improved characteristic enables TFETs to operate at 

lower voltage levels, resulting in reduced power 

consumption and improved overall energy efficiency. 

The adoption of TFETs is particularly significant in the 

context of power-constrained devices, such as those used 

in portable electronics and low-power Internet of Things 

(IoT) applications (8). The TFET design often 

incorporates materials with a narrow bandgap, enabling 

efficient quantum tunneling. The concept is especially 

relevant for addressing challenges associated with 

conventional MOSFETs as they approach the physical 

limits of scaling down in size (9). TFETs provide an 

alternative path to continue the advancement of transistor 

technology by mitigating issues like subthreshold swing, 

which affects the energy efficiency in small-scale nano 

transistors. As semiconductor research and development 

progress, the exploration of advanced TFET 

architectures, materials, and fabrication techniques 

continues. Engineers and researchers are working to 

optimize TFET designs for mainstream integration, 

considering factors such as manufacturability, reliability, 

and compatibility with existing semiconductor processes 

and analysis (10). The continuous evolution of TFET 

technology holds the promise of revolutionizing the 

landscape of low-power electronics, enabling the 

development of energy-efficient devices that are crucial 

for the future of computing and communication systems 

(11).  

The dielectric constant SiO2 depends on various 

factors, including the crystalline structure, temperature, 

and frequency of the applied electric field. This material 

is commonly used as a dielectric material in the 

semiconductor industry, the dielectric constant is 

typically around 3.9 (12). The dielectric constant of SiO2 

is relatively low compared to other dielectric materials. 

The lower dielectric constant helps in minimizing the 

capacitive coupling between adjacent conductive 

structures in integrated circuits (13). However, as 

semiconductor devices have scaled down in size, there 

are challenges associated with increasing capacitance and 

reducing leakage currents. This has led to the exploration 

of alternative high-k dielectric materials, such as hafnium 

dioxide (HfO2), to address these challenges in advanced 

semiconductor technologies (14). 

The HfO2 is a metal oxide that is used as a dielectric 

material in the nano scale devices and  manufacturing of 

advanced semiconductor devices, particularly in the 

fabrication of modern integrated circuits (15). The 

dielectric constant is a measure of a materials ability to 

store electrical energy in an electric field. The dielectric 

constant of HfO2 is typically in the range of 20 to 30, 

depending on factors such as the specific crystalline 

phase, the method of deposition, and the conditions of the 

fabrication process. This value is higher than the 

dielectric constants of conventional SiO2, which has 

historically been used as a high-k dielectric material in 

semiconductor devices. The use of HfO2 as a high-k 
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dielectric is motivated by the need to reduce the physical 

thickness of the dielectric layer while maintaining a high 

capacitance to improve the overall performance of 

transistors in integrated circuits (16). High-k dielectrics 

are employed to overcome the limitations of traditional 

silicon dioxide in terms of thickness scaling and leakage 

current in advanced semiconductor technologies. 

The Titanium dioxide (TiO2) is another material that 

is often used as a dielectric in various applications. The 

dielectric constant or relative permittivity of TiO2 can 

vary depending on factors such as the crystalline phase, 

temperature, and frequency of the applied electric field. 

The crystalline form of TiO2, which is rutile, the 

dielectric constant is typically around 85. Anatase and 

brookite are two other crystalline phases of TiO2, and 

they may have different dielectric constants. It's 

important to note that the dielectric constant can vary 

with the frequency of the electric field (17). 

One of the common challenges in TFET emerging 

technology is the limited experimental validation. Many 

researchers might rely on simulations and theoretical 

models, and experimental verification might be lacking. 

Filling this gap requires more efforts in fabricating and 

characterizing SDGFET devices to validate the 

theoretical predictions and understand real-world 

performance for low power applications. The selection of 

materials is crucial in semiconductor device design. The 

literature may not fully explore the variety of materials 

that could enhance the performance of advanced TFET 

devices. Researchers could explore new material 

combinations such as high-k dielectric materials such as 

HfO2 and TiO2 to improve its overall device performance 

and reduce leakage current. The literature extensively 

cover the challenges associated with the fabrication 

processes for TFETs. Addressing this gap involves 

optimizing fabrication techniques and advanced to ensure 

reproducibility, scalability, and manufacturability in 

nanometer technology not behind 22nm. The SDGTFET 

is designed for low-power applications, the literature 

comprehensively explore the trade-offs between power 

consumption and performance metrics such as speed. 

Addressing this gap requires a balanced approach to 

optimizing device parameters for specific applications in 

nanometer technology. 

The SDGTFET has gained attention in the realm of 

semiconductor devices is characterized by its unique 

dual-gate structure. It consists of two gates, each 

influencing the flow of charge carriers in the transistor 

and the symmetrical design allows for enhanced control 

over the transistor's behavior. The traditional TFET, the 

SDGTFET relies on quantum tunneling for carrier 

transport and tunneling occurs through a thin barrier, 

enabling low-power operation. The primary advantage of 

SDGTFET is their potential for extremely low-power 

operation due to the reliance on tunneling. The 

symmetrical dual-gate design provides improved control 

and flexibility in tuning the transistor's characteristics. 

Optimizing fabrication processes and ensuring the 

process of compatibility  with nano structures to existing 

advanced semiconductor manufacturing techniques are 

critical for TFET practical applications. Therefore, 

SDGTFET device is a unique approach to low-power 

semiconductor devices, leveraging a unique dual-gate 

structure and quantum tunneling principles. 

 

 

2. DEVICE STRUCTURE AND SIMULATION 
PARAMETERS 
 
Two dimensional structure of SDGTFET with high-k 

gate dielectric material and interfacial layer as shown in 

Figure 1. The 10nm scale, conventional TFET design 

face challenges such as increased leakage currents and 

quantum effects (18). The SDG TFET, with its enhanced 

symmetrical dual gate architecture, offers a potential 

solution by providing better control over the electrostatic 

field. The high-k gate dielectric materials such as HfO2 is 

employed for achieving optimal performance at 10nm 

scale. High-k dielectrics are particularly important in 

reducing leakage currents and enhancing gate control. 

The integration of advanced dielectric materials ensures 

that the SDG TFET can operate efficiently while 

maintaining a low power footprint (19). The proposed 

device plays a pivotal role in improving device 

characteristics. The design allows for a more uniform 

electric field distribution and tunneling barrier thickness 

and distance. This architecture is beneficial in achieving 

better ON/OFF current ratios, which are crucial for low 

power applications. The 10nm scale SDG TFET 

leverages tunneling as its fundamental mechanism of 

operation (20). The symmetrical gates help in optimizing 

tunneling processes, ensuring reliable and efficient 

charge through the channel and this 10nm SDG TFET is 

to enhance power efficiency. The combination of the 

symmetrical dual gate (SDG) architecture and advanced 

gate dielectric materials contributes to lower leakage  

 
 

 
Figure 1. Proposed SDGTFET in 10nm regime 
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currents, reduced power consumption, and improved 

overall energy efficiency (21). 

Designing a SDG TFET with advanced gate dielectric 

materials using Technology Computer-Aided Design 

(TCAD) involves a comprehensive process that 

encompasses simulation, analysis, and optimization. 

TCAD tools provide engineers with a virtual 

environment to model and simulate semiconductor 

devices (3). 

The SDGTFET under consideration makes use of 

simulation parameters as shown in Table 1. Various 

models and methods are applied for the simulation, 

employing the TCAD tool, as outlined in Tables 2 and 3. 

 

 
TABLE 1. Utilized Parameter for the simulation of SDGTFET 

Utilized Parameters Values 

Thickness of HfO2 2nm 

Metal Gate-1 Work Function(WF) 4.8eV 

Metal Gate-2 Work Function(WF) 4.8eV 

Device Length(WL) 60 nm 

Gate Length(LG) 10 nm 

Source Length(LS) 25nm 

Drain Length(LD) 25nm 

 

 
TABLE 2. Models used for the device 

Model Description 

conmob 
Specifies the mobility concentration and 

dependency 

fldmob Calculation of all the device field dependency 

evsatmod=1 
implements the carrier concentration and 

temperature mobility 

hcte.el 
to enable electric field energy balance for electrons 

for relaxation time 

taurel.el specifies the relaxation time in the energy balance 

taumob.el 
specifies the relaxation time for electrons in the 

temperature dependency 

 

 
TABLE 3. Methods used for the device 

Method Description 

newton specifies the solution method  

maxtrap used as trap procedure  

autonr used to increase the speed of newton solution method 

dvlimit used as maximum magnitude  

nblockit used as the block iterations 

 

The different design parameters to optimize the 

performance of SDGTFET. This could include varying 

the dimensions of the device in nanometer dimensions, 

doping concentrations, and material properties. 

Investigate the impact of different semiconductor 

materials on the device performance. Compare and 

analyze the characteristics of SDGTFET based on 

various materials, such as silicon, III-V compounds. The 

noise analysis to understand the impact of noise sources 

on the device performance. This can involve studying the 

thermal noise, flicker noise, and other sources that affect 

the signal integrity. The power consumption 

characteristics of the Symmetrical Dual Gate TFET 

under different operating conditions. Analyze the device 

performs in terms of energy efficiency and power 

dissipation. The temperature dependence of the 

Symmetrical Dual Gate TFET. To understand the device 

behaves at different temperature ranges and explore 

potential strategies for temperature compensation. 

 

 

3. RESULTS AND DISCUSSION 
 

The analysis of Id (drain current) versus Vgs (gate-source 

voltage) for a SDGTFET with different gate dielectric 

materials involved for the proposed device characteristics 

under varying gate voltages. SDGTFET are promising 

device for low-power applications due to their ability to 

achieve sub-threshold swing values below the limit of 

conventional TFET (22, 23). One of the critical 

parameters to analyze is the sub-threshold swing, which 

is a measure of the SDGTFET ability to turn on and off 

efficiently. A lower SS value indicates better improved 

performance in in the device. The threshold voltage 

changes with different gate dielectric materials. Vth is the 

gate voltage at which the device starts conducting. It's 

essential for determining the operating region of the 

TFET (24). To analyze the drain current (Id) varies with 

different gate-source voltages. This shows the on-state 

behavior of the TFET as shown in Figure 2. A high 

Ion/Ioff ratio indicates better switching behavior and 

power efficiency of the proposed device (25, 26). The 

proposed tunneling device, the tunneling current should 

be a dominant factor. Analyze the impact of gate 

dielectric materials such as high-k HfO2 on tunneling 

mechanisms and their influence on device performance. 

The drain current (Id) versus gate-source voltage 

(Vgs) characteristics for a SDGTFET with variation of 

different technology regimes as shown in Figure 3 and 

investigate the proposed device characteristics scale with 

10nm, 12nm and 15nm nodes (27). The 10nm node are 

scalable to smaller technology nodes for the limitations 

associated with scaling factor. The dynamic power 

consumption of SDGTFET during switching events and 
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Figure 2. Characteristics of  drain current and Gate voltage 

with dielectric materials 

 

 

 
Figure 3. Characteristics of  drain current and Gate voltage 

with different technolgy node 

 

 

static power consumption in the off-state are reliable in 

10nm regime. The performance of the SDGTFET with 

gate dielectric materials and technology nodes has 

improved compared to conventional TFET and double 

gate TFET (28). 

The drain conductance (Gd) of SDGTFET is the 

derivative of the drain current (Id) with respect to the 

drain-source voltage (Vgs). In the characteristics of a 

SDGTFET with gate dielectric materials, the analysis of 

drain conductance involves the conductance varies with 

different parameters, such as improved gate voltages, 

gate dielectric materials, and bias conditions (29). The 

high-k gate dielectric materials influences the drain 

conductance at Vgs= 1v. Different dielectric materials 

such as high-k and low-k dielectric materials can affect 

the tunneling characteristics and, consequently, the 

conductance of the device. The sub-threshold region of 

this TFET is transitioning between the off and on states. 

A steep sub-threshold region and low drain conductance 

in the off state are desirable and shown in Figure 4. 

Transconductance plays a critical role in 

understanding and characterizing the behavior of this 

proposed SDGTFET devices, and it is an essential 

concept in amplifier design, digital signal processing, and 

analog electronics (30). This characteristic is a measure 

of how much the output current of a device, changes in 
 

 
Figure 4. Characteristics of drain conductance with different 

technolgy node 
 

 

the input voltage applied to it and it is a key factor in 

determining the gain and linearity of the device as it 

influences how effectively an electronic components can 

amplify an input signal. In the proposed devices, it 

characterizes the relationship between the input voltage 

and the output current when operating in the amplification 

or active mode. It is used to design and optimize the 

performance of electronic devices, ensuring they operate 

efficiently and accurately as shown in Figure 5. 

The on resistance (Ron) is to determining the power 

dissipation and efficiency of a TFET. It is essentially the 

resistance by the current flowing between the drain and 

source terminals when the TFET is conducting. Ron is a 

static resistance that represents the resistance of the TFET 

in the on-state. It is typically defined as the voltage drop 

across the device divided by the drain current when the 

device is in the on-state as shown in Figure 6. 

The enhanced Ion and Ioff, performance parameters 

of proposed device related to material and technology as 

shown in Tables 4 and 5. The Gm and Gd calculated 

parameters are shown in Tables 6 and 7. The performance 

parameter comparision of proposed device with existed 

devices are shown in Table 8. 

 

 

 
Figure 5. Characteristics of  transconductance with different 

technolgy node 
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Figure 6. On resistance characteristics with different 

technolgy node 

 

 
TABLE 4. On current and off current for different dielectric 

materials 

Materials  Ion(A/µm) Ioff(A/µm) Ion/Ioff 

Air 10e-05 10e -15 10e+12 

SiO2 10e -5 10e -16 10e +11 

HfO2 10e -3 10e -17 10e +12 

TABLE 5. On current and off current for different technology 

node 

Technology (nm) Ion (A/µm) Ioff (A/µm) Ion/Ioff 

10 10e-06 10e -12 10e +06 

12 10e-07 10e -11 10e +05 

15 10e-08 10e -11 10e +03 

 

 

TABLE 6. Transconductance for different technology node 

Technology (nm) Gm (S/mm) 

10 1.62 

12 1.51 

15 1.39 

 

 

TABLE 7. Drainconductance for different technology node 

Technology (nm) Gd (S) 

10 1 

12 0.89 

15 0.88 
 

 

 

TABLE 8. Performance Parameters Comparision of SDGTFET 

Parameters C TFET SG TFET DG TFET HD-DG TFET HD-DMG-TFET SDGTFET (10nm) 

Ion(A/µm) 3.12 3.94 4.3 4.6 8.01 9.48 

Ioff(A/µm) 9.40 8.99 4.50 4.22 1.34 1.16 

Ion/Ioff 1.69 1.70 1.88 1.84 1.9 2.12 

Gm(S/mm) 1.34 1.38 1.42 1.46 1.41 3.1 

Gd(S/mm) 0.32 0.39 0.419 0.45 0.452 0.71 

Ron(Ωmm) 1.41 1.61 1.32 0.88 0.6 0.51 

 
 

4. CONCLUSION 
 
The SDGTFET configuration has emerged as a 

promising device for enhancing performance and the 

limitations of conventional TFET. The symmetrical dual 

gate TFET exhibits improved subthreshold swing, 

reduced leakage current and its potential for enhanced 

operational efficiency compared to traditional device 

technologies. The impact of different semiconductor 

materials on the device, highlighting the significance of 

material selection in optimizing the symmetrical dual 

gate TFET performance. The investigation encompassed 

and demonstrated the influence of material properties on 

device characteristics.Two dimensional structure of 

Symmetrical Dual Gate Tunnel Field Effect Transistor 

(SDGTFET) is proposed in this work. The proposed 

device formed by high –k gate dielectric gate dielectric 

material being Hafnium oxide (HfO2). The electrical 

characteristics of SDGTFET like drain current, 

transconductance and drain conductance are calculated 

with the influence of varied semiconductor materials. 

The integration of SDG enhances the device's 

electrostatic control, resulting in improved ON/OFF 

current ratios and better overall performance. The 

symmetrical configuration achieving a more uniform 

electric field distribution and enhancing reliability. The 

high-k gate dielectric materials is to determining the 

overall efficiency of the SDGTFET. By exploring and 

implementing advanced dielectric materials, such as 

high-k dielectrics, the device can achieve lower leakage 

currents and improved gate control. The findings of this 

proposed device contribute significantly to the existing 

and understanding of the SDGTFET behavior and 

performance. These insights hold substantial promise for 

the advancement of semiconductor technology, as they 

can guide the development of refined designs and 

optimized utilization of SDGTFET in advanced low 

power applications. 
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Persian Abstract 

 چکیده 
است. پارامترهای عملکرد  نانومتر پیشنهاد شده    10با مواد دی الکتریک گیت در فناوری     (SDGTFET)در این کار، یک ترانزیستور اثر میدانی تونل دو دروازه ای متقارن

بالا   kجدید از مواد دی الکتریک با    SDGTFETمورد بررسی قرار گرفته است.     (TCAD)ساز طراحی به کمک کامپیوترالکتریکی این دستگاه پیشنهادی با استفاده از شبیه

ثابت دی الکتریک بین لایه سطحی و دروازه فلزی در دو طرف دستگاه استفاده می   30نانومتری با   HfO2استفاده می کند. ) (ILو لایه سطحی )2HfO (مانند اکسید هافنیوم

شود. با بهینه سازی دستگاه پیشنهادی با مواد دی  شود. تغییر جریان تخلیه با تغییر طول دروازه، مواد موثر دروازه و ضخامت لایه اکسیدی موثر دستگاه در این کار ارزیابی می 

زیرآستانه  4.2الکتریک گیت، جریان روشن   نوسان  میانگین  و  یابد  می  افزایش  بنابراین، ساختار   mV/dec  53.8به    mV/dec  90.2از     (SSavg)برابر  یابد.  می  کاهش 

SDGTFET  عملکرد بهتری نسبت بهTFET  دهد. تک ماده و دو ماده دارد و جریان دوقطبی کمتر و نسبت جریان به جریان خاموش بهتر را نشان می 
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