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A B S T R A C T  
 

 

The Strut-and-Tie modeling (STM) technique represents an applicable and valuable method for 

structural engineers to design disturbed regions (D-regions) of reinforced concrete structures where the 

assumption of plane sections remaining plane after loading is inapplicable. The most important aspect to 
guarantee the suitable structural and economic performance of the design is finding a suitable truss-

analogy model, leading to the use of a more efficient model in structural buildings. The evaluation of the 

antisymmetric Strut-and-Tie models (STM) with openings under different concentrated external loads 
has not been comprehensively investigated in the literature. So, to address this gap, the goal of this paper 

is to achieve the most efficient reinforcement layout design in antisymmetric reinforced concrete deep 

beams with openings under concentrated loading using the strut and tie model.  The experimental work 
was conducted and included (3) antisymmetric reinforced concrete deep beams with openings that were 

tested under different concentrated loadings (25, 35, and 16 kips for Specimens 1, 2, and 3, respectively) 
using the strut and tie model. The ANSYS FEM software is used for the initial strut and tie analysis, and 

the RISA-3D structural analysis program is used to find the internal forces for all members under 

concentrated external loads in each specimen. The findings of this paper show that Specimen 1 had the 
highest efficiency of 1.67, while Specimen 3 had the lowest efficiency of 1.31. It can be concluded that 

the efficient reinforcement layout of the strut and tie model leads to the highest efficiency of the model, 

regardless of the value of the externally applied load. 

doi: 10.5829/ije.2023.36.12c.17 
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1. INTRODUCTION 
 

Overall, in the world, reinforced concrete structures have 

been utilized in a wide range of ways. The safe and 

economical design of reinforced concrete structures is 

always an important challenge for civil engineers, 

especially since their point of view is oriented toward 

developing a sustainable world. In general, reinforced 

concrete structures are divided into two main groups 

based on their behavior under loading: the Bernoulli 

group (B-group), which has linear strain distributions, for 

example, all the standard and commonly structural 

concrete members, and the Disturbed group (D-group), 

which has nonlinear strain distributions, for instance, the 

nonstandard or unconventional structural concrete 

members (Strut-and-Tie models) (STM). The main 

reasons for the nonlinear strain distribution are the low 

slenderness and geometrical discontinuities. To select 

accurate, effective, and reasonable methods for design, 

the nonlinearity and discontinuity of the D-group 

members represent big challenges for civil engineers. For 

over two decades and among many methods, the strut-

and-tie modeling (STM) method has been utilized in a 

wide range to design the D-group of reinforced concrete 

members [1]. Building code requirements for standard 

and commonly used structural concrete members have 

been part of the design codes for quite some time. 

However, the design codes previously had little guidance 

on designing nonstandard or unconventional members. 

To account for these nonstandard members, design codes 

have included guidelines for the design of such members 

by incorporating a strut and tie model design approach. 

Over the years, tests and research have been performed 

on the strut and tie model designs to be recommended and 

implemented into the various design codes [1-6].  

At the end of the nineteenth century and the beginning 

of the twentieth century, Ritter [7] and Mörsch [8] 

proposed the STM method, which is a truss-like method 

leading to simplifying the complex force transfer 

mechanism. Schlaich et al. [9] presented a 

comprehensive work on the strut-and-tie modeling 

techniques, leading to an extensive investigation of using 

this method. Further research to generalize this method 

as a consistent design method was done by Schlaich and 

Schäfer [10]. After that, a lot of researchers studied and 

reported many different types of techniques and 

algorithms related to the strut-and-tie modeling (STM) 

technique. An evolutionary structural optimization 

method was demonstrated by Xie and Steven [11]. This 

method worked on creating strut-and-tie models by 

optimization of the topology. As well as based on Xie and 

Steven [11], Yang et al. [12] developed a bidirectional 

evolutionary optimization method. Then, Liang et al. [13, 

14] proposed a performance-based optimization method 

for strut-and-tie modeling. In the first decade of the 

twenty-first century, many researchers [15-20] 

introduced the important developments of the strut-and-

tie modeling technique and experienced different types of 

algorithms to develop this method.  

In the second decade of the twenty-first century, the 

strut-and-tie modeling (STM) technique was developed, 

and new procedures were performed for strut-and-tie 

modeling through the established full homogenization 

optimization method [21], the smooth evolutionary 

structural optimization method [22], and the hybrid 

technique combining different methods [23-25]. El-

Metwally and Chen [26] proposed a method that requires 

an equilibrium of the axial force while neglecting the 

compatibility of strain. In the STM method, the cracking 

of concrete and compatibility conditions were 

implemented to predict the ultimate behavior of concrete 

structures [27]. Many researchers conducted 

experimental work on various STM designs to validate 

their effectiveness and safety [28]. The effect of loading 

during an earthquake has been investigated in the 

literature [29, 30]. In respect of each load combination, a 

basis is created based on their previously proposed 

generation methods, the optimization-based Strut-and-

Tie models (OPT-STMs), which resulted in economical 

and safe designs compared to traditional models [31-33]. 

A seismic vulnerability index methodology was 

improved to be used uniformly in reinforced concrete 

structures overall the world according to the earthquake 

design principles [34, 35]. The reinforced high-strength 

concrete beams’ structural behavior was numerically 

investigated by Jabbar et al. [36]. The article introduced 

an experimental study to estimate an equation for 

accounting for deflection in reinforced concrete beams by 

utilizing the shear steel plates as a stirrup [37]. By 

employing a suitable strut-and-tie model, the results of 

experimental work on deep beam concrete samples 

consisting of recycled aggregates were introduced by 

Chaudhari and Suryawanshi [38]. 

Over the years, tests and research have been 

performed on the different strut-and-tie model designs. 

As a result of the literature review, this study is 

considered unique from previous research because no 

other study has attempted to investigate and evaluate the 

antisymmetric reinforced concrete deep beams with 

openings under concentrated loading using the strut and 

tie model. The goal of the paper is to achieve the most 

efficient reinforcement layout design (this was evaluated 

by the load capacity to the total steel weight ratio) among 

the three strut-and-tie models (STM) that are used in the 

antisymmetric reinforced concrete deep beams. To 

achieve this goal, the experimental work was conducted 

and included (3) antisymmetrically reinforced concrete 

deep beams with openings that were tested under 

different concentrated loading using the strut and tie 

model. The 3 unconventional concrete members 

(antisymmetric reinforced concrete deep beams with 

openings) were poured and tested under different 
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concentrated external loads equal to 25, 35, and 16 kips 

for Specimens 1, 2, and 3, respectively. 

 

 

2. EXPERIMENTAL WORK 
 

The experimental work included (3) antisymmetric 

reinforced concrete deep beams with openings that were 

tested under different concentrated loads using the Strut 

and Tie Model with 4,500 psi as the nominal compressive 

strength. All the samples had a width of 48 inches and a 

height of 24 inches. The beam's effective depth is 3.5 

inches. The 3 unconventional concrete members 

(antisymmetric reinforced concrete deep beams with 

openings) were poured and tested under different 

concentrated external loads equal to 25, 35, and 16 kips 

for Specimens 1, 2, and 3, respectively. The following 

describes the experimental work performed for this 

paper. 

 

2. 1. Initial Guidelines       The geometry of the 

unconventional concrete member is shown in Figure 1. 

The work involved designing the steel reinforcement 

without load or phi factors. It was originally assumed that 

the concrete strength was 4,500 psi for the design and 

analysis of the strut and tie model. Figures 2 and 3 are 

images of the stress profile created using the ANSYS 

FEM software. Figure 2 is a contour of the stresses in the 

concrete member with a certain load. Figure 3 shows 

arrows oriented in the direction of the stresses distributed 

along the member. These FEM results were used for the 

initial strut and tie analysis. 

 

2. 2. STM Analysis         After the ANSYS analysis was 

performed, several strut and tie models were designed 

and analyzed by considering tension and compression 

zones. The bottom left corner of the central opening was 

the critical tension part; therefore, constraints in this zone 

were addressed by adding tie bars. Figure 4 is the final 

strut and tie model design that was used for the final 

reinforcement layout. The design in Figure 4 shows the 

location of all struts and ties with the corresponding 
 

 

 
Figure 1. The geometry of the unconventional reinforced 

concrete member 

 
Figure 2. The contour of the stresses in the concrete member 

using ANSYS 

 

 

 
Figure 3. Arrows demonstrating the stress orientation of the 

concrete obtained with ANSYS 

 

 

 
Figure 4. Strut and tie design 

 

 

angles for each. All strut and tie angles are within the 

allowable limits of 25° and 65°. A cover of 1.2 inches 

was given along the supports and 1 inch of cover was 

given around the central opening of the concrete member. 

The lengths of the strut and ties can be seen in Table 1. 
After the strut and tie model was designed using 

ANSYS, the model was analyzed using the RISA-3D 

structural analysis program to find the internal forces for 

all members under a concentrated external load equal to 

25 kips. Figure 5 shows the members and nodes. Figure 

6 shows the reaction forces at each support. Figure 7 

shows the compression (struts) members, which are 

depicted in green, and the tension members (ties), 

depicted in blue. 
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TABLE 1. Member length of struts and ties between nodes 

Member Node Length (in) 

M1 1-2 11.72 

M2 2-3 5.04 

M3 3-4 15.56 

M4 4-5 10.25 

M5 5-7 19.68 

M6 7-8 11.32 

M7 8-10 18.64 

M8 1-10 5.30 

M9 3-6 14.00 

M10 6-7 10.00 

M11 7-9 14.00 

M12 3-9 10.00 

M13 5-6 12.30 

M14 2-9 9.02 

M15 2-10 9.19 

M16 4-6 6.80 

M17 8-9 6.09 

*Light gray member denotes tension tie 

 

 

 
Figure 5. Strut and tie design imputed into RISA with a 

design load of 25 kips for force analysis 
 

 

 
Figure 6. Support reactions were obtained from RISA using 

a 25-kip load for the strut and tie model 

 
Figure 7. Member forces for the strut and tie design with 25 

kips. Compression members are depicted in green, while 

tension members are in blue 
 

 

2. 3. STM Rebar Design         Once the strut and tie 

model was created, it was focused on maximizing the 

efficiency of the steel rebar layout for the specimen. 

Axial forces for the members of the strut and tie model 

were found from a 25 kip loading through the RISA 

model. These values were used as a baseline to 

interpolate axial forces from 10 to 30 kip as stated in 

Table 2. Using these calculations, the amount of required 

steel was calculated using Equation (1). 

𝐴𝑠,𝑟𝑒𝑞. =
𝑇

𝑓𝑦
  (1) 

The required area of steel was used to find the number 

of required steel rebars. The calculation was considered 

for No. 2, 3, and 4 bars. The volume of steel for each bar 

was calculated using the lengths between nodes and the 

cross-sectional area of the different rebar sizes. The most 

efficient loading for each bar was calculated as a tensile 

force/volume value, as stated in Table 3. The highest 

value was found to be an efficiency of 0.94 kips/volume 

for the 25-kip loading. To ensure the width of the struts 

and ties throughout the model would not exceed the 

dimensions of the specimen, a strut and tie width analysis 

was performed. To determine the width of the struts/ties, 

the strength of each node, fcn, and the strength of each 

strut, fcs, were found. The following equations were used 

to determine the strength of the nodes and struts: 

𝑓𝑐𝑛 = 0.85 ∗ 𝛽𝑛 ∗ 𝑓′𝑐  (2) 

𝑓𝑐𝑠 = 0.85 ∗ 𝛽𝑠 ∗ 𝑓′𝑐  (3) 

The βn and βs factors are based on the axial forces 

applied at each node. The fewer tensile forces acting on 

a node, the stronger that node will be. There are no 

defined values for the βn or βs factors for a T-T-T 

(Tension-Tension-Tension) node, therefore, it was 

assumed to be a C-T-T (Compression-Tension-Tension) 

node. Table 4 presents the strength of each strut and node. 

Once the strengths of the nodes and struts were 

determined for each node the two values were compared. 

The lower value of fcn and fcs for each node was used as  
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TABLE 2. Axial forces in struts and ties under design loads 

Load (kips) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Members Axial Force (kips) 

M1 

-4
.3

6
 

-4
.7

9
 

-5
.2

3
 

-5
.6

6
 

-6
.1

 

-6
.5

3
 

-6
.9

7
 

-7
.4

1
 

-7
.8

4
 

-8
.2

8
 

-8
.7

1
 

-9
.1

5
 

-9
 5

8
 

-1
0

.0
2
 

-1
0

.4
5
 

-1
0

.8
 

-1
1

.3
3
 

-1
1

.7
6
 

-1
2

.2
 

-1
2

.6
3
 

-1
3

.0
7
 

M2 

-6
.8

8
 

-7
.5

6
 

-8
 2

5
 

-8
.9

4
 

-9
.6

3
 

-1
0

.3
1
 

-1
1
 

-1
1

.6
9
 

-1
2

.3
8
 

-1
3

.0
6
 

-1
3

.7
5
 

-1
4

.4
4
 

-1
5

.1
3
 

-1
5

.8
1
 

-1
6

.5
 

-1
7

.1
9
 

-1
7

.8
8
 

-1
8

.5
7
 

-1
9

.2
5
 

-1
9

.9
4
 

-2
0

.6
3
 

M3 

1
.8

4
 

2
.0

2
 

2
.2

 

2
.3

9
 

2
.5

7
 

2
.7

5
 

2
.9

4
 

3
.1

2
 

3
.3

 

3
.4

9
 

3
.6

7
 

3
.8

6
 

4
.0

4
 

4
.2

2
 

4
.4

1
 

4
.5

9
 

4
.7

7
 

4
.9

6
 

5
.1

4
 

5
.3

2
 

5
.5

1
 

M4 

1
.6

6
 

1
.8

2
 

1
.9

9
 

2
.1

5
 

2
.3

2
 

2
.4

8
 

2
.6

5
 

2
.8

2
 

2
.9

8
 

3
.1

5
 

3
.3

1
 

3
.4

8
 

3
.6

4
 

3
.8

1
 

3
.9

7
 

4
.1

4
 

4
.3

1
 

4
.4

7
 

4
.6

4
 

4
.8

 

4
.9

7
 

M5 

1
1
.8

8
 

1
3
.0

6
 

1
4
.2

5
 

1
5
.4

4
 

1
6
.6

3
 

1
7
.8

1
 

1
9
 

2
0
.1

9
 

2
1
.3

8
 

2
2
.5

6
 

2
3
.7

5
 

2
4
.9

4
 

2
6
.1

3
 

2
7
.3

1
 

2
8
.5

 

2
9
.6

9
 

3
0
.8

8
 

3
2
.0

7
 

3
3
.2

5
 

3
4
.4

4
 

3
5
.6

3
 

M6 

9
.7

5
 

1
0
.7

3
 

1
1
.7

 

1
2
.6

8
 

1
3
.6

5
 

1
4
.6

3
 

1
5
.6

 

1
6
.5

8
 

1
7
.5

5
 

1
8
.5

3
 

1
9
.5

 

2
0
.4

8
 

2
1
.4

5
 

2
.4

3
 

2
3
.4

 

2
4
.3

8
 

2
5
.3

6
 

2
6
.3

3
 

2
7
.3

1
 

2
8
.2

8
 

2
6
 

M7 

8
.0

5
 

8
.8

5
 

9
.6

6
 

1
0
.4

6
 

1
1
.2

7
 

1
2
.0

7
 

1
2
.8

8
 

1
3
.6

8
 

1
4
.4

9
 

1
5
.2

9
 

1
6
.1

 

1
6
.9

 

1
7
.7

1
 

1
8
.5

1
 

1
9
.3

2
 

2
0
.1

2
 

2
0
.9

2
 

2
1
.7

3
 

2
2
.5

3
 

2
3
.3

4
 

2
4
.1

4
 

M8 

6
.6

8
 

7
.3

5
 

8
.0

2
 

8
.6

8
 

9
.3

5
 

1
0
.0

2
 

1
0
.6

9
 

1
1
.3

6
 

1
2
.0

2
 

1
2
.6

9
 

1
3
.3

6
 

1
4
.0

3
 

1
4
.7

 

1
5
.3

6
 

1
6
.0

3
 

1
6
.7

 

1
7
.3

7
 

1
8
.0

4
 

1
8
.7

 

1
9
.3

7
 

2
0
.0

4
 

M9 

-7
.8

4
 

-8
.6

2
 

-9
.4

 

-1
0

.1
9
 

-1
0

.9
7
 

-1
1

.7
5
 

-1
2

.5
4
 

-1
3

.3
2
 

-1
4

.1
 

-1
4

.8
9
 

-1
5

.6
7
 

-1
6

.4
6
 

-1
7

.2
4
 

-1
8

.0
2
 

-1
8

.1
8
 

-1
9

.5
9
 

-2
0

.3
7
 

-2
1

.1
6
 

-2
1

.9
4
 

-2
2

.7
2
 

-2
3

.5
1
 

M10 

-6
 

-6
.6

 

-7
.2

 

-7
.8

1
 

-8
.4

1
 

-9
.0

1
 

-9
.6

1
 

-1
0

.2
1
 

-1
0

.8
1
 

-1
1

.4
1
 

-1
2

.0
1
 

-1
2

.6
1
 

-1
3

.2
1
 

-1
3

.8
1
 

-1
4

.4
1
 

-1
5

.0
1
 

-1
5

.6
1
 

-1
6

.2
1
 

-1
6

.8
1
 

-1
7

.4
1
 

-1
8

.0
1
 

M11 

-2
.6

4
 

-2
.9

1
 

-3
.1

7
 

-3
.4

4
 

-3
.7

 

-3
.9

7
 

-4
.2

3
 

-4
.4

9
 

-4
.7

6
 

-5
.0

2
 

-5
.2

9
 

-5
.5

5
 

-5
.8

2
 

-6
.0

8
 

-6
.3

5
 

-6
.6

1
 

-6
.8

7
 

-7
.1

4
 

-7
.4

 

-7
.6

7
 

-7
.9

3
 

M12 

3
.8

 

4
.1

8
 

4
.5

6
 

4
.9

5
 

5
.3

3
 

5
.7

1
 

6
.0

9
 

6
.4

7
 

6
.8

5
 

7
.2

3
 

7
.6

1
 

7
.9

9
 

8
.3

7
 

8
.7

5
 

9
.1

3
 

9
.5

1
 

9
.8

9
 

1
0
.2

7
 

1
0
.6

5
 

1
1
.0

3
 

1
1
.4

1
 

M13 

-9
.4

1
 

-1
0

.3
5
 

-1
1

.2
9
 

-1
2

.2
3
 

-1
3

.1
7
 

-1
4

.1
1
 

-1
5

.0
5
 

-1
5

.9
9
 

-1
6

.9
3
 

-1
7

.8
8
 

-1
8

.8
2
 

-1
9

.7
6
 

-2
0

.7
 

-2
1

.6
4
 

-2
2

.5
8
 

-2
3

.5
2
 

-2
4

.4
6
 

-2
5

.4
 

-2
6

.3
4
 

-2
7

.2
8
 

-2
8

.2
2
 

M14 

-1
.9

 

-2
.0

9
 

-2
.2

8
 

-2
.4

8
 

-2
.6

7
 

-2
.8

6
 

-3
.0

5
 

-3
.2

4
 

-3
 4

3
 

-3
.6

2
 

-3
.8

1
 

-4
 

-4
.1

9
 

-4
.3

8
 

-4
.5

7
 

-4
.7

6
 

-4
.9

5
 

-5
.1

4
 

-5
.3

3
 

-5
.5

2
 

-5
.7

1
 

M15 

-3
.1

 

-3
 4

1
 

-3
.7

2
 

4
-.0

3
 

-4
.3

4
 

-4
.6

5
 

-4
.9

6
 

-5
.2

7
 

-5
.5

8
 

-5
.8

9
 

-6
.2

 

-6
.5

1
 

-6
.8

2
 

-7
.1

3
 

-7
.4

4
 

-7
.7

5
 

-8
.0

6
 

-8
.3

7
 

-8
.6

8
 

-8
.9

9
 

-9
.3

 

M16 

-0
.8

 

-0
.8

8
 

-0
.9

6
 

-1
.0

5
 

-1
.1

3
 

-1
.2

1
 

-1
.2

9
 

-1
.3

7
 

-1
 4

5
 

-1
.5

3
 

-1
.6

1
 

-1
.6

9
 

-1
.7

7
 

-1
.8

5
 

-1
.9

3
 

-2
.0

1
 

-2
.0

9
 

-2
.1

7
 

-2
.2

5
 

-2
.3

3
 

-2
.4

1
 

M17 

2
.7

4
 

3
.0

1
 

3
.2

9
 

3
.5

6
 

3
.8

4
 

4
.1

1
 

4
.3

8
 

4
.6

6
 

4
.9

3
 

5
.2

1
 

5
.4

8
 

5
.7

5
 

6
.0

3
 

6
.3

 

6
.5

8
 

6
.8

5
 

7
.1

2
 

7
.4

 

7
.6

7
 

7
.9

5
 

8
.2

2
 

*Light gray member denotes tension tie 

 

 
TABLE 3. Load/Volume efficiency calculations for tension ties under design loads 

Load (kips) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Member Volume #2 bars (in3) 

M1 

1
.1

4
9
 

1
.7

2
3
 

1
.7

2
3
 

1
.7

2
3
 

1
.7

2
3
 

1
 7

2
3
 

2
.2

9
7
 

2
.2

9
7
 

2
.2

9
7
 

2
.2

9
7
 

2
.2

9
7
 

2
.8

7
2
 

2
.8

7
2
 

2
.8

7
2
 

2
.8

7
2
 

2
.8

7
2
 

3
.4

4
6
 

3
.4

4
6
 

3
.4

4
6
 

3
.4

4
6
 

3
.4

4
6
 

M2 

0
.9

8
7
 

0
.9

8
7
 

0
.9

8
7
 

1
.2

3
4
 

1
.2

3
4
 

1
.2

3
4
 

1
.2

3
4
 

1
.4

8
0
 

1
.4

8
0
 

1
.4

8
0
 

1
.7

2
7
 

1
.7

2
7
 

1
.7

2
7
 

1
.9

7
4
 

1
.9

7
4
 

1
.9

7
4
 

2
.2

2
0
 

2
.2

2
0
 

2
.2

2
0
 

2
.4

6
7
 

2
.4

6
7
 

M9 

2
.7

4
4
 

2
.7

4
4
 

3
.4

3
0
 

3
.4

3
0
 

3
.4

3
0
 

4
.1

1
6
 

4
.1

1
6
 

4
.8

0
2
 

4
.8

0
2
 

4
.8

0
2
 

5
.4

8
8
 

5
.4

8
8
 

5
.4

8
8
 

6
.1

7
4
 

6
.1

7
4
 

6
.1

7
4
 

6
.8

6
0
 

6
.8

6
0
 

6
.8

6
0
 

7
.5

4
6
 

7
.5

4
6
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M 10 

1
.4

7
0
 

1
.4

7
0
 

1
.9

6
0
 

1
.9

6
0
 

1
.9

6
0
 

2
.4

5
0
 

2
.4

5
0
 

2
.4

5
0
 

2
.4

5
0
 

2
.9

4
0
 

2
.9

4
0
 

2
.9

4
0
 

2
.9

4
0
 

3
.4

3
0
 

3
.4

3
0
 

3
.4

3
0
 

3
.9

2
0
 

3
.9

2
0
 

3
.9

2
0
 

3
.9

2
0
 

4
.4

1
0
 

M11 

1
.3

7
2
 

1
.3

7
2
 

1
.3

7
2
 

1
.3

7
2
 

1
.3

7
2
 

1
.3

7
2
 

1
.3

7
2
 

2
.0

5
8
 

2
.0

5
8
 

2
.0

5
8
 

2
.0

5
8
 

2
.0

5
8
 

2
.0

5
8
 

2
.0

5
8
 

2
.0

5
8
 

2
.0

5
8
 

2
.7

4
4
 

2
.7

4
4
 

2
.7

4
4
 

2
.7

4
4
 

2
.7

4
4
 

M 13 

3
.0

1
4
 

3
.0

1
4
 

3
.6

1
6
 

3
.6

1
6
 

3
.6

1
6
 

4
.2

1
9
 

4
.2

1
9
 

4
.8

2
2
 

4
.8

2
2
 

5
.4

2
5
 

5
.4

2
5
 

5
.4

2
5
 

6
.0

2
7
 

6
.0

2
7
 

6
.6

3
0
 

6
.6

3
0
 

7
.2

3
3
 

7
.2

3
3
 

7
.2

3
3
 

7
.8

3
5
 

7
.8

3
5
 

M 14 

0
.4

4
2
 

0
.4

4
2
 

0
.8

8
4
 

0
.8

8
4
 

0
.8

8
4
 

0
.8

8
4
 

0
.8

8
4
 

0
.8

8
4
 

0
.8

8
4
 

0
.8

8
4
 

0
.8

8
4
 

0
.8

8
4
 

0
.8

8
4
 

0
.8

8
4
 

1
.3

2
6
 

1
.3

2
6
 

1
.3

2
6
 

1
.3

2
6
 

1
.3

2
6
 

1
.3

2
6
 

1
.3

2
6
 

M 15 

0
.9

0
1
 

0
.9

0
1
 

0
.9

0
1
 

0
.9

0
1
 

0
.9

0
1
 

1
 3

5
1
 

0
.3

5
1
 

1
.3

5
1
 

1
.3

5
1
 

0
.3

5
1
 

1
.3

5
1
 

0
.3

5
1
 

1
.8

0
1
 

0
.8

0
1
 

1
.8

0
1
 

1
.8

0
1
 

1
.8

0
1
 

1
.8

0
1
 

1
.8

0
1
 

2
.2

5
1
 

2
.2

5
1
 

M 16 

0
.3

3
3
 

0
.3

3
3
 

0
.3

3
3
 

0
.3

3
3
 

0
.3

3
3
 

0
.3

3
3
 

0
.3

3
3
 

0
.3

3
3
 

0
.3

3
3
 

0
.3

3
3
 

0
.3

3
3
 

0
.3

3
3
 

0
.3

3
3
 

0
.3

3
3
 

0
.3

3
3
 

0
.3

3
3
 

0
.3

3
3
 

0
.3

3
3
 

0
.6

6
6
 

0
.6

6
6
 

0
.6

6
6
 

Total Volume 

1
2
.4

1
1
 

1
2
.9

8
5
 

1
5
.2

0
6
 

1
5
.4

5
2
 

1
5
.4

5
2
 

1
7
.6

8
1
 

1
8
.2

5
6
 

2
0
.4

7
7
 

2
0
.4

7
7
 

2
1
.5

7
0
 

2
2
.5

0
3
 

2
3
.0

7
7
 

2
4
.1

3
0
 

2
5
.5

5
3
 

2
6
.5

9
7
 

2
6
.5

9
7
 

2
9
.8

8
3
 

2
9
.8

8
3
 

3
0
.2

1
6
 

3
2
.2

0
2
 

3
2
.6

9
2
 

Load/Volume 

0
.8

0
6
 

0
.8

4
7
 

0
.7

8
9
 

0
.8

4
1
 

0
.9

0
6
 

0
.8

4
8
 

0
.8

7
6
 

0
.8

3
0
 

0
.8

7
9
 

0
.8

8
1
 

0
.8

8
9
 

0
.9

1
0
 

0
.9

1
2
 

0
.9

0
0
 

0
.9

0
2
 

0
.9

4
0
 

0
.8

7
0
 

0
.9

0
4
 

0
.9

2
7
 

0
.9

0
1
 

0
.9

1
8
 

Load (kips) 

1
0
 

1
1
 

1
2
 

1
3
 

1
4
 

1
5
 

1
6
 

1
7
 

1
8
 

1
9
 

2
0
 

2
1
 

2
2
 

2
3
 

2
4
 

2
5
 

2
6
 

2
7
 

2
8
 

2
9
 

3
0
 

Member Volume #3 bars (in3) 

M1 

1
.2

8
9
 

1
 2

8
9
 

2
.5

7
9
 

2
.5

7
9
 

2
.5

7
9
 

2
.5

7
9
 

2
.5

7
9
 

2
.5

7
9
 

2
.5

7
9
 

2
.5

7
9
 

2
.5

7
9
 

2
.5

7
9
 

2
.5

7
9
 

3
.8

6
8
 

3
.8

6
8
 

3
.8

6
8
 

3
.8

6
8
 

3
.8

6
8
 

3
.8

6
8
 

3
.8

6
8
 

3
.8

6
8
 

M2 

1
.1

0
8
 

1
.1

0
8
 

1
.1

0
8
 

1
.1

0
8
 

1
.1

0
8
 

1
.6

6
2
 

1
.6

6
2
 

1
.6

6
2
 

0
.6

6
2
 

1
.6

6
2
 

1
.6

6
2
 

1
.6

6
2
 

2
.2

1
5
 

2
.2

1
5
 

2
.2

1
5
 

2
.2

1
5
 

2
.2

1
5
 

2
.2

1
5
 

2
.2

1
5
 

2
.7

6
9
 

2
.7

6
9
 

M9 

3
.0

8
0
 

3
.0

8
0
 

3
.0

8
0
 

4
.6

2
0
 

4
.6

2
0
 

4
.6

2
0
 

4
.6

2
0
 

4
.6

2
0
 

4
.6

2
0
 

6
.1

6
0
 

6
.1

6
0
 

6
.1

6
0
 

6
.1

6
0
 

6
.1

6
0
 

6
.1

6
0
 

6
.1

6
0
 

7
.7

0
0
 

7
.7

0
0
 

7
.7

0
0
 

7
.7

0
0
 

7
.7

0
0
 

M 10 

2
.2

0
0
 

2
.2

0
0
 

2
.2

0
0
 

2
.2

0
0
 

2
.2

0
0
 

2
.2

0
0
 

2
.2

0
0
 

3
.3

0
0
 

3
.3

0
0
 

3
.3

0
0
 

3
.3

0
0
 

3
.3

0
0
 

3
.3

0
0
 

3
.3

0
0
 

3
.3

0
0
 

4
.4

0
0
 

4
.4

0
0
 

4
.4

0
0
 

4
.4

0
0
 

4
.4

0
0
 

4
.4

0
0
 

M11 

1
.5

4
0
 

1
.5

4
0
 

1
.5

4
0
 

1
.5

4
0
 

1
.5

4
0
 

1
.5

4
0
 

1
.5

4
0
 

1
.5

4
0
 

1
.5

4
0
 

3
.0

8
0
 

3
.0

8
0
 

3
.0

8
0
 

3
.0

8
0
 

3
.0

8
0
 

3
.0

8
0
 

3
.0

8
0
 

3
.0

8
0
 

3
.0

8
0
 

3
.0

8
0
 

3
.0

8
0
 

3
.0

8
0
 

M 13 

2
.7

0
6
 

4
.0

5
9
 

4
.0

5
9
 

4
.0

5
9
 

4
.0

5
9
 

4
.0

5
9
 

5
.4

1
2
 

5
.4

1
2
 

5
.4

1
2
 

5
.4

1
2
 

5
.4

1
2
 

5
.4

1
2
 

6
.7

6
5
 

6
.7

6
5
 

6
.7

6
5
 

6
.7

6
5
 

6
.7

6
5
 

8
.1

1
8
 

8
.1

1
8
 

8
.1

1
8
 

8
.1

1
8
 

M 14 

0
.9

9
2
 

0
.9

9
2
 

0
.9

9
2
 

0
.9

9
2
 

0
.9

9
2
 

0
.9

9
2
 

0
.9

9
2
 

0
.9

9
2
 

0
.9

9
2
 

0
.9

9
2
 

0
.9

9
2
 

0
.9

9
2
 

0
.9

9
2
 

0
.9

9
2
 

0
.9

9
2
 

0
.9

9
2
 

1
.9

8
4
 

1
.9

8
4
 

1
.9

8
4
 

1
.9

8
4
 

1
.9

8
4
 

M 15 

1
.0

1
1
 

1
.0

1
1
 

1
.0

1
1
 

1
.0

1
1
 

1
.0

1
1
 

1
.0

1
1
 

2
.0

2
2
 

2
.0

2
2
 

2
.0

2
2
 

2
.0

2
2
 

2
.0

2
2
 

2
.0

2
2
 

2
.0

2
2
 

2
.0

2
2
 

2
.0

2
2
 

2
.0

2
2
 

2
.0

2
2
 

2
.0

2
2
 

2
.0

2
2
 

2
.0

2
2
 

2
.0

2
2
 

M 16 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

0
.7

4
8
 

Total Volume 

1
4
.6

7
4
 

1
6
.0

2
7
 

1
7
.3

1
6
 

1
8
.8

5
6
 

1
8
.8

5
6
 

1
9
.4

1
0
 

2
1
.7

7
4
 

2
2
.8

7
4
 

2
2
.8

7
4
 

2
5
.9

5
4
 

2
5
.9

5
4
 

2
5
.9

5
4
 

2
7
.8

6
1
 

2
9
.1

5
0
 

2
9
.1

5
0
 

3
0
.2

5
0
 

3
2
.7

8
2
 

3
4
.1

3
5
 

3
4
.1

3
5
 

3
4
.6

8
9
 

3
4
.6

8
9
 

Load/Volume 

0
.6

8
1
 

0
.6

8
6
 

0
.6

9
3
 

0
.6

8
9
 

0
.7

4
2
 

0
.7

7
3
 

0
.7

3
5
 

0
.7

4
3
 

0
.7

8
7
 

0
.7

3
2
 

0
.7

7
1
 

0
.8

0
9
 

0
.7

9
0
 

0
.7

8
9
 

0
.8

2
3
 

0
.8

2
6
 

0
.7

9
3
 

0
.7

9
1
 

0
.8

2
0
 

0
.8

3
6
 

0
.8

6
5
 

Load (kips) 

1
0
 

1
1
 

1
2
 

1
3
 

1
4
 

1
5
 

1
6
 

1
7
 

1
8
 

1
9
 

2
0
 

2
1
 

2
2
 

2
3
 

2
4
 

2
5
 

2
6
 

2
7
 

2
8
 

2
9
 

3
0
 

Member Volume #4 bars (in3) 
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M1 

2
.3

4
4
 

2
.3

4
4
 

2
.3

4
4
 

2
.3

4
4
 

2
.3

4
4
 

2
.3

4
4
 

2
.3

4
4
 

2
.3

4
4
 

2
.3

4
4
 

2
.3

4
4
 

2
.3

4
4
 

4
.6

8
8
 

4
.6

8
8
 

4
.6

8
8
 

4
.6

8
8
 

4
.6

8
8
 

4
.6

8
8
 

4
.6

8
8
 

4
.6

8
8
 

4
.6

8
8
 

4
.6

8
8
 

M2 

1
.0

0
7
 

1
.0

0
7
 

1
.0

0
7
 

0
.0

0
7
 

2
.0

1
4
 

2
.0

1
4
 

2
.0

1
4
 

2
.0

1
4
 

2
.0

1
4
 

2
.0

1
4
 

2
.0

1
4
 

2
.0

1
4
 

2
.0

1
4
 

2
.0

1
4
 

2
.0

1
4
 

2
.0

1
4
 

2
.0

1
4
 

3
.0

2
1
 

3
.0

2
1
 

3
.0

2
1
 

3
.0

2
1
 

M9 

2
.8

0
0
 

2
.8

0
0
 

5
.6

0
0
 

5
.6

0
0
 

5
.6

0
0
 

5
.6

0
0
 

5
.6

0
0
 

5
.6

0
0
 

5
.6

0
0
 

5
.6

0
0
 

5
.6

0
0
 

5
.6

0
0
 

5
.6

0
0
 

8
.4

0
0
 

8
.4

0
0
 

8
.4

0
0
 

8
.4

0
0
 

8
.4

0
0
 

8
.4

0
0
 

8
.4

0
0
 

8
.4

0
0
 

M 10 

2
.0

0
0
 

2
.0

0
0
 

2
.0

0
0
 

2
.0

0
0
 

2
.0

0
0
 

4
.0

0
0
 

4
.0

0
0
 

4
.0

0
0
 

4
.0

0
0
 

4
.0

0
0
 

4
.0

0
0
 

4
.0

0
0
 

4
.0

0
0
 

4
.0

0
0
 

4
.0

0
0
 

4
.0

0
0
 

4
.0

0
0
 

4
.0

0
0
 

4
.0

0
0
 

4
.0

0
0
 

6
.0

0
0
 

M11 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

2
.8

0
0
 

M 13 

4
.9

2
0
 

4
.9

2
0
 

4
.9

2
0
 

4
.9

2
0
 

4
.9

2
0
 

4
.9

2
0
 

4
.9

2
0
 

4
.9

2
0
 

4
.9

2
0
 

4
.9

2
0
 

7
.3

8
0
 

7
.3

8
0
 

7
.3

8
0
 

7
.3

8
0
 

7
.3

8
0
 

7
.3

8
0
 

7
.3

8
0
 

7
.3

8
0
 

7
.3

8
0
 

9
.8

4
0
 

9
.8

4
0
 

M 14 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

1
.8

0
4
 

M 15 

1
.8

3
8
 

1
 8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

1
.8

3
8
 

3
.6

7
6
 

M 16 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

1
.3

6
0
 

Total Volume 

2
0
.8

7
3
 

2
0
.8

7
3
 

2
3
.6

7
3
 

2
3
.6

7
3
 

2
4
.6

8
0
 

2
6
.6

8
0
 

2
6
.6

8
0
 

2
6
.6

8
0
 

2
6
.6

8
0
 

2
6
.6

8
0
 

2
9
.1

4
0
 

3
1
.4

8
4
 

3
1
.4

8
4
 

3
4
.2

8
4
 

3
4
.2

8
4
 

3
4
.2

8
4
 

3
4
.2

8
4
 

3
5
.2

9
1
 

3
5
.2

9
1
 

3
7
.7

5
1
 

4
1
.5

8
9
 

Load/Volume 

0
.4

7
9
 

0
.5

2
7
 

0
.5

0
7
 

0
.5

4
9
 

0
.5

6
7
 

0
.5

6
2
 

0
.6

0
0
 

0
.6

3
7
 

0
.6

7
5
 

0
.7

1
2
 

0
.6

8
6
 

0
.6

6
7
 

0
.6

9
9
 

0
.6

7
1
 

0
.7

0
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TABLE 4. Strength of nodes and struts under design loads 

 Node 1 

(CCT) 

Node 2 

(TTT) 

Node 3 

(CTT) 

Node 4 

(CCT) 

Node 5 

(CCT) 

Node 6 

(TTT) 

Node 7 

(CTT) 

Node 8 

(CCC) 

Node 9 

(CTT) 

Strength of Node (psi) 3060 2486 2486 3060 3060 2486 2486 3825 2486 

Strength of Strut (psi) 2869 2869 2869 2869 2869 2869 2869 2869 2869 

Usable Strength (psi) 2869 2486 2486 2869 2869 2486 2486 2869 2486 

 

 

the usable strength, fce, in the calculation of the width of 

the struts/ties using the following equation: 

𝑤𝑡 =
𝑃

𝑓𝑐𝑒∗3.5 𝑖𝑛
  (4) 

The width of all struts and ties for the specimen can be 

found in Table 5. For the 25-kip design loading the width 

of all struts and ties was found to be within the 

dimensions of the specimen, therefore, the full strength 

of the strut and tie layout could be utilized. 

The selection of steel rebar for the model was based 

primarily on the number of possible bars that fit within 

the 3.5-inch thickness of the specimen. The maximum 

amount of any size bar that would fit was 3 bars, based 

on spacing and ease of placing the bars when constructing 

the specimen. Therefore, mostly No. 4 bars were used in 

high-stress areas such as members 9 and 13, which used 

2 No. 4 and 3 No. 4 bars, respectively. A cross-section of 

the steel rebar layout used can be found in Figure 8. The 

efficiency of this rebar layout was 0.729 kips/volume, 

which is about 37% less than the most efficient layout 

calculated. This efficiency was found to be satisfactory 

due to the feasibility and ease of constructability 

parameters. 

The steel layout was constructed using 5 continuous 

pieces of rebar. This procedure was done to ensure an 

effective amount of development length was present at 

each node. The continuation of rebar through most of the 

nodes also increased the stability and strength at the 

nodes. 
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TABLE 5. Width of struts and ties under design loads 

Load (kips) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
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*Light gray member denotes tension tie 
 

 

3. RESULTS AND DISCUSSION 
 

The experimental results were analyzed in terms of crack 

patterns, load deflection analysis, and load-to-steel 

weight ratio to find the efficiency of the antisymmetric 

reinforced concrete deep beams with openings under 

concentrated loading using the Strut and Tie Model. The 

following are the results obtained from the testing 

performed on the specimens. 
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Figure 8. Steel rebar layout for the concrete specimen 

 
 
3.1. Crack Patterns         In each structural element test, 

the crack patterns give an idea about the mode of failure. 

The failure mode and crack patterns are illustrated in 

Figures 9 to 12.  The crack patterns induced on Specimen 

1 were studied as shown in Figure 9. The first specimen 

showed a shear failure mode. At the early load stage, a 

visible crack was formed first at the bottom right support 

toward the applied point load. Cracking then began to 

form at the top left corner of the central opening. Once 

the cracking fully developed, shear failure rapidly 

occurred at the peak load as shown in Figure 10. 

Specimen 2 showed a local shear failure at two separate 

locations, at the top and bottom of the central opening. 

During the service load, a crack started from the point 

load and propagated to the top right corner of the central 

opening, resulting in local shear failure. A new crack then 

began to develop at the bottom of the specimen and 

progressed towards the central opening, creating the 

second area of local shear failure, as shown in Figure 11. 

The crack patterns for Specimen 3 were investigated and 

showed a flexural mode of failure with local shear failure. 

At the service load stage, a crack was formed at the 

bottom end of the specimen and propagated vertically 

toward the central opening. Many visible hairline cracks 

developed at the top left corner of the opening and went 

rapidly to the point load where crushing had already 

occurred in concrete beneath the bearing plate, as shown 

in Figure 12. 

 

3. 2. Load Deflection Analysis          The load-deflection 

curve for all specimens was investigated. All specimens 

failed at peak loads lower than design loads, except 

Specimen 3. Load-deflection curves for each specimen 

showed an approximately linear response until the peak 

load. For Specimen 1, the ultimate load was 22 kips with 

0.14-inch deflection, while its design capacity was 25 

kips. The specimen exhibited a rapid drop at the peak 

load, which is an indication of shear failure. Specimen 2 

achieved the highest peak load of 29.297 kips with 0.22 

inches of deflection; however, the design load for this 

specimen was 35 kips. The specimen also shows a rapid 

loading drop after the peak load, resulting in a shear  
 

 
Figure 9. The crack pattern of Specimen 1 at failure 

 

 

 
Figure 10. The failure mode in Specimen 1 

 

 

 
Figure 11. The failure mode in Specimen 2 

 

 

 
Figure 12. The failure mode in Specimen 3 

 

 

failure. The final Specimen 3 reached an ultimate load of 

17.75 kips with 0.34 inches of deflection, which was 
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slightly greater than the design load of 17 kips. The 

progressive downward trend of the deflection after the 

peak load indicates the behavior of a flexural failure 

followed by local shear failure at the rapid drop in 

loading. 

 

3. 3. Load to Steel Weight Ratio          Efficiency in 

terms of load/weight of steel was the defining parameter 

in determining which specimen was the most effective. 

To establish the best reinforcement layout the weight of 

each specimen was calculated and divided by the ultimate 

load reached during testing. The weights for each type of 

reinforcement, flexural and shear, and the total 

reinforcement for each specimen, including the weight of 

the bar hooks, as summarized in Table 6. 
Specimen 1 used the least amount of total 

reinforcement steel at 13.17 lb. This low weight was due 

to the exclusion of shear reinforcement in the steel design 

layout. Specimen 2 included shear reinforcement in the 

amount of 2.578 lb, but the flexural reinforcement of 

17.189 lb amassed a total reinforcement weight of 19.767 

lb. Specimen 3 used both flexural and shear 

reinforcement of 8.8 lb and 4.71 lb, respectively, 

measuring 13.51 lb of total reinforcement.  

The specimen with the highest efficiency was 

Specimen 1 with a value of 1.67 kips/lb of steel. This 

specimen was 12.8% and 27.4% more efficient than 

Specimens 2 and 3, respectively. The efficiency for each 

specimen stated in Table 7. 
 
 

 

TABLE 6. Weights of each type of reinforcement used in the 

strut and tie model for each specimen 

Specimens 

Flexural 

Reinforcement 

Shear 

Reinforcement 

Total 

Reinforcement 

Weight (1b) Weight (1b) Weight (1b) 

1 13.170 0.000 13.170 

2 17.189 2.578 19.767 

3 8.800 4.710 13.510 

 
 

 

TABLE 7. Load/weight ratio efficiencies for each specimen 
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(lb) (kips) (kips) Ultimate (in) (kips/lb) 

1 13.170 22.000 25.000 0.140 1.670 

2 19.767 29.297 35.000 0.220 1.480 

3 13.510 17.750 16.000 0.340 1.310 

 

4. CONCLUSIONS 
 
1. It can be concluded that the efficient reinforcement 

layout of the strut and tie model leads to the highest 

efficiency of the model, regardless of the value of the 

externally applied load. 

2. A comparison between the three specimens showed 

Specimen 1 had the highest efficiency of 1.67, while 

Specimen 3 had the lowest efficiency of 1.31. 

Specimen 1 reached 88% of its designed load, while 

Specimen 2 reached 83.7% of its design load.  

3. By looking at the mode failure of Specimen 1, which 

failed due to shear, if the specimen included shear 

reinforcement, the design load may have been 

attained.  

4. Due to the exclusion of shear reinforcement in 

Specimen 1, the ductility of the specimen was much 

lower compared to the other specimens.  

5. All specimens were within the serviceability limit for 

deflection of 0.48 inches. The deflection of Specimen 

1 was 57% less than Specimen 2 and 143% less than 

Specimen 3. The lack of ductility in this specimen 

leads to brittle failure.  

6. From the analysis of these results, it is clear that the 

strut and tie model of Specimen 1 would have 

provided reasonable ductility for the applied load if 

shear reinforcement had been added to the deeper 

section of the specimen. 

7. Based on the results of the research, reinforcement of 

antisymmetric reinforced concrete deep beams can be 

designed. Fundamental tests of at least 20 samples 

must be done before the production of the respective 

ones. 
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Persian Abstract 

 چکیده 
مقاطع   ماندهیبتن مسلح است که در آن فرض باق  یهاسازه  مناطق-D مناطق آشفته  یطراح   یمهندسان سازه برا  یو ارزشمند برا  یروش کاربرد   یک (STM) یسازمدل   یکتکن

مناسب است که منجر به    ییخرپا  یاسیمدل ق  یک  یافتن  رح،ط  یو اقتصاد  یعملکرد مناسب سازه ا  ین تضم  یجنبه برا  یناجرا است. مهمتر  یرقابلغ  یصفحه پس از بارگذار

  یات متمرکز مختلف به طور جامع در ادب  ی خارج  ی تحت بارها  یهابا دهانه (STM) ضد متقارن   یهامدل  یابی شود. ارز  ی سازه م  یاستفاده از مدل کارآمدتر در ساختمان ها

تحت    یبتن مسلح ضد متقارن با بازشوها  یقعم  یرهایطرح آرماتور در ت  نیبه کارآمدتر  یابیمقاله دست  ینن شکاف، هدف ایپرداختن به ا  یبرا  ین،نشده است. بنابرا  یبررس

  مرکز مت  یبود که تحت بارها  ییهابتن مسلح ضد متقارن با دهانه  یقعم  یرهای( ت 3انجام شد و شامل )  یشیو کراوات است. کار آزما  یهمتمرکز با استفاده از مدل پا  یبارگذار

  یه و کراوات اول یهپا یزآنال یبرا ANSYS FEM شدند. نرم افزار یشو کراوات آزما  یه( با استفاده از مدل پا3و   2، 1 یهانمونه ی برا یپس ک 16، و 35، 25 یبمختلف )به ترت

که  دهدیمقاله نشان م ینا های یافتهشود.   ینمونه استفاده م رمتمرکز در ه یخارج یهمه اعضا تحت بارها  یبرا یداخل یروهاین یافتن یبرا RISA-3D سازه یلو برنامه تحل

و کراوات بدون در نظر گرفتن   یهکارآمد مدل پا کنندهیتتقو یدمانگرفت که چ یجهنت توانیراندمان را داشته است. م ینکمتر 31/1با   3بازده و نمونه  یشترینب 67/1با  1نمونه 

 .شودیبازده مدل م الاترینمنجر به ب ی،شده خارجمقدار بار اعمال

 


