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A B S T R A C T  
 

 

Computer vision has extensive applications in various sports domains, and cricket, a complex game with 
different event types, is no exception. Recognizing umpire signals during cricket matches is essential for 

fair and accurate decision-making in gameplay. This paper presents the Cricket Umpire Action Video 

dataset (CUAVd), a novel dataset designed for detecting umpire postures in cricket matches. As the 
umpire possesses the power to make crucial judgments concerning incidents that occur on the field, this 

dataset aims to contribute to the advancement of automated systems for umpire recognition in cricket. 

The proposed Attention-based Deep Convolutional GRU Network accurately detects and classifies 
various umpire signal actions in video sequences. The method achieved remarkable results on our 

prepared CUAVd dataset and publicly available datasets, namely HMDB51, Youtube Actions, and 

UCF101. The DC-GRU Attention model demonstrated its effectiveness in capturing temporal 
dependencies and accurately recognizing umpire signal actions. Compared to other advanced models 

like traditional CNN architectures, CNN-LSTM with Attention, and the 3DCNN+GRU model, the 

proposed model consistently outperformed them in recognizing umpire signal actions. It achieved a high 
validation accuracy of 94.38% in classifying umpire signal videos correctly. The paper also evaluated 

the models using performance metrics like F1-Measure and Confusion Matrix, confirming their 

effectiveness in recognizing umpire signal actions. The suggested model has practical applications in 
real-life situations such as sports analysis, referee training, and automated referee assistance systems 

where precise identification of umpire signals in videos is vital. 

doi: 10.5829/ije.2024.37.04a.08 
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1. INTRODUCTION 
 

Umpires play a critical role in cricket, ensuring fair play 

and making important decisions throughout a match. 

They serve as impartial arbiters, upholding the game's 

rules and regulations. Their judgments not only ensure 

fairness but also boost player confidence, enhance the 

spectator experience, and contribute to the smooth 

functioning of cricket tournaments. Cricket umpire 

signals play a vital role in maintaining fairness and 

making accurate decisions during matches (1). The use of 

computer vision techniques to recognize and analyze 

these signals in videos has practical applications across 

various aspects of cricket. Identifying cricket umpire 

signals using deep learning can provide valuable insights 

(2) to players, coaches, and spectators. By integrating 

umpire signal recognition with broadcast technologies, 

real-time graphics and overlays can be generated, 

improving the visual presentation of the game and 

helping viewers understand the decision-making process. 

Recognizing umpire signals from video sequences is 

complex, but advancements in deep learning techniques 

offer promising solutions. The proposed Two-Head 

Attention based Deep Convolutional Gated Recurrent 

Unit (DC-GRU) network shows promise in accurately 

identifying cricket umpire signals. The proposed model's 

lightweight design makes it suitable to run on devices 

with low memory requirements. This means that even 

general-purpose desktops or laptops can effectively run 

the proposed model without the need for extensive 

computational resources. Furthermore, the proposed 

model can robustly detect and interpret umpire signals. 

This technology aims to enhance decision-making 

accuracy and minimize human errors in crucial match 

situations. In cricket, umpires play a pivotal role in 

making critical on-field decisions, communicating 

through unique hand signals and gestures. From sports 

analysis to referee training and automated referee 

assistance systems, the applications are diverse and have 

the potential to significantly enhance the quality of 

cricket matches, benefiting players, officials, and 

spectators alike. Recognizing the umpire's signals in 

cricket is challenging due to similarities and complexities 

in postures and gestures. One significant obstacle is the 

lack of publicly accessible datasets designed explicitly 

for classifying umpire's signals. Due to the absence of an 

existing video dataset for umpire's signals, we have taken 

the initiative to create a new video dataset comprising 

1179 videos showcasing umpire's signals. The model 

under consideration has undergone training using a 

custom dataset that we created. The proposed DC-GRU 

Attention model mainly classifies the videos into nine 

umpire signal classes: DeadBall, Four, LegBye, NoBall, 

Out, RevokeSignal, Six, ThirdUmpire and WideBall. 

This research offers the following notable 

contributions: a) Development of a new video dataset for 

Cricket Umpire Action (CUAVd) with proper 

annotations. b) Recognition of Umpire Signals in videos 

is carried out using the proposed Two-Head Attention 

based DC-GRU network. c) The proposed DC-GRU 

Attention model has been evaluated over three standard 

related benchmark datasets, namely Youtube Actions, 

HMBD51, and UCF101 action datasets during 

experimentations, resulting in a high recognition 

performance of 93.82%, 83.67%, and 92.65%, 

respectively. d) The effectiveness of the proposed 

approach is assessed through rigorous evaluation using 

various well-known classifiers. 

 

 

2. RELATED WORKS  

 

In this section we delve into the realm of prior research 

endeavors concerning the domain of action recognition. 

Conventional machine learning (ML) based action 

recognition systems typically follow a three-step process: 

feature extraction using manually crafted feature 

descriptors, feature representation, and feature 

classification using suitable ML algorithms. In their 

research, Shi et al. (3) presented a new local 

spatiotemporal descriptor known as gradient boundary 

histograms (GBH). The authors showed that the GBH 

descriptor surpasses other gradient-based descriptors in 

representing both local structure and motion. The paper 

focuses on action recognition and introduces the GBH 

descriptor as a spatiotemporal feature. They have attained 

63.2% accuracy on HMDB51 and 86.6% on UCF101 

dataset. Challenges associated with handcrafted-based 

action recognition methods include time-consuming 

feature selection, labor-intensive processes, and 

difficulties in determining suitable features (4). To 

overcome the shortcomings and challenges of 

handcrafted-based methods, researchers turned to deep 

learning to develop effective and innovative approaches 

for cutting-edge action recognition systems based on 

videos. Deep learning techniques directly analyze videos 

to identify human actions, using an end-to-end approach. 

The spatiotemporal and the two-stream networks stand 

out among deep learning techniques. Xin et al. (5) 

introduced an adaptive recurrent-convolutional hybrid 

(ARCH) network. Their approach effectively handles 

variations in the spatial and temporal domains, as well as 

intra- and inter-class diversities. This architecture 

incorporates Temporal-Spacial fusion-Convolutional 

Neural Networks (CNN) to gather local static and 

dynamic information, and Recurrent neural network 

(RNN) focus on global sequence pattern modeling. The 

seamless connectivity between local feature extraction 

and global pattern modelling enhances the network's 

adaptability to actions with varying speeds and durations. 

Simonyan and Zisserman (6) presented a two-stream 

CNN model comprising a spatial stream, responsible for 
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processing individual video frames to capture spatial 

information, and a temporal stream, dedicated to 

capturing temporal information within the video 

sequences. Xiong et al. (7)further extended this concept 

by proposing a transferable two-stream CNN technique 

that combined motion and spatial features. The model 

was trained on the UCF101 dataset, yielding satisfactory 

results. Wang et al. (8) have implemented action 

recognition by employing Temporal Segment Network 

(TSN). This approach uses unique segment-based 

sampling and aggregation techniques to mimic the 

patterns and relationships that exist over a longer period 

of time in a temporal sequence. TSNs divide the input 

video into multiple segments and independently classify 

each segment. The classification scores obtained from all 

segments are then combined to generate the final output. 

Li et al. (9) introduced a new architecture named 

VideoLSTM, designed specifically for learning action 

sequences from videos. VideoLSTM addresses the 

distinctive characteristics of video data by incorporating 

convolutions to leverage spatial relationships within 

images, and it integrates a shallow CNN to capture 

motion information and produce attention maps-based 

motion maps. Ge et al. (10) introduced CNN-LSTM with 

an attention model to recognize human actions. 

GoogleNet is used to extract features from video 

sequences. A spatial transformer network is then applied 

to focus on important regions by transforming the feature 

maps. The convolutional LSTM module captures 

sequential information for action classification. 

Redundant features extracted by GoogleNet are reduced 

using temporal coherence analysis during training, 

maintaining high accuracy. Minhas et al. (11) introduced 

a method to classify shots in field sports videos utilizing 

AlexNet CNN. The proposed approach achieved 94.07% 

accuracy. In another study, Rafiq et al. (12) presented a 

method to classify sports videos and video 

summarization utilizing transfer learning. By employing 

an AlexNet CNN-based approach on a relatively smaller 

dataset exclusively comprised of cricket scenes, they 

attained an impressive accuracy of 99.26%. Sanchez-

Caballero et al. (13) have proposed a real-time method to 

detect human actions. Their method utilizes a 3D-CNN 

that can automatically extract spatio-temporal patterns 

from unprocessed depth sequences. The 3DFCNN 

classifies the activities based on the spatial and temporal 

data from depth sequences, without the need to identify 

people's identities, ensuring privacy is maintained. 

Savadi Hosseini et al. (14) have introduced a hybrid deep 

learning architecture that merges the multiple GRU 

layers with a two-stream inflated CNN network to 

address action recognition challenges. By combining the 

strengths of gated recurrent unit (GRU) layers and the 

two-stream inflated 3D Convolutional neural network 

(3DCNN), the proposed hybrid architecture enables the 

model to process video data, extract both local and global 

features, and improve its understanding of the temporal 

and spatial characteristics present in the video content. 

Kavimandan et al. (15) presented a methodology aimed 

at enhancing the recognition accuracy of actions utilizing 

only one camera in multi-camera environments. They 

suggested a modified bag-of-visual-words method, 

employing Support Vector Machine (SVM) to detect and 

categorize human actions. Foysal et al. (16) put forward 

a CNN based model designed to categorize six distinct 

cricket shots. Using their curated dataset, they have 

attained good results. In our earlier research concerning 

the the identification of workout-related actions from 

images (17), we have achieved a validation accuracy of 

92.75% on the WAId dataset prepared by us, and an 

accuracy of 89% on the Sports Image dataset using the 

proposed WorkoutNet architecture. In another research 

(18), we successfully identified diverse human 

interactions from image data by implementing the 

AdaptiveDRNet, enhanced with a multi-level attention 

mechanism. Wu et al. (19) have provided a survey that 

delves into the realm of video-based sports action 

recognition, shedding light on the existing datasets and 

methodologies in this field. Li et al. (20) introduced a 

framework that tackles the challenge of selecting 

important spatial parts and modelling temporal motion in 

action recognition. Their approach involves selecting the 

most discriminative spatial parts within video clips and 

effectively modelling temporal motion by incorporating 

bidirectional temporal information across multiple layers 

of an LSTM model. Hussain et al. (21) introduced a 

convolution-free approach that successfully overcomes 

previous challenges by accurately encoding relative 

spatial information. The proposed method employs a pre-

trained Vision Transformer to extract features at the 

frame level. These extracted features are subsequently 

fed into a multilayer LSTM network, enabling the 

capture of long-range dependencies within videos. Ravi 

et al. (22) proposed a new image dataset called SNOW, 

aimed at detecting umpire poses in cricket. The study's 

main objective was to identify and categorize four 

important umpire events: WIDE, OUT, NO BALL and 

SIX. To extract relevant features, the researchers 

employed pre-trained CNN models like InceptionV3 and 

VGG19 to extract features from the umpires pose images 

and then fed them into a linear SVM classifier. Ahmad et 

al. (23) proposed a technique to recognize human actions 

by employing a combination of CNN and Bidirectional-

GRU (BD-GRU). The approach involves two main steps. 

Firstly, they utilized CNN to extract deep features from 

the frame sequences in human activity videos. Secondly, 

to capture the temporal dynamics within the sequence of 

frames, the researchers introduce Bi-GRU. The deep and 

informative features extracted from the frame sequence 

are fed into the Bi-GRU, which learns the temporal 
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motions in both forward and backward directions at every 

time step. In addition, Wickramasinghe (24) conducted a 

comprehensive review of the diverse applications of 

machine learning within the realm of cricket. Reddy and 

Santhosh (25) propose a two-stream spatial CNN method 

for recognizing human actions in long video datasets. 

The first stream extracts spatial information from the 

RGB frames, while another stream incorporates graph-

based visual saliency (GBVS) maps produced using the 

GBVS technique. The outputs of these spatial streams are 

concatenated utilizing various feature fusion techniques 

such as sum, max, average, and product. Pan et al. (26) 

have proposed a sensor based approach for sports referee 

training. Several recent studies have placed emphasis on 

enhancing the detection of cricket events (27, 28) and the 

summarization of cricket videos (29, 30). Nandyal and 

Kattimani (31) prepared a new dataset named SNWOLF, 

designed specifically to identify umpire poses in cricket 

matches. The proposed method focuses on detecting 

umpire stances from cricket video frames and classifying 

them into the six events namely WIDE, LEG BYE, 

FOUR, SIX, NO BALL and OUT using CNN based 

framework. They have achieved an accuracy of 98.20% 

on their prepared SNWOLF data.  

The majority of studies in the domain of image or 

video-based action recognition tend to primarily focus on 

the recognition of everyday actions (14) or the 

classification of sports events (32). However, due to the 

absence of a publicly available standardized video 

dataset for umpire's signal in cricket, we have taken the 

initiative to develop our own comprehensive Cricket 

Umpire Action Video Dataset (CUAVd). This dataset 

serves as a benchmark resource for evaluating and 

advancing the field of umpire signal recognition in 

cricket, providing researchers with a valuable tool for 

further exploration and development. 

 

 
3. PROPOSED METHOD 
 

The method commenced by gathering videos featuring 

umpire actions and subsequently trimming them based on 

the action performed. And then data augmentation is 

applied. The frame extraction function receives a video 

path as input and extracts frames from the video. It 

utilizes the Video Capture object to read the video, 

determines the total number of frames within the video, 

and calculates the interval at which frames will be added 

to the frames list. The frames will be extracted based on 

a specified sequence length. It then iterates through the 

frames, resizes them to 64 X 64 height and width, 

normalizes them by dividing by 255, and appends the 

normalized frames to the frames list. Finally, it releases 

the Video Capture object and returns the frames list 

containing the extracted frames. Next, the dataset is 

divided into training and validation set in 75:25 ratio. The 

block diagram illustrating the sequential steps involved  

in the proposed method is depicted in Figure 1. This study 

introduces a Two-Head Attention based Deep 

Convolutional GRU (DC-GRU) network for umpire's 

signal recognition in cricket.  

Utilizing the proposed DC-GRU Attention model 

with Callback functions, we train the umpire dataset, 

extract video frame features, and classify umpire signals 

with the last layer of the proposed model namely the 

Softmax layer. The proposed approach effectively 

analyze both spatial and temporal features extracted from 

video data, resulting in accurate action predictions. The 

following subsections explain: A) Training dataset 

preparation, B) DC-GRU Attention: Model Architecture, 

C) Loss Function and Optimizer Details, and D) 

Importance of Attention Mechanism in Umpire Signal 

Recognition. 

 

3. 1. Training Dataset Preparation       Initially, we 

collected the umpire signal dataset and used data 

augmentation to enhance the model's performance by 

increasing the training data and reducing overfitting. We 

have implemented random transformations as part of 

video data augmentation, including zooming within a 

range of 0.2 factor, rotation range of 20 degrees, 

adjusting brightness within a range of 0.5 to 0.9 and 

applying a contrast range of 1.5. To generate augmented 

video data, we have utilized the Moviepy python library. 

Data augmentation, through random transformations 

applied to the training videos, generates additional 

training data. This technique perform effectively on 

unseen data.  

 
3. 2. DC-GRU Attention: Model Architecture            
The proposed Two-Head Attention based DC-GRU 

Model comprises of a total of 16 layers, including Time 

Distributed (T.D) Conv2D layers, T.D max pooling 

layers, T.D dropout layers, T.D Flatten layer, Two Head 

Attention mechanism, GRU layers and a dense output 

layer. The proposed model utilized for implementing the 

proposed work to recognize umpire signals in cricket is 

depicted in Figure 2. Time-distributed (T.D) layers give 

more importance to temporal dynamics in video based 

umpire signal  recognition by applying convolution and 

pooling operations across the time dimension. 
 

 

 
Figure 1. Overview of the Proposed Method 
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Figure 2. Proposed DC-GRU Attention Model 

 

 

The breakdown of the model architecture are as follows:  

 

3. 2. 1. Input Layer         The input layer accepts a 

sequence of video frames with a shape of (SeqLength, 

FrameHeight, FrameWidth, nChannels), where 

SeqLength represents the number of frames considered 

as a sequence, FrameHeight and FrameWeight are the 

dimensions of each frame and nChannels are the number 

of channels. Here, the SeqLength, FrameHeight, 

FrameWidth are taken as 15, 64, 64 and 3 respectively.  

 

3. 2. 2. Deep Convolutional Block         This block 

applies several convolutional layers to each frame in the 

input sequence, capturing spatial features from the 

frames. This branch uses three sets of convolutional 

layers, with 32, 64, and 64 filters, respectively. In the first 

block, the input sequences of video frames are processed 

through three layers. The initial Time distributed (T.D) 

Conv2D+GELU layer (Layer 1) applies 32 filters with a 

3x3 kernel size to capture local features in each frame. A 

TimeDistributed (T.D) wrapper allows each frame in the 

sequence to be treated independently. The T.D Conv2D 

layer is mathematically represented using Equation 1. 

Here, I (t-i) denotes the input sequence at time step (t-i), 
𝑊𝑖 denotes the convolutional kernel at time step i and Y(t) 

represent the output at time step t.    

𝑌(𝑡) =  ∑ 𝑊𝑖 ∗ 𝐼(𝑡 − 𝑖)𝑖   (1) 

Following this, a MaxPooling2D layer (Layer 2) with 

a pool size of 4x4 reduces spatial dimensions, 

emphasizing key features while reducing computation. 

Each T.D convolutional layer is followed by an Gaussian 

Error Linear Unit (GELU) activation function and max 

pooling to reduce the spatial dimensions. The GELU 

activation (GA) utilized in this study is mathematically 

represented using Equations 2 and 3, where u denote the 

input to the activation function. GA offers a smooth 

transition from linear to non-linear behavior, addressing 

vanishing gradient problems while providing superior 

performance. 

𝐺𝐴 (𝑢) = 0.5 𝑢 (1 + tanh(𝐶𝑇))  (2) 

  𝐶𝑇 =  (√
2

𝜋
 (𝑢 + 0.044715 𝑢3))  (3) 

BatchNormalization (Layer 3) is used to normalize the 

batches. The subsequent layers continues feature 

extraction with deeper layers. Another T.D 

Conv2D+GELU layer (Layer 4) applies 64 filters, 

maintaining the 3x3 kernel size for local feature 

extraction. Subsequently, a MaxPooling2D layer (Layer 

5) further compresses feature maps spatially, improving 

computational efficiency. A Dropout (0.15 rate) layer 

(Layer 6) is applied for regularization, randomly 

deactivating portions of the network during training to 

prevent overfitting. In this block, the complexity of the 

features is increased. And the third T.D Conv2D+GELU 

layer (Layer 7) applies 64 filters to capture more intricate 

patterns. MaxPooling2D (Layer 8) further reduces spatial 

dimensions, while Dropout (0.15 rate) (Layer 9) 

maintains regularization. Then T.D flatten layer (Layer 

10) is added to reshape the 2D feature maps into a 1D 

vector format. 

 

3. 2. 3. Two Head Attention Block           After feature 

extraction, the sequence of flattened features enters an 

attention mechanism (Layer 11). The proposed model for 

recognizing umpire actions in video sequences 

incorporates a pivotal element known as the scaled dot 

product mechanism with two attention heads. In a two-

head attention mechanism, two distinct sets of query, 

key, and value vectors facilitate simultaneous focus on 

different sequence parts. Each set acts as an individual 

head, allowing the model to learn distinct relationships 

and extract various sequence features. Computation 

occurs in parallel across these two heads, and their results 

are usually combined before progressing through 

subsequent model layers. This method significantly 

improves the model's capability to capture diverse 

sequence relationships and patterns.  

The dimentionality of the model (d_model) is set to 

128, which defines the size of hidden layers of the Two-
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Head attention. Here's a breakdown of this Two-Head 

Attention mechanism: 
 

1. Utilizing Query, Key, and Value Vectors with Two 

Attention Heads: The scaled dot product (SDP) 

mechanism employs three distinct sets of vectors: 

Queries (R), Keys (K) and Values (U). In the specific 

context of the umpire action recognition model, these 

vectors are derived from the flattened features that are 

extracted by the preceding convolutional layers of the 

model. Linear Projections for R, K and U are represented 

using Equation 4. Here, I denote the input sequence, h is 

the number of attention heads (two here),  and 

𝑊𝑅 , 𝑊𝐾 , 𝑊𝑈 are learnable weight matrices specific to R, 

K, V and it is computed for h=1, and h=2. 

  𝑅, 𝐾, 𝑈 = 𝐼. 𝑊𝑅ℎ
, 𝐼. 𝑊𝐾ℎ

, 𝐼. 𝑊𝑉ℎ
  (4) 

 

2. Dot Product and Scaling with Two Attention heads:  

This mechanism proceeds by computing the dot product 

between the Query and Key vectors. Attention scores 

(AS) are computed using the expression given in 

Equation 5. This computation quantifies the similarity 

between various elements in the sequence. To maintain 

the dot product within manageable bounds, it scales 

down the values by the square root of the dimension of 

the K vectors (𝑑𝑖𝑚𝑘) as shown in Scaled AS expression 

represented in Equation 6. 𝐴𝑆ℎ is computed for h=1,2. 

𝐴𝑆ℎ =  𝑅ℎ𝐾ℎ
𝑇  (5) 

𝑆𝑐𝑎𝑙𝑒𝑑 𝐴𝑆ℎ =  
𝑄ℎ𝐾𝑇

√𝑑𝑖𝑚𝐾
  (6) 

 

3. Attention Weights (AW) with Two Attention 

Heads: Subsequently, the scaled dot product mechanism 

applies a softmax function to the SDP, producing the 

attention weights (AW) as represented in Equation 7. 

These weights signify the significance and relevance of 

each element within the sequence relative to the others. 

Higher attention weights denote that a given element 

bears greater importance in the context of the task at 

hand. 𝐴𝑊ℎ is computed for h=1, and h=2. 

𝐴𝑊ℎ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ( 𝑆𝑐𝑎𝑙𝑒𝑑 𝐴𝑆ℎ)  (7) 

 

4. Weighted Summation with Two Attention Heads: 

Finally, the mechanism computes a weighted sum of the 

Value vectors (U) by leveraging the attention weights 

(AW) represented using Equation 8. This weighted 

summation effectively captures vital sequence 

information, allowing focused attention on crucial 

segments while disregarding noise. AO represents the 

Attention Output for h=1, and h=2, resulting in 

concatenated weighted sum outcomes. 

 𝐴𝑂ℎ = 𝑊𝑆ℎ = (𝐴𝑊ℎ). 𝑈ℎ  (8) 

In the realm of umpire action recognition, this 

mechanism equips the model with the ability to discern 

which frames or moments in the video sequence hold the 

utmost relevance for identifying specific umpire actions. 

By directing its attention towards the pertinent segments 

of the video data, the model can furnish more precise 

predictions. The utilization of self-attention mechanisms, 

such as the scaled dot product attention with two attention 

heads, emerges as a potent tool for modeling intricate 

relationships within sequential data. Scaled Dot Product 

(SDP) Attention layer computes attention scores between 

the feature vectors from different frames within the 

sequence. This operation applies attention to the features, 

assigning higher importance to elements that have higher 

attention scores. This step results in attention-enhanced 

features that are more focused on the relevant parts of the 

sequence. This process is followed by a Dropout layer 

with 0.18 dropout rate to promote regularization. 

 

3. 2. 4. GRU Block         Two GRU layers (Layers 13 and 

14) with 128 units each and recurrent dropout (0.23) 

process the attention-enhanced features, capturing 

temporal dependencies among the frames in the video 

sequence. The GRU, a variant of the recurrent neural 

network (RNN), excels in capturing temporal 

dependencies and sequence-related information. It 

operates by processing the current input and the hidden 

state inherited from the preceding node. This process 

results in the generation of output, and the updated 

hidden state is subsequently transmitted to the 

subsequent node. GRU only needs one unit to complete 

forget and selecting memory operations. The updated 

equation of GRU can be represented as depicted in 

Equations 9 and 10, where 𝑋𝑡 is the external input vector, 

the update gate is denoted as U and reset gate as rs, the 

hidden state from the previous node (ℎ𝑠𝑡−1) are fed 

through GRU, the updated hidden state (ℎ𝑠𝑡) which is 

then passed to the next node, the parameters for two 

matrices W and U, bias vector b. 

hs𝑡  = ( 1 − 𝑈) ⊙ ℎ𝑠𝑡−1 + 𝑈 ⊙ ℎ𝑠 ′̇  (9) 

ℎ𝑠′  =  tanh( 𝑊ℎ  𝑋𝑡 + (𝑟𝑠𝑡 ∗ 𝑈ℎ𝑠ℎ𝑠𝑡−1) + 𝑏ℎ𝑠)   (10) 

In this context, the initial GRU layer, comprising 128 

units, is harnessed for the purpose of capturing temporal 

dependencies embedded within the sequence. 

Subsequently, a second GRU layer, also featuring 128 

units, is employed to derive the ultimate output sequence. 

In the model, the initial GRU layer is configured to return 

sequences rather than a single output. This empowers the 

model to grasp temporal nuances spanning across frames 

while preserving the output sequence. The second GRU 

layer does not return sequences, so it returns a single 

output. Then a dropout layer (Layer 15) with 0.23 

dropout rate is applied. 
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3. 2. 5. Output Layer       Dense layer with softmax 

activation (Layer 16) is used to produce the final output 

probabilities for the nine umpire's signal classes. This 

layer maps the concatenated features to the 

corresponding class probabilities. The sum of those 

probabilities, expressed in decimal form, equals 1. In this 

study, we are dealing with a multi-class problem. During 

training, the model employs the Categorical cross-

entropy loss function, serving as the metric to gauge the 

error the model endeavors to reduce. 

The proposed Attention based DC-GRU model offers 

significant utility in recognizing umpire's signals within 

video sequences, leveraging the distinct strengths of its 

constituent layers. Time-Distributed (T.D) Conv2D 

layers perform spatial feature extraction, using 2D 

convolutional filters that slide across frames, capturing 

spatial patterns, edges, and textures. As the filters 

convolve over the frames, they generate feature maps. 

Each feature map signifies the activation patterns of a 

distinct filter across various spatial positions within 

individual frames. These feature maps capture spatial 

information such as local patterns, object boundaries, and 

spatial relationships within the frames. The time-

distributed convolutional layers are responsible for 

extracting spatial features from each frame within the 

sequence. They operate on each frame independently 

within the sequence. The feature map(s) derived from the 

three T.D Conv2D+GELU layers when applied to a 

sample frame containing the 'No Ball' umpire signal are 

highlighted in Figure 3. Multiple layers hierarchically 

abstract spatial features, ranging from low-level patterns 

to complex spatial structures.  

Shared weights across frames ensure consistency 

over time, crucial for recognizing umpire signals. This is 

particularly useful for tasks that require understanding 

how spatial patterns evolve across a sequence. The 

integration of an attention mechanism further enhances 

the model's ability to focus on relevant frames where 
 

 

 
Figure 3. Feature map results of ‘No Ball’ umpire signal 

signals are likely to occur for making predictions. On the 

other hand, the recurrent layers, particularly the GRU 

components, specialize in capturing temporal 

dependencies and context across frames present within 

the sequence. The combination of convolutional layers, 

attention mechanism, and recurrent layers allows the 

model to extract both spatial features from individual 

frames and temporal features from the entire sequence. 

The proposed Two-Head Attention based DC-GRU 

architecture is particularly effective in modeling short-

term dependencies and intricate temporal dynamics. By 

combining these layers, the proposed model achieves a 

comprehensive understanding of umpire signals, 

encompassing both the complex temporal evolution of 

these signals. Its ability to learn intricate spatial and 

temporal features, coupled with its capacity to focus on 

relevant segments, positions it as a valuable tool for 

automating the recognition of umpire's signals, thereby 

enhancing the efficiency and accuracy of sports match 

analysis and decision-making. With a total number of 

trainable parameters of 297,097 and a model size of 

approximately 1.13 MB, the proposed model is suitable 

for running on low-memory requirement devices like 

general purpose desktops or laptops. 

 

3. 3. Loss Function and Optimizer Details        In the 

proposed work, we are dealing with a multi-class 

problem. To measure the training error, we utilized the 

Categorical Cross-Entropy (CCE) loss function. This 

function minimizes the disparity between expected and 

actual probability distributions, computing the error as 

shown in Equation 11 for each instance. 

𝐿𝑜𝑠𝑠𝑐𝑐𝑒 =  ∑ 𝑡𝑐 . log 𝑓(𝑈 𝑆𝑐)9
𝑐=1   (11) 

Here, 𝑡𝑐 denotes the ground truth label of 𝑐𝑡ℎ class, 

𝑓(𝑈 𝑆𝑐) denotes the softmax probability value for 𝑐𝑡ℎ 

class, and c signifies the overall count of scalar values 

contained within the model's output. The proposed model 

utilizes the Nadam optimizer with initial learning rate of 

0.01 to minimize the error function. The Nadam 

optimizer (33) combines elements of two popular 

optimization methods, namely Nesterov Accelerated 

Gradient (NAG) and Adam optimizer.  

𝜃𝑡+1 =  𝜃𝑡 − 
𝜂

√�̂�𝑡+𝜖
(𝛽1

𝑚𝑡

1− 𝛽1
+

(1− 𝛽1)∇𝐿(𝜃𝑡)

1− 𝛽1
𝑡 )  (12) 

In Equation 12, 𝜃𝑡+1 denotes the parameter updated at the 

next time step, t+1, while 𝜃𝑡 represents the parameter at 

the current time step, t. The symbol 𝜂 corresponds to the 

learning rate, determining the step size of the parameter 

updates. Furthermore, �̂�𝑡 signifies the exponentially 

weighted average of the squared gradients, offering 

insights into both the direction and magnitude of the 

parameter updates, 𝜖 serves as a minuscule value 

essential for averting division by zero, 𝛽1 is the first 

momentum decay term, 𝑚𝑡 is the exponentially weighted 
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average of the gradients, and ∇𝐿(𝜃𝑡) represents the 

gradient of the loss function w.r.t the parameter at time 

step t.  

The Nadam optimizer exhibits several advantages 

compared to other optimizers such as Adam. Firstly, it 

incorporates NAG, which enables faster convergence by 

including momentum in the gradient descent process. 

This momentum helps the optimizer to navigate areas 

with steep gradients more efficiently, leading to quicker 

convergence and improved optimization. Secondly, 

Nadam combines the benefits of NAG with the adaptive 

learning rate capabilities inherent in the Adam optimizer. 

This dynamic learning rate adjustment feature enables 

the optimizer to fine-tune the learning rates for individual 

parameters, guided by their gradients and past updates.  

 

3. 4. Importance of Attention Mechanism in 
Umpire Signal Recognition         Attention mechanisms 

are of paramount importance when it comes to the 

identification and recognition of umpire signals, such as 

"FOUR", "SIX", "NO BALL", "WIDE", and others in the 

context of cricket matches. The diverse array of umpire 

signals involves distinct visual representations, each 

conveying specific game events. For instance, signaling 

a "FOUR" entails raising both arms with all fingers 

extended, while a "SIX" is typically indicated by both 

arms raised above the head. The ability to recognize and 

differentiate these unique visual cues is fundamental in 

comprehending the dynamics of the ongoing match. 

Umpire signals sometimes involve subtle hand 

movements, which can be challenging to detect, 

particularly when the frame includes other players or 

objects. Attention mechanisms help the model to 

concentrate on the umpire's hand or the pertinent area, 

improving recognition. They enhance robustness to 

lighting, camera angles, and clutter for effective 

operation in various conditions. They also allocate 

computational resources efficiently, reducing processing 

costs. In complex cases with gesture combinations, 

attention mechanisms excel at identifying components 

and their sequence, ensuring accurate signal 

interpretation. Thus, attention mechanisms are 

indispensable in the recognition of umpire signals in 

cricket matches for dynamic focus, capturing 

dependencies, enhance robustness to variations and 

ensuring context-aware recognition, making them 

invaluable for diverse and context-dependent umpire 

signals in cricket game. 
 
 

4. EXPERIMENTAL RESULTS 
 

This section provides a comprehensive overview of the 

dataset, conducts a thorough performance evaluation, and 

 
1 CUAVd : https://sites.google.com/view/cuavd/home 

finally analyses the results. The study was conducted on 

the Google Colab platform without utilizing any GPU. 

This research has involved a comprehensive 

investigation of relevant literature and the exploration of 

various well-established deep learning models. In order 

to evaluate the overall classification performance of our 

approach, we have reported the training and validation 

accuracy, along with the F1-score. 

 

4. 1. Dataset Details                     Several publicly 

accessible datasets that are related to the proposed work 

include HMDB51, UCF50, Youtube Actions and 

UCF101. These datasets provide valuable resources for 

conducting research and analysis in the area. 

We have created a unique dataset called Cricket 

Umpire Action Video dataset (CUAVd)1 by gathering 

videos from different social media platforms, cricket 

tournaments and some YouTube videos. Once the data 

collection phase was completed, we manually identified 

and extracted the specific segments of the videos that 

showcase umpire actions. These videos were then 

organized into separate directories based on different 

categories to ensure proper labelling. The dataset 

primarily focuses on umpire signals performed by 

various umpires during cricket matches. Figure 4 

illustrates sample video frames showcasing the LegBye, 

Four, WideBall, and NoBall umpire signals extracted 

from the umpire signals video dataset. 

In the CUAVd dataset, various umpire signals in 

cricket have been given by various umpires. Within the 

proposed dataset, there are 9 distinct categories 

encompassing various umpire actions, and it comprises a 

total of 1179 RGB videos. The umpire's signal categories 

are DeadBall, Four, LegBye, NoBall, Out, RevokeSignal, 

Six, ThirdUmpire and WideBall. The training dataset is 

collected from various Cricket tournaments, TV episodes 

 

 

 
Figure 4. Sample video frames of CUAVd dataset 
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and Youtube videos. Data collection is a vital step in the 

proposed work for maintaining the integrity of the 

research due to the unavailability of various umpire 

action videos.  

 

4. 2. Performance Evaluation          Python libraries 

such as TensorFlow-Keras, Callbacks, and Optimizers 

have been employed to construct the models on the 

Google Colab platform. These libraries offer a wide array 

of functionalities and tools that facilitate creating and 

training deep learning models. In addition, the Sklearn 

and Matplotlib libraries have been used for analysis. 

Sklearn offers various machine learning algorithms and 

evaluation metrics, while Matplotlib provides 

visualization capabilities, allowing for the creation of 

informative and visually appealing plots. Figure 5 

exhibits the accuracy curve for the Two-Head Attention 

based DC-GRU model under consideration, with a 

training accuracy of 96.17% and a corresponding 

validation accuracy of 94.38%.  

The model's performance did not significantly 

improve over several consecutive epochs, so the training 

process was halted at 24 epochs using callback functions.  

The proposed study has undergone evaluation using 

several advanced benchmark deep learning models on the 

CUAVd dataset. Table 1 showcases the accuracy and F1-

Measure achieved by these models, namely VidLSTM 

[9], CNN-LSTM with Attention [10], 3DFCNN [13], 

BD-LSTM [20], the DC-LSTM, the DC-GRU model 

(without attention), and our proposed model. Through 

extensive experimentation and analysis, it was observed 

that our proposed DC-GRU Attention model 

outperformed all the baseline models considered in this 

study. Moreover, the BD-LSTM [20], 3DFCNN [13], 

DC-GRU model (without attention), and CNN-LSTM 

with Attention model [10] also displayed noteworthy 

performance in classifying Cricket Umpire action videos 

(CUAVd), achieving validation accuracies of 91.82%, 

89.69%, 93.86%, and 90.35% respectively. 

 

 

 
Figure 5. Model Accuracy Trend on CUAVd Dataset 

TABLE 1. Experimental Results with Various deep learning 

models on our CUAVd dataset 

Model 
Train 

Accuracy 

Validation 

Accuracy 

F1-

Score 

VidLSTM [9] 94.20% 87.40% 0.87 

CNN-LSTM + Attention 

[10] 
93.57% 90.35% 0.90 

3DFCNN [13] 94.61% 89.69% 0.89 

BD-LSTM [20] 95.36% 91.82% 0.91 

DC-LSTM 94.85% 91.43% 0.90 

DC-GRU 95.69% 93.86% 0.94 

Proposed Model 96.17% 94.38% 0.96 

 

The classification performance report depicted in 

Figure 6 indicates that the proposed model demonstrates 

strong performance, achieving an impressive Average 

F1-Score of 0.96. 

In Figures 7 and 8, the confusion matrices for both the 

DC-GRU model and our proposed model when tested on 

our CUAVd dataset is shown. Notably, our proposed 

model outperforms the DC-GRU model (without 

Attention) in terms of classification accuracy. 

The Receiver Operating Characteristic (ROC) curve 

for the proposed DC-GRU Attention model on the 

CUAVd dataset is depicted in Figure 9. Notably, all 

umpire signal categories achieve a perfect AUC of 1, 

indicating ideal performance. This is evident in 

intersecting ROC curves, showcasing optimal 

performance for each category. The Attention-based DC-

GRU Model demonstrates outstanding classification 

performance, with each color on the ROC curve 

representing a specific umpire signal class, offering 

valuable insights into its proficiency at different 

classification thresholds. 

Our proposed model has been evaluated on various 

video-based action recognition datasets using established 

performance metrics, generating promising results. To 
 

 

 
Figure 6. Classification accuracy of proposed model on 

CUAVd 
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Figure 7. Confusion Matrix of DC-GRU model on CUAVd 

 

 

 
Figure 8. Confusion Matrix of Proposed model on CUAVd 

 

 

 
Figure 9. ROC curve of proposed model on CUAVd 

 

 

thoroughly assess the effectiveness of our proposed 

approach, we computed F1-score, precision and recall 

values across different related action datasets. A detailed 

summary of these values can be found in Table 2. 

Notably, our proposed model performs well when tested 

on well-known datasets, namely Youtube Actions, 

HMDB51, UCF50 and UCF101. The precision and recall 

scores achieved by our technique are well-balanced 

across the benchmark datasets, highlighting a reduced 

number of both the true and false negatives. Additionally, 

the proposed Two-Head Attention based DC-GRU model 

achieved impressive F1-measures of 0.83, 0.93, 0.94, and 

0.91 for the HMDB51, UCF50, Youtube Actions, and 

UCF101 respectively. The F1-score obtained illustrates 

its effectiveness, further reinforcing its superiority in 

action recognition tasks.  

The performance of our proposed DC-GRU Attention 

model was further assessed by introducing random noise 

to our CUAVd dataset, as illustrated in Table 3. The 

model's performance showed a minor decline with the 

introduction of noise in the data, achieving an F1-score 

of 0.91. In contrast, the DC-GRU model without 

attention attain F1-score of 0.88. 

Confusion matrix of Youtube Actions and UCF50 

dataset utilizing proposed model is depicted in Figures 10 

and 11, respectively. It shows remarkable performance. 

The efficacy of the proposed DC-GRU Two-Head 

Attention model is evaluated by comparing it with a 

range of existing standard approaches. Table 4 presents 

the outcomes of this comparison, showcasing the 

performance of different deep learning-based models on 

related benchmark action datasets, namely HMDB51, 

YouTube Actions, and the UCF101 dataset.  

The model proposed in this study demonstrated an 

impressive accuracy rate of 93.82% when evaluated on 

the YouTube Actions dataset. Our method demonstrated 

 

 

TABLE 2. Evaluating the Proposed Model's Performance 

on various Existing Action Datasets 

Dataset 
Action 

Classes 

Net 

Precision 

Net 

Recall 

Net F1-

Score 

Youtube Actions  11 0.94 0.95 0.94 

HMDB51 51 0.83 0.84 0.83 

UCF50 50 0.93 0.94 0.93 

UCF101 101 0.92 0.91 0.91 

Our CUAVd Dataset 9 0.97 0.95 0.96 

 

 
TABLE 3. Experimental Results with Effect of random Noise 

on our CUAVd dataset 

Model 
Train 

Accuracy 

Validation 

Accuracy 
F1-Score 

DC-GRU 90.39% 88.26% 0.88 

Proposed Model 92.57% 90.42% 0.91 

 



672                                                   A. Dey et al. / IJE TRANSACTIONS A: Basics  Vol. 37 No. 04, (April 2024)   662-674 

 

 
Figure 10. Confusion Matrix of Youtube Actions dataset 

utilizing Proposed model 

 
 

 
Figure 11. Confusion Matrix of UCF50 dataset using 

Proposed model 

 

 

TABLE 4. Comparative Analysis of Various Benchmark 

Video based Action Recognition methods 

Model HMDB51 
Youtube 

Actions 
UCF101 

GBH+BoW [3] 63.2% 83.40% 83% 

ARCH [5] 58.2% --- 85.30% 

CNN Two Stream [6] 76% 88.46% 84.65% 

TSN [8] 71% --- 94.90% 

VidLSTM [9] 56.40% --- 92.20% 

CNN-LSTM + Attention [10] 67.10% 93.48% 92.50% 

3DFCNN [13] 72.54% 89.18% 87.41% 

3DCNN+ GRU [14] 81.87% 86.64%  --- 

BD-LSTM [20] 70.40% 91.80% 94.20% 

ViT+LSTM [21] 73.71% --- 96.14% 

Bi-GRU [23] 71.89% 93.28% 91.79% 

Proposed Model 83.67% 93.82% 92.65% 

high classification scores on both the YouTube Actions 

dataset and HMDB51 dataset, yielding remarkable 

accuracies. The ViT+LSTM [21] achieved the highest 

accuracy of 96.14%, and TSN [8] model achieved an 

accuracy of 94.90% on UCF101 dataset. Out of all the 

models evaluated, the proposed DC-GRU Attention 

model secured exceptional accuracy on the UCF101 

dataset, ranking among the top three performers with an 

impressive accuracy of 92.65%. For the YouTube 

Actions dataset, our proposed model achieved the 

topmost accuracy of 93.82%, followed by the CNN-

LSTM with Attention [10] and Bi-GRU [23] and BD-

LSTM [20]. In terms of the HMDB51 dataset, the 

ViT+LSTM [21], 3DFCNN [13], CNN Two-Stream 

Fusion [6] and 3DCNN+GRU [14] achieved accuracies 

of 73.71%, 72.54%, 76% and 81.87% respectively. 

However, ARCH [5] and GBH+BoW [3] achieved 

accuracies of 58.2% and 63.2%, respectively, on the 

HMDB51 dataset. In comparison, our proposed 

technique achieved 83.67% accuracy on HMDB51, 

which surpassed all others, securing the top position in 

Table 4. The proposed model has undergone rigorous 

testing with multiple video samples, demonstrating its 

ability to accurately classify umpire signals by correctly 

labelling the videos using the trained model. The 

classification result on a realistic video sample with the 

'Six' umpire signal category is indicated in Figure 12. 

The experimental findings indicate that the proposed 

model excels in accurately detecting the umpire's signal 

from the videos. So, the proposed model can also be 

utilized to detect the umpire signals from the video 

sequences in real-life. 
 

 

5. CONCLUSION AND FUTURE SCOPE 
 
Cricket umpire's signal recognition in videos is a 

captivating and rapidly evolving field within computer 

vision. The ability to automatically identify and classify 

umpire signal actions in cricket matches has immense 

practical applications. It contributes to fair decision- 

making, enhances the game flow, and provides valuable 
 
 

 
Figure 12. Test Video of ‘Six’ umpire signal recognized 

using proposed model 
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insights for players, coaches, and spectators. The 

proposed Two-Head Attention based Deep 

Convolutional GRU framework has shown great promise 

in accurately recognizing and classifying umpire signal 

actions. With a high accuracy rate of 94.38% and a Net 

F1-Score of 0.96, this model stands out as an effective 

solution. This framework can serve as a virtual trainer for 

novice umpires, assisting them in practising their cricket 

umpire signal actions effectively. A significant 

contribution of this research is the creation of the Cricket 

Umpire Action Video dataset (CUAVd), which provides 

a comprehensive collection of videos showcasing the 

umpire's signals in cricket. This dataset enables the 

training and evaluation of the proposed DC-GRU 

Attention model. The model's lightweight design ensures 

efficient performance even on devices with limited 

memory, enabling its widespread usage. The proposed 

approach has been extensively tested and evaluated using 

three well-established benchmark action datasets, 

consistently showcasing remarkable recognition 

performance. Moreover, the effectiveness of the 

proposed model has been confirmed through successful 

testing on a diverse range of sample videos, accurately 

identifying and labelling the umpire signals. 

The future scope of this research lies in refining the 

proposed model, expanding the dataset size to encompass 

a wider range of umpire signal actions, generalizing to 

other sports, integrating with sports technology, 

collaborating with sports organizations, and addressing 

ethical considerations. Further optimization of the 

model's architecture and network combinations can 

enhance its performance. 
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Persian Abstract 

 ده یچک
 صیتشخ .ستین  یمستثن قاعده نیا از مختلف، یدادهایرو انواع با دهیچیپ یباز کی  کت،یکر  و دارد یورزش مختلف یها حوزه در یا گسترده یکاربردها وتر یکامپ یینایب

 (CUAVd) کتیکر داور اکشن یویدی و دهدا مجموعه مقاله ن یا .است  یضرور یپل  میگ در  قیدق و منصفانه یریگ میتصم یبرا کتیکر مسابقات  طول در  داور یها گنالیس

 در مهم یها قضاوت  قدرت  یدارا داور که ییآنجا از  .است شده یطراح کتیکر مسابقات  در داور یهات یوضع  صیتشخ یبرا که دی جد داده مجموعه کی کند،ی م ارائه را

 کانولوشن GRU شبکه .است کتیکر در داور صیتشخ یبرا خودکار یها ستمیس شرفتیپ به کمک داده مجموعه نیا هدف دهد، یم رخ نیزم در که است یحوادث مورد

 مجموعه در یتوجهقابل جینتا به روش نیا .کندیم یبندطبقه و ییشناسا دقت به یی ویدیو یهادنباله در را مختلف داور گنالی س اقدامات  ،یشنهادیپ توجه بر یمبتن قیعم

 یاثربخش DC-GRU توجه مدل .افتی  دست  ،UCF101 و  HMDB51، Youtube Actions یعنی عموم، دسترس  رد داده ی هامجموعه و شدهآماده CUAVd یهاداده

 CNN، CNN-LSTM ی سنت یهایمعمار مانند شرفتهیپ یهامدل  ریسا با سهیمقا در .داد نشان داور گنالیس اقدامات  قیدق صیتشخ و ی زمان یها یوابستگ گرفتن در را خود

 دقت داور، گنالیس یوهایدیو حیصح یبندطبقه در .داشت یبرتر داور گنالیس اقدامات  صیتشخ در آنها از مداوم طور به یشنهادی پ مدل ،3DCNN+GRU مدل و توجه، با

 آنها ییکارا و کرد یابیارز Confusion Matrix و F1-Measure مانند عملکرد ی ارهایمع  از استفاده با را هامدل نیهمچن مقاله نیا .آورد دست به را ٪94.38 یبالا اعتبار

 کمک خودکار یهاستمیس و داور، آموزش ،یورزش زیآنال مانند یواقع  یهاتیموقع  در یعمل یکاربردها یدارا یشنهادیپ مدل .کرد دییتأ داور گنالیس اقدامات  صیتشخ در را

 .است یاتیح دئوهایو در داور یها گنال یس قیدق یی شناسا آن در که است داور
 
 


