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A B S T R A C T  
 

 

Admixture is a common phenomenon in human populations, resulting from the mating of individuals 

from two or more previously isolated populations. This can lead to the formation of mosaic DNA 
segments, with each segment originating from a different ancestral population. Local ancestry inference 

methods are used to identify the ancestry of each segment, which can provide insights into the history of 

admixture in a population. Many local ancestry inference (LAI) methods require the determination of 
various parameters that may be difficult to obtain, which can hamper using LAI methods. In this paper, 

we present a novel method for identifying approximate boundaries of ancestry change (IABAC) in 

admixed haplotypes and then determining the ancestry between boundaries. Unlike many LAI methods, 
our method does not rely on many statistical or biological parameters, therefore more robust to variations 

in admixture patterns. We evaluate our method on human data, and show that it is more accurate than 

existing methods for ancestry detection. Our results suggest that IABAC is a promising new method for 
identifying ancestry boundaries in admixed haplotypes. This method could be used to study the history 

of admixture in human populations, and to identify genetic variants that are associated with different 

ancestral populations.  

doi: 10.5829/ije.2024.37.02b.16 
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1. INTRODUCTION 
 
Genetic diversity in the DNA sequences of humans is the 

result of inheritance processes, including mutation and 

recombination (1). When two or more previously isolated 

populations mate, the resulting offspring are admixed, 

meaning that their genomes contain DNA segments from 

both populations (2, 3). This admixture creates new 

genetic recombination breakpoints, which can lead to the 

formation of diverse genomes with mixed DNA 

segments. The DNA segments of admixed genomes are a 

mosaic of segments originating from different ancestral 

populations (4-10). 

As travel around the world becomes easier, admixed 

populations and their complexity are increasing. This is 

because more and more people are having contact with 

people from other populations, which can lead to 

interbreeding and the formation of new admixed 

populations (4). Figure 1 shows that how the genomes of 

new populations are created from their ancestors. The 

chromosomes of more recent generations are a mosaic of 

ancestral chromosomes. 

The relationship between genetic variation and 

disease risk can vary between ancestral populations. This 

is because different ancestral populations have different 

allele frequencies at specific genetic variants (11). 

Ancestry inference is the process of determining the 

ancestral populations that contributed to an individual's 

genome. This is important for a variety of applications, 

including pharmacogenomics and the study of human 

demography (2, 6, 12-14). 

The availability of genotype and haplotype data has 

made it possible to statistically infer the admixture 

history of human populations (4). Several computational 

methods and tools have been developed for this purpose. 

One approach, known as local ancestry inference (LAI), 

identifies the ancestry of each segment of an individual's 

genome. LAI methods infer the genetic ancestry of an 

individual at a particular chromosomal location. This 

 

 

 
Figure 1. The process of combining the genomes of 

ancestral populations after generations 

information can be used to study the history of human 

migrations and to identify genetic variants that are 

associated with specific ancestries. LAI has been used in 

a variety of models and tools, including SupportMix (15), 

RFMix (16), and LAMP (17).  

Local ancestry inference (LAI) methods subdivide 

chromosomes into smaller segments, or blocks, to infer 

the ancestry of each block. The choice of block size is an 

important factor in the accuracy of LAI. If the block size 

is too large, it may contain segments from multiple 

ancestries, which can lead to inaccurate ancestry 

inference. On the other hand, if the block size is too 

small, it may not contain enough information to 

accurately identify the ancestry. The ideal block size 

should be large enough to contain enough information to 

identify the ancestry, but small enough to ensure that 

each block contains only one ancestry (18). This can be a 

challenging task, as the ancestry of each block can vary 

depending on the individual's genetic makeup. A number 

of studies have investigated the optimal block size for 

LAI. However, the optimal block size may vary 

depending on the dataset and the LAI method used (17, 

19). 

Hidden Markov models (HMMs) are a popular 

approach for local ancestry inference (LAI). HMMs can 

model the correlation between the ancestries of blocks, 

which is due to linkage disequilibrium (LD) (15). LD is 

a phenomenon where genetic variants that are close 

together on a chromosome are more likely to be inherited 

together. Some HMM-based LAI methods are 

SupportMix, PCAdmix (20), MOSAIC (21) and ELAI 

(22). SupportMix first divides the genome into blocks 

with a fixed length. Then, it uses a support vector 

machine (SVM) to determine the ancestry of each block. 

PCAdmix also divides the genome into blocks with a 

fixed length. However, it uses a principal components 

algorithm to determine the ancestry of each block. 

RFMix determines local ancestry by using a conditional 

random field (CRF). A CRF is a statistical model that can 

model the dependencies between multiple variables. 

RFMix divides the genome into blocks with a fixed 

length. Then, it uses a conditional random field, 

parameterized by random forest trained on reference 

panels, to infer local ancestry within each block. 

MOSAIC uses nested HMMs to model the correlation 

between the ancestries of blocks. This allows MOSAIC 

to infer the ancestry of each segment more accurately 

than methods that do not use nested HMMs. ELAI 

employs a two-layer hidden Markov model to obtain 

local ancestry of each admixed individual. 

XGMIX, LAI-NET, LAMP, WINPOP and EILA are 

also local ancestry inference (LAI) methods that use 

different approaches to infer the ancestry of each segment 

of an individual's genome. XGMIX (23) divides the 

genome into blocks with a fixed length and then infers 
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local ancestry within each window by using gradient 

boosting trees. The initial estimates are then smoothed 

using a sliding gradient boosting tree. LAI-NET (24) also 

divides the genome into blocks with a fixed length, but it 

uses a neural network model to infer local ancestry within 

each window. The initial estimates are then smoothed 

afterwards. Similarly to XGMIX and LAI-NET methods, 

SALAI-Net (25) follows a two-stage approach: a 

reference matching layer and then a smoother layer. The 

reference matching layer infers initial estimates of 

ancestry for each block, and then the smoother layer 

improves the initial estimates of ancestry by using 

neighbouring block information and smoothing ancestry. 

Wang et al. (26) first divides the genome into blocks with 

a fixed length and then clusters ancestry within each 

window by use of localized haplotype clustering (27). 

The initial estimates are then smoothed using the HMM.  

LAMP and WINPOP (19) first find the optimal window 

length on the basis of recombination events and then use 

a clustering algorithm to find ancestral populations. In 

these methods, the number of recombination events over 

time is considered as a Poisson distribution. EILA 

(28) uses fused quantile regression to identify 

breakpoints of the ancestral haplotypes. Then, to infer the 

ancestry of each segment between breakpoints, it utilizes 

the k-means classifier. machine learning is being 

increasingly used to analyze genetics data and detect 

diseases  (29-35). As mentioned, some ancestry inference 

methods also use machine learning to classify haplotype 

and genotype data. 

It is important to note that the accuracy of LAI can be 

improved by selecting blocks that do not contain any 

breakpoints. This is because breakpoints can lead to 

inaccurate ancestry inference (17). LAI methods require 

the specification of statistical or biological parameters, 

such as the recombination rate, genetic maps, and 

average number of generations since admixture. These 

parameters can affect the accuracy of the LAI results. 

Among LAI methods, RFMix has been shown to have 

high accuracy in inferring admixed individuals with two 

and three ancestral populations. 

In this study, we introduce a method called IABAC 

(Inferring Ancestry using Boundaries of Ancestry 

Change) that first infers the approximate boundaries of 

the ancestry change based on the distance between 

ancestral populations. Then, IABAC identifies the 

ancestry between boundaries, which are called haplotype 

blocks. LAI methods require various parameters to be 

determined, which can make LAI practical uses difficult. 

It is usually difficult to access these parameters. For 

example, RFMix requires a genetic map, a window size 

and the average number of generations since admixture, 

MOSAIC requires a recombination rates files and SNP 

files, ELAI requires a SNP position file and the number 

of upper and lower layers of clusters. Unlike many LAI 

methods, IABAC does not required to many statistical or 

biological parameters. the only input parameter of 

IABAC is the length of the IB-block, which the optimal 

value of it for ancestry inference is investigated in the 

next sections. 

SupportMix, PCAdmix, RFMix, XGMIX, SALAI-

Net and LAI-NET unlike IABAC divide the genome into 

blocks with a fixed length and determine the ancestry of 

each block. LAMP and WINPOP first find the optimal 

block length on the basis of recombination events and 

then find the ancestral population between two 

recombination events. LAMP and WINPOP need 

parameters such as recombination rate to find 

recombination events. EILA, like IABAC, identifies 

boundaries of ancestry change. The main difference 

between EILA and IABAC is that EILA uses fused 

quantile regression to identify boundaries of ancestry 

change and IABAC uses distance between ancestral 

populations to identify boundaries of ancestry change. 

EILA is used for genotype data and IABAC is used for 

haplotype data. 

We used four classification methods to identify the 

ancestry of each haplotype block: decision tree (DT), 

support vector machine (SVM), random forest (RF), and 

logistic regression (LO). We named IABAC with four 

different classifiers  (IABACs) as IABAC-SVM, IABAC-

DT, IABAC-RF, and IABAC-LO, respectively.  

We compared the accuracy of the ancestry detection 

of admixed individuals by IABAC with the fixed window 

method. In the fixed window method, haplotypes were 

divided into blocks with a fixed length. 

Finally, we compared the performance of IABACs 

with three well-known benchmark methods: RFMix, 

ELAI, and MOSAIC. 
 
 

2. MATERIALS AND METHODS 
 

In this section the research method for identifying the 

ancestry of admixed individuals is presented. 
 

2. 1. Identifying Boundaries of Ancestry Change        
To identify the boundaries of ancestry changes, we 

consider the allele frequencies of single-nucleotide 

polymorphisms (SNPs). This method calculates the 

distance between the alleles of an admixed individual by 

taking the mean of the alleles of the ancestral populations 

in a number of predefined SNPs. This distance is denoted 

by 𝐷. The mean of the alleles of each ancestral population 

in an SNP is obtained from Equation 1. 

𝜇 =
∑ ℎ𝑖

𝑁
𝑖=1

𝑁
  (1) 

In this equation, 𝜇 represents the mean of the alleles of 

the ancestral population per SNP. It is a value between 0 

and 1. ℎ represents the haplotype allele of each individual 

in each SNP. It is either 0 or 1. 𝑁 represents the number 

of individuals in the population. 
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If the mean of the alleles of the ancestral population 𝐴 

is denoted by 𝜇𝑎 and the allele of the admixed individual 

is denoted by ℎ𝑎𝑑, the distance between the admixed 

individual allele and the mean of the alleles of the 

ancestral population 𝐴 in a SNP can be obtained from 

Equation 2. 

𝑑𝑎 = |(ℎ𝑎𝑑 − 𝜇𝑎)|  (2) 

In this equation, 𝑑𝑎 represents the distance between the 

admixed individual allele and the mean of the alleles of 

the ancestral population 𝐴. 

When examining the existence or non-existence of the 

boundaries of ancestry change between two desired 

SNPs, the distance of alleles in one SNP alone does not 

have enough information. Therefore, several SNPs need 

to be considered together. The information of the 

neighbors of the two SNPs can be used to examine the 

points of ancestry change between the two SNPs. For 

example, if we want to examine the ancestry change 

between two adjacent SNPs 𝑖 and 𝑗, where 𝑗 > 𝑖, the 

number of 𝐿𝑤 SNPs from the left neighbor 𝑖 is considered 

as one block, and the number of 𝐿𝑤 SNPs from the right 

neighbor 𝑗 is considered as another block.  

In this paper, we call these blocks IB-blocks. The 

selection of IB-blocks is shown in Figure 2. 𝐿𝑤 is the 

number of neighbors of each SNP that can be selected for 

different sizes. Figure 2a presents IB-blocks with SNPs 𝑖 
and 𝑗 (SNPs in these IB-blocks are shown in the red 

square). In Figure 2b, position 𝑖 to 𝑖 − 4 is considered as 

one IB-blocks and position 𝑗 to 𝑗 + 4 is considered as 

another IB-blocks. The value of 𝐿𝑤 in Figure 2 is 4. The 

top row indicates the alleles, and the bottom row 

indicates the location of the SNPs.  

After determining the IB-blocks, the distance between 

the alleles of the admixed individual in each IB-block and 

the mean of the alleles of the ancestral population 

equivalent to that IB-block in each ancestral population 

is calculated. For the left neighbors (left IB-block) of 

location 𝑖, the distance is calculated using Equation 3. For 

the right neighbors (right IB-block) of location 𝑗, the 

distance is calculated using Equation 4. 

𝐷𝑎𝐿 = ∑ 𝑑𝑎(𝑖+𝑘)
0
𝑘=−𝐿𝑤

  (3) 

𝐷𝑎𝑅 = ∑ 𝑑𝑎(𝑗+𝑘)
𝐿𝑤
𝑘=0   (4) 

The length of IB-block is shown as 𝐿𝑤 and 𝐷𝑎𝐿  

represents the distance between the left IB-block of the  
 
 

 
Figure 2. Investigating the existence or non-existence of the 

boundaries of ancestry change between locations 𝑖 and 𝑗 

admixed individual and the ancestral population 𝐴, and 

𝐷𝑎𝑅  represents the distance between the right IB-block of 

the admixed individual and the ancestral population 𝐴. 

The following algorithm is used to check the boundaries 

of ancestry changes between location 𝑖 and 𝑗 of an 

admixed individual with ancestry population 𝐴 and 𝐵.  

Step 1: Determine the IB-block and calculate distance 𝐷 

between the admixed individual and the ancestral 

populations. 

Step 2: Select the smallest distance between the ancestral 

populations and admixed individual for each IB-block. In 

Equation (5), 𝐷𝑎𝑅  represents the distance between the 

admixed individual and mean of the alleles of the 

ancestral population 𝐴 in the right IB-block of location 𝑗, 

𝐷𝑏𝑅 is the distance between the admixed individual and 

mean of the alleles of the ancestral population B in the 

right IB-block of the location 𝑗, 𝐷𝑅 is the minimum 

distance between the admixed individual and mean of the 

alleles of ancestral populations 𝐴 and 𝐵 in the right IB-

block of location 𝑗. 

𝐷𝑅 = 𝑚𝑖𝑛 (𝐷𝑎𝑅, 𝐷𝑏𝑅) 

𝐷𝐿 = 𝑚𝑖𝑛 (𝐷𝑎𝐿, 𝐷𝑏𝐿) 

(5) 

where 𝐷𝑎𝐿 represents distance between admixed 

individual and mean of the alleles of ancestral population 

𝐴 in the left IB-block of location 𝑖, 𝐷𝑏𝐿  is distance 

between admixed individual and mean of the alleles of 

ancestral population 𝐵 in the left IB-block of location 𝑖 
and 𝐷𝐿  is the minimum distance between the admixed 

individual and mean of the alleles of the ancestral 

populations 𝐴 and 𝐵 in the left IB-block of location 𝑖. 
Step 3: Select the smallest distance between the ancestral 

populations and admixed individual for the total IB-

blocks, the blue IB-block specified in Figure 3c, the IB-

blocks introduced for both location 𝑖 and 𝑗 are considered 

as one IB-block. 

𝐷𝑇 = 𝑚𝑖𝑛 ((𝐷𝑎𝐿 + 𝐷𝑏𝐿), (𝐷𝑎𝑅 + 𝐷𝑏𝑅))  (6) 

In this equation, 𝐷𝑇  represents the minimum distance 

between the admixed individual and mean of the alleles 

of the ancestral populations 𝐴 and 𝐵 in sum of two IB-

blocks of the right and left of location 𝑖 and 𝑗. 

Step 4: Compare sum of the minimum distance between 

the left and right IB-blocks specified in step 2 and the IB-

block specified in step 3. If the minimum distance 

between the total IB-blocks and the value of 𝐷𝑇  is not the 

same, the location between location 𝑖 and 𝑗 is selected as 

the boundary. 

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = {
 𝑓𝑎𝑙𝑠𝑒                𝐷𝑇  = 𝐷𝑅 + 𝐷𝐿

 𝑡𝑟𝑢𝑒                  𝐷𝑇 ≠ 𝐷𝑅 + 𝐷𝐿
  (7) 

The steps of determination of the existence or non-

existence of the boundaries of ancestry change between 

locations 𝑖 and 𝑗 are shown in Figure 3. In Figure 3a, IB-

blocks are determined for locations 𝑖 and 𝑗. The alleles of 
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the admixed individual are displayed with allele 𝐴𝐷, the 

mean of the alleles of the ancestral population 𝐴 are 

presented with allele mean 𝐴, and the mean of the alleles 

of the ancestral population 𝐵 are displayed with allele 

mean 𝐵. In Figure 3b, the distance between the admixed 

individual and the ancestral population 𝐴 for each IB-

block is shown by the red rectangle, and the distance 

between the admixed individual and the ancestral 

population 𝐵 for each IB-block is shown by the blue 

rectangle. The distance value for this hypothetical 

example is shown on the rectangle of each IB-block. An 

ancestral population with a smaller distance (rectangle) is 

selected for each IB-block. 

Determination of total IB-blocks are shown in Figure 

3c. This IB-block is the sum of the left neighbors for i 

and the right neighbors for 𝑗. In Figure 3d The distance 

between the admixed individual and the ancestral 

population 𝐴 for the total IB-block is shown by the red 

rectangle, and the distance between the admixed 

individual and the ancestral population 𝐵 for the total IB-

block is shown by the blue rectangle. An ancestral 

population with a smaller distance is selected. Figure 3e 

presents Comparison of the sum of the minimum distance 

between the left and right IB-blocks specified in Figure 

3b and the total IB-block specified in Figure 3d. In this 

example, there is no boundary of ancestry change 

between locations 𝑖 and 𝑗, because the sum of the 

minimum distance between the left and right IB-blocks is 

equal with the total IB-block.  

In the same way, the existence or non-existence of the 

boundaries of ancestry change between all SNPs are 

investigated. These IB-blocks are placed as sliding 

windows between all the SNPs and their distance is 

calculated. For example, to examine the boundary of 

ancestry changes between locations 𝑗 and 𝑗 + 1, as shown 

in Figure 4b, location 𝑗 to 𝑖 − 3 is considered as one IB-

block (left IB-block) and position 𝑗 + 1 to 𝑗 + 5 are 

considered as another IB-block (right IB-block). The 

value of 𝐿𝑤in this Figure is 4. 

The IB-blocks shown in Figure 4a are the IB-blocks 

defined to determine the boundary of ancestry changes 

between location 𝑖 and 𝑗, the IB-blocks indicated in 

Figure 4b are the IB-blocks defined to determine the 

boundary of ancestry changes between location 𝑗 and 𝑗 +
1. The left neighbors (left IB-block) of location 𝑗 and the 

right neighbors (right IB-block) of location 𝑗 + 1 in an 
 

 

 

 
Figure 3. Determination of the existence or non-existence of the boundaries of ancestry change between locations 𝑖 and 𝑗 
 
 

 
Figure 4. Investigating the existence or non-existence of the 

boundaries of ancestry change between locations 𝑗 and 𝑗 + 1 

IB-block with 𝐿𝑤 length for the admixed individual and 

the ancestry 𝐴 are obtained from Equations 8 and 9, 

respectively. 

𝐷𝑎𝐿 = ∑ 𝜇𝑎(𝑗+𝑘)
0
𝑘=−𝐿𝑤

  (8) 

𝐷𝑎𝑅 = ∑ 𝜇𝑎(𝑗+1+𝑘)
𝐿𝑤
𝑘=0   (9) 
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In these equations, 𝐷𝑎𝐿  represents the distance between 

the left IB-block of the admixed individual and the 

ancestral population 𝐴, and 𝐷𝑎𝑅  represents the distance 

between the right IB-block of the admixed individual and 

the ancestral population 𝐴. Similarly, IABAC can also 

determine the existence or non-existence of the 

boundaries of ancestry change between SNPs with more 

than two ancestral populations. 

 

2. 2. Classification        Once the haplotype IB-blocks 

with appropriate length have been determined using the 

IABAC method, the ancestry of each of these haplotype 

IB-blocks must be classified. We used four well-known 

classification methods to do this: support vector machine 

(SVM), decision tree (DL), random forest (FR), and 

logistic regression (LR). We named the four methods as 

IABAC-SVM, IABAC-DL, IABAC-RF, and IABAC-

LR, respectively. 

 

2. 3. Data and Simulation         We used the genotypes 

of chromosome 10 from the HapMap project (36), which 

is a database of genetic variation in humans. The 

genotypes were phased with SHAPEIT (37), a software 

that estimates haplotypes from genotype data. Admixed 

individuals were simulated from these haplotypes using 

a simple hybrid isolation (HI) model. In this model, all 

individuals in the first generation can mate with each 

other, but after that, only admixed individuals from the 

previous generation can mate (38). 
We used data from eight populations in the HapMap 

project, the names of the populations and their IDs are 

shown in Table 1. We selected 160 unrelated samples 

from each population, which resulted in 160 haplotypes 

for each sample (80 genotypes became 160 haplotypes 

after phasing). We created admixed individuals by 
randomly mating samples from the ancestral populations. 

The probability of recombination in chromosome 10 for 

each generation was set to 1.8, based on the HapMap data 

(39). We simulated admixed individuals from their 

ancestors for 2, 4, 8, 16, 32, 64, 100, and 128 generations. 

 

 
TABLE 1. populations and their IDs. 

Population ID 

Northern and Western European Ancestry CEU 

Toscani in Italia  TSI 

Gujarati Indians in Houston, Texas GIH 

Yoruba in Ibadan, Nigeria YRI 

Luhya in Webuye, Kenya LWK 

Maasai in Kinyawa, Kenya MKK 

Chinese in Metropolitan Denver, Colorado CHD 

Han Chinese in Beijing, China CHB 

 

TABLE 2. admixed populations and their ancestral 

populations. 

Number  of ancestral 

populations 

Ancestral 

Population 

Admixed 

population 

Two populations 

CEU, CHB CEU-CHB 

CEU, TSI CEU-TSI 

CEU, YRI CEU-YRI 

CHD, TSI CHD-TSI 

LWK, YRI LWK-YRI 

LWK, MKK LWK-MKK 

CHD, GIH CHD-GIH 

GIH, TSI GIH-TSI 

LWK, TSI LWK-TSI 

Three populations 

CHD, TSI, LWK CHD-TSI-LWK 

CHD, GIH, TSI CHD-GIH-TSI 

MKK, GIH, LWK MKK-GIH-LWK 

 

 

From the 160 single-population individuals, 140 were 

selected for training and 20 were used to generate 

admixed individuals for testing. We simulated 20 

admixed individuals by test samples from each pair of 

ancestral populations. We also simulated 30 admixed 

individuals by test samples from each triplet of ancestral 

populations, the names of the admixed populations and 

their ancestral populations are shown in Table 2. 

The simulations were performed with Python and 

MATLAB software, and each haplotype contained 

73,832 SNPs. 

 

 

3. RESULTS 
 
This section presents the results of the proposed IABAC 

method. Two important parameters that affect the quality 

of the IABAC method are the length of the IB-blocks and 

the choice of classification algorithm. To investigate the 

effect of IB-block length on the results, we performed 

ancestry inference for admixed individuals from the 

CEU-TSI, CEU-YRI, and LWK-MKK populations with 

different IB-block lengths. 

The average accuracy of IABACs for these admixed 

individuals with 10 samples for each population is shown 

in Figure 5. Accuracy is measured by the percent of SNPs 

whose ancestries have been correctly identified. 

Admixed individuals with 32 generations from the 

admixed time were considered. 

As shown in Figure 5, 𝐿𝑤 with value of 100 – 300 

SNPs is a good IB-block for all classifiers, and as the 

number of 𝐿𝑤 gets higher or lower, the accuracy of the 

method decreases. The purpose of IABAC is to provide  
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Figure 5. Average accuracy of ancestry inference of admixed individuals with CEU-TSI, CEU-YRI, and LWK-MKK ancestral 

population in different 𝐿𝑤 

 

 

an appropriate way to divide chromosomes into smaller 

haplotype IB-blocks. 

To evaluate IABAC and its effect on the accuracy of 

ancestry inference, the results of IABAC and fixed 

window with length of 500 SNPs for 20 sample from 

each admixed individual of CEU-CHB, CHD-TSI and 

LWK-YRI were compared with each other. The reason 

for choosing fixed window with length of 500 SNPs is 

that other ancestry inference methods such as XGMIX 

(23) and LAI-NET (24) use fixed window with length of 

500 SNPs. 𝐿𝑤 with a value of 150 SNPs were selected.   

Admixed individuals with 2, 4, 8, 16, 32, 64, 100 and 

128 generations from the admixed time were considered. 

The average accuracies of the ancestry detection of 

admixed individuals using IABAC-SVM and fixed 

window with SVM classifier (FW-SVM), IABAC-DT 

and fixed window with DT classifier (FW-DT), IABAC-

RF and fixed window with RF classifier (FW-RF), and 

IABAC-LO and fixed window with LO classifier (FW-

LO) are shown in Figure 6.   

The results revealed that with increasing admixture 

times, IABAC-SVM is more accurate than FW-SVM, 

IABAC-DT is more accurate than FW-DT, IABAC-RF 

accuracy is better than FW-RF and IABAC-LO accuracy 

is more valid than FW-LO for ancestry inference. 

Overall, as the time admixture became longer, the 

performance of the AICRF algorithm is better than the 

fixed window in all four classifiers of SVM, DT, RF and 

LO.  

To evaluate IABAC relative to other ancestry 

inference methods, RFMix, ELAI and MOSAIC are 

compared with IABACs. Figure 7 presents the average  

accuracy ancestry inference of IABACs, RFMix, ELAI 

and MOSAIC for 20 sample from each admixed 

population of CHD-GIH, GIH-TSI and LWK-TSI 

(admixed individuals with two ancestral populations). 

Admixed individuals with 4, 8, 16, 32, 64, 100 and 128 

generations from the admixed time are considered. 𝐿𝑤 

with a value of 150 SNPs is selected. 

The results indicated that in low generations (G < 32), 

ELAI performs better than other methods, and with 

increasing admixture times (G > 32), IABAC-RF 

accuracy is more precise than other methods. 

The average accuracy ancestry inference of IABACs, 

RFMix, ELAI and MOSAIC for 30 sample from each 

admixed populations of CHD-TSI-LWK, CHD-GIH-TSI 

and MKK-GIH-LWK (admixed individuals with three 

ancestral populations) is shown in Figure 8. As shown in 

Figure 8, in low generations (G < 16), ELAI is more 

accurate than other methods, and with increasing  
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Figure 6. Average accuracy of ancestry inference of admixed individuals using IABAC and fixed window. (a) The average accuracy 

of ancestry inference using IABAC-SVM and FW-SVM. (b) The average accuracy of ancestry inference using IABAC-DT and 

FW-DT. (c) The average accuracy of ancestry inference using IABAC-RF and FW-RF. (d) the average accuracy of ancestry 

inference using IABAC-LO and FW-LO 

 

 

 

 
Figure 7. the average accuracy ancestry inference of IABACs, RFMix, ELAI and MOSAIC for 20 sample from each admixed 

population of CHD-GIH, GIH-TSI and LWK-TSI 



 

 
Figure 8. The average accuracy ancestry inference of IABACs, RFMix, ELAI and MOSAIC for 30 sample from each admixed 

population of CHD-TSI-LWK, CHD-GIH-TSI and MKK-GIH-LWK   

 

 

admixture times (G > 64), IABAC-RF accuracy is better 

than other methods. 

The results show that with increasing admixture time 

(G > 64), IABAC-RF can more accurately identify the 

ancestors of admixed individuals with two and three 

ancestral population. 

An example of an admixed individual of CEU-CHB 

with its original ancestral population and estimates of 

IABAC-RF is shown in Figure 9. Admixed individuals 

with 32 generations from the admixed time are 

considered. 𝐿𝑤 with a value of 150 SNPs are selected. 

Figure 9a is shown true ancestry of admixed individual, 

the red blocks represent the ancestral population of CEU 

and the blue blocks represent the ancestral population of 

CHB. Figure 9b is presented ancestry estimates of 

admixed individual, and Figure 9c is indicated difference 

between true ancestry and estimated ancestry that shown 

by the red block. The Y-axis represents the probability 

that one allele is derived from a specific ancestry and the 

possibility of error in any SNP; the X-axis indicates the 

physical locations of SNPs. The results of Figure 9 show 

that most errors occur at ancestry change boundaries. 

Additionally, some narrow ancestral mosaics have not 

been correctly detected. 

One of the important and influential factors in the 

accuracy of ancestry inference using IABAC is the 

chromosome length of the ancestral population 

constituting the admixed individual chromosome 

(ancestral mosaics). To examine the effect of the length 

of the ancestral mosaics, we simulated new admixture 

populations of CEU-CHB and LWK-YRI. In these 

admixture people, the ancestral mosaics are equal in 

length and are repeated alternately. 

The results of average accuracy of ancestry inference 

using IABAC-RF for 20 samples from each admixed 

population of CEU-CHB and LWK-YRI with different 

lengths of mosaics are shown in Figure 10. 𝐿𝑤 with a 

value of 150 SNPs were selected. 

 
 

 
Figure 9. An example of an admixed individual of CEU-

CHB with its original ancestral population and estimates of 

IABAC-RF 
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Figure 10. Average accuracy of ancestry inference using 

IABAC-RF for 20 samples from each admixed population 

of CEU-CHB and LWK-YRI with different lengths of 

mosaics 

 

 

The results show that as the length of ancestral 

mosaics decreases, the accuracy of ancestry inference 

decreases. As the admixing time increases, the length of 

the ancestral mosaics constituting the admixed individual 

chromosome decreases, so with increasing admixing 

time, the accuracy of the IABAC-RF decreases. 

 
 
4. DISCUSSION 
 
Inferring the ancestry of admixed individuals is used in 

fields of historical demographic, anthropological, and 

pharmacogenomics. We present a method that uses the 

distance between the haplotype of ancestral populations 

to identify boundaries of ancestry change and then 

determining the ancestry between boundaries. The 

purpose of IABAC is to provide an appropriate way to 

divide chromosomes into smaller haplotype blocks. The 

major strength of IABAC is that it identifies approximate 

boundaries of ancestry change and ancestry inference 

without the need to determine many statistical or 

biological parameters. Many LAI methods require the 

determination of various parameters that may be difficult 

to obtain, which can hamper using LAI methods. For 

example, RFMix requires a genetic map, a window size 

and the average number of generations since admixture, 

while the only input parameter of IABAC is the length of 

the IB-block (𝐿𝑤). 

The results of this study show that the length of IB-

blocks in Equations 3 and 4 are influential in the IABAC 

method. As the length of IB-blocks increases, the 

accuracy of the IABAC also increases. However, with 

excessive growth of the length of IB-blocks, the accuracy 

of the IABAC decreases. The reason for the decrease of 

IABAC accuracy with increasing IB-blocks length is that 

in places where the length of ancestral haplotype mosaics 

is small, large IB-blocks ignore them. In fact, in 

determining the points of ancestry change, the IB-blocks 

defined with 𝐿𝑤 length play a role in smoothing ancestry 

change of the SNPs. The longer the 𝐿𝑤 length is, the 

greater smoothing would be, and with the smaller 𝐿𝑤 

length, less smoothing will be observed. The ancestry 

inference of IABAC, which is based on ancestral change 

points, is preciser than the fixed window method where 

the length of the haplotype blocks is constant. 

In determining the points of ancestry change, the 

correlation between the SNPs is considered. Due to the 

fact that the alleles within the ancestral population are not 

independent from each other in dense SNPs (background 

LD) (4), and also in examining the possibility of ancestry 

change between two adjacent SNPs using the distance 

between the alleles of an admixed individual and the 

mean of the alleles of ancestral populations, the distance 

of alleles in an SNP alone cannot have much information, 

so several SNPs must be considered together. As the 

results have shown, with the increase of the number of 

SNPs in each block, the accuracy of IABAC increases. In 

this case, the adjacent SNPs play a role in determining 

SNPs ancestral information and influence it. IB-blocks 

are sliding and move between all SNPs, so adjacent SNPs 

will be in the same IB-block at least once and will play a 

role in determining ancestral information of each other. 

As mentioned, the genomes of admixed individuals are a 

mosaic of different ancestral populations, so close SNPs 

are more likely to be from the same ancestors than far 

SNPs. For this reason, in determining the IB-block, in 

addition to the desired SNP, its nearest neighbors are 

considered. 

In the stated algorithm to investigate the existence of 

ancestry change between two SNPs, in addition to the left 

and right IB-blocks of the desired SNPs (red IB-blocks in 

Figure 3a), the total IB-blocks (blue IB-blocks in Figure 

3c) are also considered. The distance between different 

ancestral populations and admixed individual in the left, 

right and total IB-blocks is calculated. In fact, IABAC 

investigates the association between the ancestry of two 

IB-blocks and the sameness of their ancestral population. 

In other words, the proposed way for considering the 

association between the ancestry of IB-blocks is defined 

based on the statistic 𝐷 explained for LD, which 

examines the probability of two alleles occurring at two 

chromosomal sites and calculates their correlation (40, 

41). The value of 𝐷 between alleles 𝐴 and 𝐵 at two 

chromosomal sites is presented by Equation 10. 

𝐷𝐴𝐵 = 𝑃𝐴𝐵 −  𝑃𝐴𝑃𝐵  (10) 

In this equation, 𝐷𝐴𝐵 represents the value of LD between 

alleles 𝐴 and 𝐵, 𝑃𝐴 denotes the frequencies of alleles 𝐴 in 

the population, 𝑃𝐵 denotes the frequencies of alleles 𝐵 in 

the population, and 𝑃𝐴𝐵  is the frequencies of alleles 𝐴 and 

𝐵 together (𝐴𝐵) in the population. Bigger 𝐷 means more 

dependency between alleles and smaller 𝐷 means more 

independency between alleles. In Equation 10, the 

frequencies of occurrence of each allele and the sum of 

alleles are considered, while in the IABAC, the distance 

of each IB-block and the sum of IB-blocks is considered. 
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Among the four classification methods mentioned, 

random forest method more accurately classifies 

haplotype blocks. With increasing admixture times, the 

ancestry inference accuracy decreases in all methods. 

However, the accuracy of IABAC-RF is better than other 

methods of ancestry inference. 

 

 

5. CONCLUSION 
 

IABAC infers ancestry by identifying the approximate 

boundaries of the ancestry change. To identify the 

boundaries of ancestry changes, IABAC uses distance 

between ancestral populations by considering the 

information of the neighbors in SNPs. After identifying 

boundaries of ancestry change, the ancestry between 

boundaries is determined. The important features of the 

IABAC compared to the former methods is that IABAC 

does not require many statistical or biological 

parameters. The only input parameter is the length of the 

IB-block. The results were shown that IABAC with IB-

block length of 100-300 SNPs had the highest accuracy 

of ancestry inference and with increasing admixture 

times, IABAC with random forest classifier was more 

accurate that other methods for the ancestry inference. 

When IABAC and fixed window use the same classifiers, 

IABAC are more precise than fixed window for ancestry 

inference. In the present study, we studied haplotype 

data. We used SHAPEIT to convert genotype to 

haplotype. Future work will include adding a phasing 

step to IABAC. With the addition of the phasing step, if 

we have genotype data, phasing step converts genotype 

into haplotypes and then IABAC infers the ancestry of 

haplotypes. Sometimes we need to infer the ancestry of 

genotype data (similar to EILA). The algorithm used in 

IABAC, with minor changes, can infer the ancestry of 

genotype data, which can be done as future work. 
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Persian Abstract 

 چکیده 
شود که هر  جدیدی  DNA ل یتواند منجر به تشک   ی م نی . ااست مستقل  تیچند جمع   ا یافراد از دو  آمیزش  جهیاست که نت ی انسان ی ها تیدر جمع  جیرا دهیپد ک ی ترکیب ژنوم

 خچهیدر مورد تار  ینشیب  تواندیکه م دنشویاستفاده م  از ژنوم  هر بخش  تبار  ییشناسا یبرا  یمحل  تبار  باطاستن  یها. روش ردیگ  یمتفاوت منشا م   یاجداد  تیاز جمع   آن  بخش

نLAI)  ی محل  تبار  باطاستن  یهااز روش   یاریارائه دهد. بس  هاتیجمع  تع   از ی(  ب  یمختلف  یپارامترها  ن ییبه  از   وده ودارند که ممکن است بدست آوردن آنها دشوار  استفاده 

  تبار   نییمخلوط و سپس تع   یهاپ ی( در هاپلوتIABAC)  تبار  رییتغ   یب یتقر  یمرزها  ییشناسا  یبرا  دیروش جد  کیمقاله، ما    نیرا با مشکل مواجه کند.در ا  LAI  یهاروش

اختلاط    یالگوها  رات ییدر برابر تغ   نیبنابرا   ست،ین  ی متک  ی زیادیکیولوژیب  ای  یآمار  ی روش ما به پارامترها ،LAI  یاز روش ها  ی اری. بر خلاف بسدهیمی مرزها ارائه م  نیب

نتا  قیدق  تبار صیموجود تشخ  یکه از روش ها  میده   یو نشان م  میکن   یم  یابیارز   انسان  یداده ها  یما روش خود را بر رو. است  تریقو که   دهدی ما نشان م  جیتر است. 

IABAC  یها  ت یاختلاط در جمع   خچهیمطالعه تار  ی تواند برا  یروش م   نیمخلوط است. ا  یهاپ یدر هاپلوت تغییر تبار    یمرزها  ییشناسا  یرا ب  دوارکنندهیام  دیروش جد  کی  

 . ردیمختلف مرتبط هستند مورد استفاده قرار گ یاجداد یها تیکه با جمع  یک یژنت یها واریانت ییو شناسا یانسان
 

 


