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A B S T R A C T  
 

 

This research presents a rigorous and innovative approach, the Homotopy Perturbation Method-Laplace 

Transform Method (HPM-LTM), implemented in Python, for the efficient solution of linear and 
nonlinear partial differential equations (PDEs). By combining the Homotopy Perturbation technique 

(HPM) with the Laplace Transform Method (LTM), our method successfully addresses the significant 

challenges posed by equations with nonlinear components. Through the utilization of He's polynomials, 
the HPM-LTM approach effectively handles nonlinear terms, resulting in accurate and reliable solutions. 

To demonstrate the efficacy of our method, we extensively apply it to five representative PDE scenarios, 

including heat and wave equations. Our comprehensive results substantiate the remarkable accuracy and 
reliability of the HPM-LTM approach, highlighting its superiority in comparison to conventional 

approaches that require restrictive assumptions or discretization, which can introduce round-off errors. 

Furthermore, our method overcomes the limitations imposed by numerical errors inherent in traditional 

HPM techniques. The robustness, effectiveness, and adaptability of our proposed approach are further 

validated by its successful application to a wide range of PDE problems across various fields. This 

research presents a significant contribution to the development of a powerful computational tool for 
resolving diverse PDE problems, with particular relevance to the engineering discipline.  

doi: 10.5829/ije.2024.37.02b.11 
 

 

Graphical Abstract1 

 
 

 
 

 

*Corresponding Author Email: mirgang@nit.ac.ir (D. Domiri Ganji) 

 

 

mailto:mirgang@nit.ac.ir


P. Jalili et al. / IJE TRANSACTIONS B: Applications  Vol. 37 No. 02, (February 2024)   352-364                                        353 

 

 

1. INTRODUCTION 
 
Partial differential equations (PDEs) are fundamental for 

modeling various physical phenomena, such as fluid 

dynamics, heat transfer, and electromagnetic fields. 

Analytic solutions for PDEs are usually not available, 

leading to the need for numerical methods to obtain 

approximate solutions. The Homotopy Perturbation 

Method (HPM) has recently become an efficient and 

reliable method for solving linear and nonlinear PDEs (1-

3). However, the HPM can suffer from round-off errors 

in some cases. Therefore, the focus of this study is to 

propose a hybrid approach that combines the HPM with 

the Laplace Transform Method (LTM) to improve the 

accuracy of the numerical solutions. Various methods 

have been developed for solving PDEs, such as Finite 

Difference Method (FDM), Finite Element Method 

(FEM), Differential Transform Method (4) and Spectral 

Method. However, these methods often require intricate 

discretization techniques that can lead to inaccurate 

solutions (5). The HPM, developed by He, offers a 

promising alternative approach that avoids these issues 

by finding a solution in the form of a series of homotopy 

functions that the Taylor series can rapidly and 

effortlessly approximate. The HPM has recently been 

used to solve several PDEs (6-8). 

Although highly effective, the HPM has some 

limitations, particularly in dealing with nonlinear terms. 

To address this issue, a new method called the He-

Laplace method has been introduced, which combines 

the HPM with He's polynomials to handle nonlinearities 

in PDEs (8, 9). The proposed method has been applied to 

linear and nonlinear PDEs, exhibiting superior accuracy 

and efficiency to traditional numerical methods (10, 11). 

Researchers have favored the homotopy perturbation 

method (HPM) as an analytical technique to solve a range 

of Heat transport and fluid mechanics differential 

equations in recent studies (12-17). In a recent paper by 

Jalili et al. (18), the HPM and AGM method was used to 

resolve thermal problems for micro-polar nanofluids. 

Alternatively, Jalili et al. (19) applied the HPM method 

to tackle problems related to the movement of a plate 

submerged in a Newtonian fluid examined through 

Caputo fractional differential equations. Jalili et al. (20) 

also demonstrated a novel fractional analytical approach 

to solve time-space fractional equations from oil 

pollution analysis using HPM. 

Python programming has become a common tool in 

scientific computing due to its simplicity, flexibility, and 

efficient numerical package libraries, such as NumPy, 

SciPy, and Matplotlib. The availability of open-source 

libraries for Python has enabled the development of fast 

and efficient algorithms for solving PDEs using 

numerical methods (21-23). The HPM has recently been 

used with other methods to improve its accuracy and 

efficiency. The HPM-Laplace method, which combines 

the HPM with the Laplace Transform Method (LTM) to 

increase the accuracy of the numerical solutions, has been 

proposed. The method has been used to solve various 

linear and nonlinear PDEs, exhibiting superior accuracy 

and efficiency compared to traditional numerical 

methods (24, 25). The HPM-Laplace method could be 

implemented in Python to solve PDE problems with high 

accuracy and efficiency. Another hybrid approach 

involving the HPM is He's polynomial-based 

decomposition method, which uses He's polynomials to 

decompose the solution of a PDE into several parts, for 

which each part can be solved by a different method (26). 

The decomposition method involves the solution of 

smaller sub-problems, which can easily be implemented 

using Python functions. Also, much research has been 

done on the analytical and Python approach (27-34).  

In regards to the applications of solving PDEs, the 

following articles shed light on diverse areas of research, 

including the dynamics of modified Peyrard-Bishop 

DNA models in bio-fluids, the analysis of protein 

oscillations through Langevin and Fokker-Planck 

equations, and the optimization of heat exchanger design 

for enhanced heat transfer rates and temperature 

distribution. Lap-Arparat and Tuchinda (35) explored the 

behavior of the modified Peyrard-Bishop DNA model 

within a thermostat as a bio-fluid. They investigate the 

soliton-like solutions in this system and discuss their 

implications for understanding the dynamics of DNA 

molecules. Baughman and Sharma (36) focused on the 

entropic analysis of protein oscillations. They employed 

Langevin and Fokker-Planck equations to study the 

dynamics of proteins and analyzed the role of entropy in 

protein oscillations. Their findings contribute to a deeper 

understanding of the complex behavior of proteins. In the 

study conducted by Sutantyo et al. (37), they have 

investigated the impact of heat exchanger design on heat 

transfer rate and temperature distribution. They analyzed 

different heat exchanger designs and evaluate their heat 

transfer efficiency and temperature distribution 

performance. The results of their study provided valuable 

insights for optimizing heat exchanger design to enhance 

heat transfer processes. 

In the realm of solving partial differential equations 

(PDEs), significant difficulties and challenges hinder the 

attainment of accurate and reliable solutions. One of the 

primary obstacles lies in effectively handling equations 

with nonlinear components, which often lead to complex 

mathematical formulations. To overcome this challenge, 

we have developed a unique hybrid technique, HPM-

LTM, which combines the advantages of the Homotopy 

Perturbation technique (HPM) and the Laplace 

Transform Method (LTM). By employing He's 

polynomials, our approach successfully tackles nonlinear 

terms, enabling the efficient and accurate solution of 

PDEs. This original achievement allows us to bypass the 

limitations imposed by conventional approaches that are 
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often plagued by numerical errors and restrictive 

assumptions. By implementing the HPM-LTM method, 

we have achieved remarkable accuracy and reliability in 

solving PDEs without discretization, thereby eliminating 

potential round-off errors. We develop Python functions 

to implement the proposed method and use the numerical 

package libraries to solve five PDE examples in various 

engineering fields. The examples have been chosen to 

demonstrate the applicability and flexibility of our 

method in various domains. Specifically, the examples 

include linear PDEs, such as the heat and wave equation, 

and nonlinear PDEs, such as the Burgers' Equation, the 

MHD flow equation, and the Klein-Gordon equation. By 

including a diverse set of examples, ranging from linear 

to nonlinear PDEs, we aim to showcase the effectiveness 

of our method across various engineering domains. 

Adopting this approach allows us to assess the method's 

performance under different types of PDEs, capturing a 

wider scope of real-world scenarios. 

The article is structured as follows: Section 1 

provides an introduction, offering an overview of the 

problem at hand and a review of the relevant literature. 

Section 2 focuses on the mathematical formulation, 

explaining the fundamental concepts of the HPM and 

LTM methods. Section 3, titled methodology, delves into 

the basic idea of the HPM-LTM method and provides a 

detailed explanation of SymPy and differential equations. 

Section 4 presents five examples and their solutions, 

showcasing the results obtained for both linear and 

nonlinear partial differential equations. Finally, section 5 

concludes the article, summarizing the findings and 

highlighting the key advantages of the HPM-LTM 

method. 

 

 

2. MATHEMATICAL FORMULATION 
 
Numerous scientific investigations rely heavily on 

mathematical formulations because they give researchers 

a mechanism to properly define and measure the physical 

processes under investigation. We shall examine how our 

current problem is mathematically formulated in this 

part. We shall start by describing the issue statement and 

stating our goals. The key mathematical theories and 

equations required to resolve the issue will then be 

covered. We aim to give a clear and concise grasp of the 

underlying ideas and techniques required to solve by 

decomposing the issue into its constituent mathematical 

parts. 

 

2. 1. The Basic Idea of HPM          We examined the 

subsequent equation to elucidate the underlying 

concepts: 

𝑤(𝑘) − ℎ(𝑗) = 0,      𝑗𝜖Γ  (1) 

With the B.Cs. of: 

𝐵 (𝑘,
∂𝑘

∂𝑛
) = 0, 𝑗𝜖𝛿  (2) 

where B is a boundary operator, 𝛿 is a domain (Γ) 

boundary, h (j) is a known analytic function, and w (k) is 

a differential operator. Therefore, Equation 1 can be 

rewritten as Equation 3, 𝐿(𝑘) is linear, and 𝑁(𝑘) is 

nonlinear. 

𝐿(𝑘) + 𝑁(𝑘) − ℎ(𝑗) = 0, 𝑗𝜖𝛤  (3) 

The HPM configuration looks like Equation 4: 

𝐻(𝑞, 𝑝) = (1 − 𝑝)[𝐿(𝑞) − 𝐿(𝑘0)] + 𝑝[𝑤(𝑞) −
ℎ(𝑗)] = 0  

(4) 

𝑞(𝑗, 𝑝): Γ × [0,1] → 𝑅  (5) 

The initial approximation in Equation 5 that satisfies the 

B.Cs. is 𝑘0, and 𝑝 is an embedded parameter that falls 

between [0,1]. The answer to Equation 4 can be 

expressed as follows in powers of 𝑝: 

𝑞 = 𝑞0 + 𝑝𝑞1 + 𝑝2𝑞2 + ⋯ ⋯ ⋯  (6) 

And the best guess for the answer is: 

𝑘 = 𝐿𝑖𝑚𝑝→1  𝑞 = 𝑞0 + 𝑞1 + 𝑞2 + ⋯ ⋯ ⋅  (7) 

 

2. 2. The Basic Idea of LTM         Operators, also known 

as transformations, turn one function into another. 

Although transformations alter the original function, they 

can maintain or change the independent variable. For 

example, when a function 𝑓(𝑡) is multiplied by a number 

n using the operator 𝑂, the resulting function 𝑔(𝑡) keeps 

the original function's independent variable. Formally, 

such an operator may be stated as: 

𝑂[𝑓(𝑡)] = 𝑛 ⋅ 𝑓(𝑡) = 𝑔(𝑡)  (8) 

The inverse Laplace transform acts on 𝐹(𝑠) to get 

𝑓(𝑡), whereas the direct Laplace transform takes a 

function 𝑓(𝑡) that relies on time 𝑡 and converts it into a 

different function 𝐹(𝑠) that depends on the complex 

variable 𝑠. The Laplace transform is described 

mathematically as  

𝐹(𝑠) = ℒ[𝑓(𝑡)] = ∫  
∞

0
𝑓(𝑡) ⋅ 𝑒−𝑠⋅𝑡𝑑𝑡  (9) 

For the transformation to occur, the integral defining 

the Laplace transform must converge, which necessitates 

that the initial function 𝑓(𝑡) meet the following 

prerequisites: 

1) If the interval can be divided into a finite number of 

nonintersecting intervals, then 𝑓(𝑡) must be 

piecewise continuous across the interval 0 < 𝑡 <
∞, which means it must be continuous on any 

subinterval of that interval, and it must have finite 

bounds at the endpoints of each subinterval. 

2) Given that 𝑓(𝑡) must be of exponential order, it 

must meet the equality for real constant values  𝜎 
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that is greater than a critical value, 𝜎𝑐, often known 

as the abscissa of convergence. 

Formally, the inverse Laplace transform, which is often 

needed to return the original (generally unknown) time-

domain function 𝑓(𝑡), is calculated as: 

𝑓(𝑡) = ℒ−1[𝐹(𝑠)]  (10) 

 
 
3. METHODOLOGY 
 
3. 1. The Basic Idea of HPM-LTM            Up to step (4), 

HPM-LTM follows the same stages as HPM. Then, we 

apply the Laplace transform to both sides of the 

homotopy Equation 4: 

𝔰{𝐿(𝐾) − 𝐿(𝑘0) + 𝑝[𝐿(𝑘0) + 𝑁(𝐾) − ℎ(𝑗)]} = 0  (11) 

The possibility exists that HPM-LTM could replace (𝑘0), 

with any arbitrary function 𝑧(𝑥), provided that this 

function is defined by certain unspecified parameters A, 

B, C, etc. These parameters would need to be 

appropriately determined using the flexibility afforded by 

the homotopy formulation. Then, we have: 

𝑠𝑛ℑ{𝐾} − 𝑠𝑛−1𝐾(0) − 𝑠𝑛−2𝐾′(0) − ⋯ − 𝐾(𝑛−1)(0)

= ℑ{𝐿(𝑘0) − 𝑝𝐿(𝑘0) + 𝑝[−𝑁(𝐾) + ℎ(𝑗)]}
  (12) 

Or 

ℑ(𝐾) = (
1

𝑠𝑛
) {𝑠𝑛−1𝐾(0) + 𝑠𝑛−2𝐾′(0) + ⋯ + 𝐾(𝑛−1)(0)}

 + (
1

𝑠𝑛
) ℑ{𝐿(𝑘0) − 𝑝𝐿(𝑘0) + 𝑝[−𝑁(𝐾) + ℎ(𝑗)]},

  (13) 

When we apply the inverse Laplace transform to 

Equation 13, we get: 

𝐾 = ℑ−1 {(
1

𝑠𝑛
) {𝑠𝑛−1𝐾(0) + 𝑠𝑛−2𝐾′(0) + ⋯ + 𝐾(𝑛−1)(0)}

+ (
1

𝑠𝑛
) ℑ{𝐿(𝑘0) − 𝑝𝐿(𝑘0) + 𝑝[−𝑁(𝐾) + ℎ(𝑗)]}} .

  (14) 

Assuming that a power series of p may be used to 

describe the answers to Equation 3: 

𝐾 = ∑  ∞
𝑛=0 𝑝𝑛𝑞𝑛  (15) 

then we obtain by replacing Equation 15 with Equation 

14. 

 

∑  ∞
𝑛=0 𝑝𝑛𝑞𝑛 = ℑ−1 {

(
1

𝑠𝑛
) {𝑠𝑛−1𝐾(0) + 𝑠𝑛−2𝐾′(0) + ⋯ + 𝐾(𝑛−1)(0)}

+ (
1

𝑠𝑛
) 𝔍{𝐿(𝑘0) − 𝑝𝐿(𝑘0) + 𝑝[−𝑁(∑  ∞

𝑛=0  𝑝𝑛𝑞𝑛) + ℎ(𝑗)]}
}  (16) 

Comparing 𝑝 coefficients of equal power results in 

𝑝0: 𝑞0 = ℑ−1 {(
1

𝑠𝑛
) (𝑠𝑛−1𝐾(0) + 𝑠𝑛−2𝐾′(0) + ⋯ + 𝐾(𝑛−1)(0)) + ℑ{𝐿(𝑘0)})} ,

𝑝1: 𝑞1 = ℑ−1 {(
1

𝑠𝑛
) (ℑ{−𝑁0(𝑞0) − 𝐿(𝑘0) + ℎ(𝑟𝑗)})} ,

𝑝2: 𝑞2 = 𝔍−1 {(
1

𝑠𝑛
) ℑ{−𝑁1(𝑞0, 𝑞1)}}

𝑝3: 𝑞3 = ℑ−1 {(
1

𝑠𝑛
) ℑ{−𝑁2(𝑞0, 𝑞1, 𝑞2)}} , 

𝑝𝑗: 𝑞𝑗 = 𝔍−1 {(
1

𝑠𝑛
) ℑ{−𝑁𝑗−1(𝑞0, 𝑞1, 𝑞2, … , 𝑞𝑗−1)}}

  (17) 

 

Assuming that 𝐾(0) = 𝑘0 = 𝛼0, 𝐾′(0) =
𝛼1, … , 𝐾𝑛−1(0) = 𝛼𝑛−1; the exact solution may be 

obtained as follows: 

𝑘 = 𝐿𝑖𝑚
𝑝→1

 𝐾 = 𝑞0 + 𝑞1 + 𝑞2 + ⋯  (18) 

The notation presented above indicates the potential for 

extending the nonlinear operator 𝑁 as a formal series 

with respect to the embedding parameter 𝑝. 

 

3. 2. SymPy and Differential Equations             In our 

study, we harnessed the capabilities of Python in 

conjunction with the SymPy module, a powerful tool for 

conducting symbolic computations. Particularly in 

algebra, discrete mathematics, and calculus, we found 

SymPy exceptionally useful, primarily due to its 

proficiency in formatting and presenting outcomes in 

LaTeX format. We employed a multi-step procedure to 

address differential equations using SymPy. 

Commencing with importing the SymPy library and 

associated symbols, we defined the dependent variable as 

a function of the independent counterpart. The 

incorporation of boundary or initial conditions was 

achieved by utilizing the '.subs' method. We then 

embarked on the creation of the differential equation 

itself. Subsequently, the crux of our endeavor lay in 

solving this intricate differential equation by applying the 

'dsolve' function. To streamline our efforts, we availed 

ourselves of the 'from sympy import *' and 'from 

sympy.abc import *' directives facilitated the importation 

of requisite modules and symbols. The complex 

differential equations central to our research were 

successfully unraveled, all thanks to the robust support 

provided by SymPy. This, in turn, furnished us with 

profound insights that greatly enriched our 

understanding. To clarify the methodology, we provide 

the following flowchart: 
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4. ILLUSTRATIVE EXAMPLES 
 

We have applied the HPM-LTM method to demonstrate 

its effectiveness in two linear and three nonlinear partial 

differential equations. 
 

Example 4.1. The homogeneous linear PDE (26, 36, 38) 

is as follows: 

𝜕𝑦

𝜕𝑡
+

𝜕𝑦

𝜕𝑥
−

𝜕2𝑦

𝜕𝑥2 = 0  (19) 

with the following B.Cs.: 

𝑦(𝑥, 0) = 𝑒𝑥 − 𝑥,  𝑦(0, 𝑡) = 1 + 𝑡,  
𝜕𝑦

𝜕𝑥
(1, 𝑡) =

𝑒 − 1  
(20) 

Applying the procedure above under the presumption 

that existed initially, we have: 

𝑦(𝑥, 𝑠) =
𝑒𝑥−𝑥

𝑠
−

1

𝑠
𝐿 [

𝜕𝑦

𝜕𝑥
−

𝜕2𝑦

𝜕𝑥2]  (21) 

The Laplace transform's inverse suggests that: 

𝑦(𝑥, 𝑡) = 𝑒𝑥 − 𝑥 − 𝐿−1 [
1

𝑠
𝐿 [

𝜕𝑦

𝜕𝑥
−

𝜕2𝑦

𝜕𝑥2]]  (22) 

Now, we apply the HPM; we have 

∑  ∞
𝑛=0 𝑝𝑛𝑦𝑛(𝑥, 𝑡) = 𝑒𝑥 − 𝑥 − 𝑝 (𝐿−1 [

1

𝑠
𝐿 [

𝜕𝑦

𝜕𝑥
−

𝜕2𝑦

𝜕𝑥2]])  
(23) 

The coefficient of similar powers of 𝑝 is compared, and 

we have: 

𝑝0: 𝑦0(𝑥, 𝑡) = 𝑒𝑥 − 𝑥

𝑝1: 𝑦1(𝑥, 𝑡) = −𝐿−1 [
1

𝑠
𝐿 [

𝜕𝑦0

𝜕𝑥
−

𝜕2𝑦0

𝜕𝑥2 ]] = 𝑡

𝑝2: 𝑦2(𝑥, 𝑡) = −𝐿−1 [
1

𝑠
𝐿 [

𝜕𝑦1

𝜕𝑥
−

𝜕2𝑦

𝜕𝑥2]] = 0

  (24) 

𝑝3: 𝑦3(𝑥, 𝑡) = 0,

𝑝4: 𝑦4(𝑥, 𝑡) = 0,
  (25) 

so the solution 𝑦(𝑥, 𝑡) is given by 

𝑦(𝑥, 𝑡)  = 𝑒𝑥 − 𝑥 + 𝑡 + 0 + 0 ⋯

 = 𝑒𝑥 − 𝑥 + 𝑡
  (26) 

We begin by noting that Equation 26 represents the exact 

solution of the problem, as reported in literature (26, 36, 

38). Different approximate solutions are obtained in 

some experiments using HPM (36, 38). By applying 

HPM-LTM, we obtain exact solutions. 

The problem was solved using Python, leveraging the 

capabilities of the symbolic mathematics library Sympy. 

The results obtained from the solution are presented in 

Figures 1 and 2. Figure 1 depicts the exact solution of 

𝑦(𝑡) = 𝑒𝑥 − 𝑥 + 𝑡 for various values of t. It is evident 

that as the value of x increases, the solution of 𝑦(𝑡) 

exhibits exponential growth. The different lines in the 

figure correspond to different values of t in the exact 

solution of the equation. This visualization provides 

valuable insights into the behavior of the solution as it 

varies with different input parameters. Figure 2 presents 

a 2D contour plot that offers a clearer visualization of the 

exponential increase in t as x increases. The contour lines 

represent equal 𝑦(𝑡) values for different combinations of 

𝑥 and 𝑡. By examining this contour plot, we understand 

how the solution behaves across the entire parameter 

space. The contour lines help identify regions where the 

solution exhibits significant changes or remains 

relatively constant. Both Figures 1 and 2 collectively 

demonstrate the exponential behavior of the exact 

solution of the given equation. These visual 

representations provide valuable insights and enhance 

our understanding of the problem. Employing the 
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Matplotlib library in Python facilitated the creation of 

these plots, enabling the effective communication of the 

obtained results. 

The results obtained through the utilization of Python, 

Sympy, and Matplotlib highlight the exponential growth 

of the exact solution of 𝑦(𝑡) = 𝑒𝑥 − 𝑥 + 𝑡. The figures 

presented in this section provide a comprehensive 

visualization of this behavior, showcasing the impact of 

varying input parameters on the solution. These findings 

contribute to a deeper understanding of the problem and 

validate the effectiveness of this study's hybrid analytical 

and Laplace transform methods. 
 

Example 4.2. Take into account the homogeneous linear 

PDE (Klein-Gordon equation) shown below (26, 36, 38): 

𝜕2𝑦

𝜕𝑡2 + 𝑦 −
𝜕2𝑦

𝜕𝑥2 = 0  (27) 

with the following B.Cs.: 

𝑦(𝑥, 0) = 𝑒−𝑥 + 𝑥,  
𝜕𝑦

𝜕𝑡
(𝑥, 0) = 0  (28) 

Applying the procedure above by the I.Cs., we have: 
 
 

 
Figure 1. Exact solution of example 4.1 using HPM-LTM 

method for varying values of t, plotted in Python using 

Sympy and Matplotlib for different values of 𝑡 

 

 

 
Figure 2. 2D contour plot of the exact solution of example 

4.1 using the HPM-LTM method, plotted in Python using 

Sympy and Matplotlib 

𝑦(𝑥, 𝑠) =
𝑒−𝑥+𝑥

𝑠
−

1

𝑠2 𝐿 [𝑦 −
𝜕2𝑦

𝜕𝑥2]  (29) 

The Laplace transform's inverse suggests that: 

𝑦(𝑥, 𝑡) = 𝑒−𝑥 + 𝑥 − 𝐿−1 [
1

𝑠2 𝐿 [𝑦 −
𝜕2𝑦

𝜕𝑥2]]  (30) 

Now, we apply the HPM; we have 

∑  ∞
𝑛=0 𝑝𝑛𝑦𝑛(𝑥, 𝑡) = 𝑒−𝑥 + 𝑥 − 𝑝 (𝐿−1 [

1

𝑠2 𝐿 [𝑦 −

𝜕2𝑦

𝜕𝑥2
]]) .   

(31) 

The coefficient of similar powers of p is compared, and we 

have: 

𝑝0: 𝑦0(𝑥, 𝑡) = 𝑒−𝑥 + 𝑥

𝑝1: 𝑦1(𝑥, 𝑡) = −𝐿−1 [
1

𝑠2
𝐿 [𝑦0 −

𝜕2𝑦0

𝜕𝑥2
]] =

−𝑥𝑡2

2!
,

𝑝2: 𝑦2(𝑥, 𝑡) = −𝐿−1 [
1

𝑠2
𝐿 [𝑦1 −

𝜕2𝑦1

𝜕𝑥2
]] =

𝑥𝑡4

4!
.

  (32) 

𝑝3: 𝑦3(𝑥, 𝑡) =
−𝑥𝑡6

6!

𝑝4: 𝑦4(𝑥, 𝑡) =
𝑥𝑡8

8!

𝑝𝑛: 𝑦𝑛(𝑥, 𝑡) =
(−1)𝑛𝑥𝑡2𝑛

2𝑛!

  (33) 

so that the solution 𝑦(𝑥, 𝑡) is given by: 

𝑦(𝑥, 𝑡)  = 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + ⋯

 = 𝑒−𝑥 + 𝑥 −
𝑥𝑡2

2!
+

𝑥𝑡4

4!
−

𝑥𝑡6

6!
+ ⋯ +

(−1)𝑛𝑥𝑡2𝑛

2𝑛!

 = 𝑒−𝑥 + 𝑥 (1 −
𝑡2

2!
+

𝑡4

4!
− ⋯ +

(−1)𝑛𝑡2𝑛

2𝑛!
+ ⋯ )

 = 𝑒−𝑥 + 𝑥𝐶𝑜𝑠 (𝑡),

  (34) 

Equation 34 is the exact solution to the problem (26, 36, 38), 

which is a homogeneous linear PDE (Klein-Gordon 

equation), depicted in Figures 3 and 4, using the HPM-LTM 

method in Python (26, 36, 38). Different approximate 

solutions are obtained in some experiments using HPM (36, 

38). By applying HPM-LTM, we obtain exact solutions. 

Figure 3 specifically focuses on the behavior of the 

solution over time or for different boundary conditions. It 

presents a line graph illustrating the exact solution of the 

equation for different values of 𝑡. The graph clearly 

demonstrates how the solution evolves over time, providing 

insights into its temporal dynamics. As t increases, the 

corresponding value of 𝑦 decreases. This decreasing trend 

suggests that the amplitude of the solution diminishes as 

time progresses. Notably, a particularly noticeable drop in 

the solution occurs at 𝑡 =  0.8. This observation indicates 

that the solution becomes less pronounced as time advances. 

By visualizing the solution's behavior for various values of 

𝑡, Figure 3 effectively showcases the temporal evolution and 

sensitivity of the solution to different time-dependent 

factors. This plot provides valuable insights into how the 

solution changes over time and in response to varying 

boundary conditions. Figure 4, on the other hand, offers a 

2D contour plot that represents different solution levels 
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based on 𝑦 and 𝑥 values. This contour plot allows us to 

identify variations in the solution across the 𝑦 − 𝑥 

parameter space, enabling the identification of patterns, 

trends, and critical points. We can observe regions of equal 

solution values by examining the contour lines in Figure 4. 

This visualization helps us identify areas where the solution 

exhibits significant changes or remains relatively constant. 

Consequently, we can pinpoint critical points, such as 

regions with steep gradients or areas where the solution 

transitions rapidly. The 2D contour plot presented in Figure 

4 enhances our understanding of the solution by providing a 

comprehensive overview of its variations across different 𝑦 

and 𝑥 values. 

Figures 3 and 4 provide a detailed analysis of the exact 

solution of the homogeneous linear PDE obtained using the 

HPM-LTM method in Python. Figure 3's line graph 

demonstrates the solution's temporal behavior, showcasing 

a decreasing trend in the solution as t increases. On the other 

hand, Figure 4's 2D contour plot offers a comprehensive 

visualization of the solution's variations across the 𝑦 − 𝑥 

parameter space, allowing us to identify patterns, trends, and 

critical points. Both figures contribute to a deeper 

understanding of the solution and further validate the 

effectiveness of the HPM-LTM method for solving the 

considered homogeneous linear PDE. 
 

Example 4.3. Take into account the homogeneous 

nonlinear PDE (Burger equation) shown below (26, 36, 38): 

𝜕𝑦

𝜕𝑡
− 𝑦

𝜕𝑦

𝜕𝑥
−

𝜕2𝑦

𝜕𝑥2 = 0  (35) 

with the following B.Cs.: 

𝑦(𝑥, 0) = 1 − 𝑥,  𝑦(0, 𝑡) =
1

(1+𝑡)
,  𝑦(1, 𝑡) = 0  (36) 

Applying the procedure above while keeping in mind the 

starting state, we have: 

𝑦(𝑥, 𝑠) =
1−𝑥

𝑠
+

1

𝑠
𝐿 [

𝜕2𝑦

𝜕𝑥2 + 𝑦
𝜕𝑦

𝜕𝑥
]  (37) 

The Laplace transform's inverse suggests that: 

𝑦(𝑥, 𝑡) = 1 − 𝑥 + 𝐿−1 [
1

𝑠
𝐿 [

𝜕2𝑦

𝜕𝑥2 + 𝑦
𝜕𝑦

𝜕𝑥
]]  (38) 

Now, we apply the HPM; we have 

∑  ∞
𝑛=0 𝑝𝑛𝑦𝑛(𝑥, 𝑡) = 1 − 𝑥 + 𝑝 (𝐿−1 [

1

𝑠
{𝐿 [

𝜕2𝑦

𝜕𝑥2] +

𝐿[∑  ∞
𝑛=0  𝑝𝑛𝐻𝑛(𝑦)]}]),  

(39) 

where 𝐻𝑛(𝑦) are He's polynomials. The first few 

components of He's polynomials are:  

𝐻0(𝑦) = 𝑦0
𝜕𝑦0

𝜕𝑥
= −(1 − 𝑥)

𝐻1(𝑦) = 𝑦0
𝜕𝑦1

𝜕𝑥
+ 𝑦1

𝜕𝑦0

𝜕𝑥
= 2(1 − 𝑥)𝑡

𝐻2(𝑦) = 𝑦0
𝜕𝑦2

𝜕𝑥
+ 𝑦1

𝜕𝑦1

𝜕𝑥
+ 𝑦2

𝜕𝑦0

𝜕𝑥
= −3(1 − 𝑥)𝑡2

  (40) 

The coefficient of similar powers of p is compared, and we 

have: 

 

𝑝0: 𝑦0(𝑥, 𝑡) = 1 − 𝑥

𝑝1: 𝑦1(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
{𝐿 [

𝜕2𝑦0

𝜕𝑥2 ] + 𝐿[𝐻0(𝑦)]}] = −(1 − 𝑥)𝑡

𝑝2: 𝑦2(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
{𝐿 [

𝜕2𝑦1

𝜕𝑥2 ] + 𝐿[𝐻1(𝑦)]}] = (1 − 𝑥)𝑡2

  (41) 

𝑝3: 𝑦3(𝑥, 𝑡) = −(1 − 𝑥)𝑡3

𝑝4: 𝑦4(𝑥, 𝑡) = (1 − 𝑥)𝑡4   (42) 

so that the solution 𝑦(𝑥, 𝑡) is given by: 

𝑦(𝑥, 𝑡)  = 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + ⋯

 = (1 − 𝑥) − (1 − 𝑥)𝑡 + (1 − 𝑥)𝑡2 − (1 − 𝑥)𝑡3 + ⋯

 = (1 − 𝑥)[1 − 𝑡 + 𝑡2 − 𝑡3 + 𝑡4 − ⋯ ]

 = (1 − 𝑥)(1 + 𝑡)−1 =
(1−𝑥)

(1+𝑡)
,

  (43) 

 

which is the exact solution to the problem (26, 36, 38). In 

some experiments, different approximate solutions are 

obtained by using HPM (36, 38). By applying HPM-LTM, 

we obtain exact solutions. Figure 5 presents a line graph that 

showcases the behavior of the solution for various values of 

𝑡 (0, 0.2, 0.4, 0.6, 0.8) in relation to the value of y. The 

graph provides valuable insights into the dynamics of the 

solution and its sensitivity to changes in 𝑡. 

The observed trend in Figure 5 indicates that the solution 

curve is decreasing, with y decreasing as t increases. This 

behavior implies that the amplitude of the solution 

diminishes as time progresses. This decreasing trend is 

evident in the lines representing 𝑡 =  0.2, 𝑡 =  0.4, 𝑡 =
 0.6, and 𝑡 =  0.8. However, an interesting anomaly is 

observed in the curve for t = 0, where the solution starts with 

𝑦 =  1 and decreases as t increases. This reversed trend in 

the line plot suggests a unique behavior or specific 

conditions that influence the solution's initial behavior. 

Another noteworthy observation in Figure 5 is the 

significant increase in the solution's value at 𝑡 =  0.8. This 

sharp increase indicates a sudden change or a critical point 

in the solution's behavior. It suggests that the solution 
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becomes more pronounced or exhibits a higher amplitude at 

this specific time point. 

 

 

 
Figure 3. Exact solution of example 4.2 using HPM-LTM 

method for varying values of t, plotted in Python using 

Sympy and Matplotlib for different values of 𝑡 

 

 

 
Figure 4. 2D contour plot of the exact solution of example 

4.2 using the HPM-LTM method, plotted in Python using 

Sympy and Matplotlib 

 

 

 
Figure 5. Exact solution of example 4.3 using HPM-LTM 

method for varying values of t, plotted in Python using 

Sympy and Matplotlib for different values of 𝑡 

 
Figure 6. 2D contour plot of the exact solution of example 

4.3 using the HPM-LTM method, plotted in Python using 

Sympy and Matplotlib 

 

 

Additionally, all the lines in the graph converge at 𝑥 =
 1, indicating that the behavior of the solution remains 

consistent across different values of 𝑡 as it approaches this 

point. This convergence implies that the solution reaches a 

stable state or exhibits similar characteristics near 𝑥 =  1, 

regardless of the specific value of 𝑡. It suggests that the 

solution may have a specific behavior or property that is 

invariant with respect to changes in t near this point. 

Figure 6 appears to be a 2D contour plot that provides 

further insights into the behavior of the solution for different 

values of 𝑡 and 𝑥. The contour lines on the plot represent 

different levels of the solution and allow us to visualize how 

the values change across various regions of the 𝑥 and 𝑡 axes. 

By examining the contour lines in Figure 6, we can identify 

variations in the solution across the 𝑥 − 𝑡 parameter space. 

This visualization lets us identify regions with similar 

solution values and observe patterns, trends, and critical 

points. The contour plot helps us understand how the 

solution changes across different values of 𝑡 and 𝑥. It 

provides a comprehensive overview of the solution's 

behavior and allows us to identify areas where the solution 

exhibits significant changes or remains relatively constant. 

By analyzing the contour lines, we can identify regions with 

steep gradients or areas where the solution transitions 

rapidly. This information is crucial for understanding the 

behavior and characteristics of the solution in different parts 

of the x-t parameter space. 

Figure 5 illustrates the behavior of the solution for 

various values of 𝑡, showing a decreasing trend overall with 

an interesting reversal in the curve for 𝑡 =  0. Figure 6, on 

the other hand, provides a 2D contour plot that offers 

insights into the behavior of the solution across different 

values of 𝑡 and 𝑥. The contour lines help to identify the 

solution's variations, patterns, and critical points. These 

visualizations enhance our understanding of the physical 

behavior and properties of the solution in the context of the 

given problem. 
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Example 4.4. Take into account the aforementioned 

homogeneous nonlinear PDE (26, 36, 38): 

𝜕𝑦

𝜕𝑡
− 𝑦 − 𝑦

𝜕2𝑦

𝜕𝑥2
− (

𝜕𝑦

𝜕𝑥
)

2
= 0  (44) 

with the following B.Cs.: 

𝑦(𝑥, 0) = √𝑥,  𝑦(0, 𝑡) = 0,  𝑦(1, 𝑡) = 𝑒𝑡.  (45) 

Applying the procedure above while keeping in mind the 

starting state, we have: 

𝑦(𝑥, 𝑠) =
√𝑥

𝑠
+

1

𝑠
𝐿 [𝑦 + 𝑦

𝜕2𝑦

𝜕𝑥2 + (
𝜕𝑦

𝜕𝑥
)

2
]  (46) 

The Laplace transform's inverse suggests that: 

𝑦(𝑥, 𝑡) = √𝑥 + 𝐿−1 [
1

𝑠
𝐿 [𝑦 + 𝑦

𝜕2𝑦

𝜕𝑥2
+ (

𝜕𝑦

𝜕𝑥
)

2
]]  (47) 

Now, we apply the HPM; we have 

∑  ∞
𝑛=0 𝑝𝑛𝑦𝑛(𝑥, 𝑡) = √𝑥 + 𝑝 (𝐿−1 [

1

𝑠
{𝐿[𝑦] +

𝐿[∑  ∞
𝑛=0  𝑝𝑛𝐻𝑛(𝑦)]}])  

(48) 

where 𝐻𝑛(𝑦) are He's polynomials. The first few 

components of He's polynomials are given by: 

 

𝐻0(𝑦) = 𝑦0
𝜕2𝑦0

𝜕𝑥2
+ (

𝜕𝑦0

𝜕𝑥
)

2
= 0

𝐻1(𝑦) = 𝑦0
𝜕2𝑦1

𝜕𝑥2
+ 𝑦1

𝜕2𝑦0

𝜕𝑥2
+ 2

𝜕𝑦0

𝜕𝑥

𝜕𝑦1

𝜕𝑥
= 0

𝐻2(𝑦) = 𝑦0
𝜕2𝑦2

𝜕𝑥2
+ 𝑦1

𝜕2𝑦1

𝜕𝑥2
+ 𝑦2

𝜕2𝑦0

𝜕𝑥2
+ (

𝜕𝑦1

𝜕𝑥
)

2
+ 2

𝜕𝑦0

𝜕𝑥

𝜕𝑦2

𝜕𝑥
= 0

  (49) 

 

The coefficient of similar powers of p is compared, and we 

have:  

𝑝0: 𝑦0(𝑥, 𝑡) = √𝑥

𝑝1: 𝑦1(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
{𝐿[𝑦0] + 𝐿[𝐻0(𝑦)]}] = √𝑥𝑡

𝑝2: 𝑦2(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
{𝐿[𝑦1] + 𝐿[𝐻1(𝑦)]}] =

√𝑥𝑡2

2!
.

  (50) 

𝑝3: 𝑦3(𝑥, 𝑡) =
√𝑥𝑡3

3!
,

𝑝4: 𝑦4(𝑥, 𝑡) =
√𝑥𝑡4

4!
,
  (51) 

so the solution 𝑦(𝑥, 𝑡) is given by: 

𝑦(𝑥, 𝑡)  = 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + ⋯

 = √𝑥 +
√𝑥𝑡

1!
+

√𝑥𝑡2

2!
+

√𝑥𝑡3

3!
+ ⋯

 = √𝑥 (1 +
𝑡

1!
+

𝑡2

2!
+

𝑡3

3!
+ ⋯ +

𝑡𝑛

𝑛!
+ ⋯ )

 = √𝑥𝑒𝑡,

  (52) 

 

 

 
Figure 7. Exact solution of example 4.4 using HPM-LTM 

method for varying values of t, plotted in Python using 

Sympy and Matplotlib for different values of 𝑡 

 
Figure 8. 2D contour plot of the exact solution of example 

4.4 using the HPM-LTM method, plotted in Python using 

Sympy and Matplotlib 
 

 

which is the exact solution to the problem (26, 36, 38). In 

some experiments, different approximate solutions are 

obtained by using HPM (36, 38). By applying HPM-LTM, 

we obtain exact solutions. 
 

Example 4.5. Take into account the subsequent non-

homogeneous nonlinear PDE (26, 36, 38): 

𝜕2𝑦

𝜕𝑡2 +
𝜕2𝑦

𝜕𝑥2 + (
𝜕𝑦

𝜕𝑥
)

2
= 2𝑥 + 𝑡4  (53) 

with the following B.Cs.: 

𝑦(𝑥, 0) = 0,  
𝜕𝑦

𝜕𝑡
(𝑥, 0) = 𝑎,  𝑦(0, 𝑡) =

𝑎𝑡,  
𝜕𝑦

𝜕𝑥
(0, 𝑡) = 𝑡2  

(54) 

By applying the HPM subject to the I.Cs., we have: 

𝑦(𝑥, 𝑠)  =
𝑎

𝑠2 −
1

𝑠2 𝐿 [
𝜕2𝑦

𝜕𝑥2 + (
𝜕𝑦

𝜕𝑥
)

2
] +

1

𝑠2 𝐿[2𝑥 + 𝑡4]

 =
𝑎

𝑠2 +
2𝑥

𝑠3 +
4!

𝑠7 −
1

𝑠2 𝐿 [
𝜕2𝑦

𝜕𝑥2 + (
𝜕𝑦

𝜕𝑥
)

2
] .

  (55) 
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The Laplace transform's inverse suggests that: 

𝑦(𝑥, 𝑡) = 𝑎𝑡 + 𝑥𝑡2 +
𝑡6

30
− 𝐿−1 [

1

𝑠2
𝐿 [

𝜕2𝑦

𝜕𝑥2
+ (

𝜕𝑦

𝜕𝑥
)

2

]] .  (56) 

Now, we apply the HPM, we have: 

∑  ∞
𝑛=0 𝑝𝑛𝑦𝑛(𝑥, 𝑡) = 𝑎𝑡 + 𝑥𝑡2 +

𝑡6

30
−

𝑝 (𝐿−1 [
1

𝑠2
{𝐿 [

𝜕2𝑦

𝜕𝑥2
] + 𝐿[∑  ∞

𝑛=0  𝑝𝑛𝐻𝑛(𝑦)]}])  
(57) 

where 𝐻𝑛(𝑦) are He's polynomials. The first few 

components of He's polynomials are given by: 

𝐻0(𝑦) = (
𝜕𝑦0

𝜕𝑥
)

2
= 𝑡4,

𝐻1(𝑦) = 2 (
𝜕𝑦0

𝜕𝑥
) × (

𝜕𝑦1

𝜕𝑥
) = 0,

𝐻2(𝑦) = (
𝜕𝑦1

𝜕𝑥
)

2
+ 2

𝜕𝑦0

𝜕𝑥

𝜕𝑦2

𝜕𝑥
= 0,

  (58) 

The coefficient of similar powers of p is compared, and we 

have: 

𝑝0: 𝑦0(𝑥, 𝑡) = 𝑎𝑡 + 𝑥𝑡2 +
𝑡6

30
,

𝑝1: 𝑦1(𝑥, 𝑡) = −𝐿−1 [
1

𝑠2
{𝐿 [

𝜕2𝑦0

𝜕𝑥2
] + 𝐿[𝐻0(𝑦)]}] = −

𝑡6

30
,

𝑝2: 𝑦2(𝑥, 𝑡) = −𝐿−1 [
1

𝑠2
{𝐿 [

𝜕2𝑦1

𝜕𝑥2 ] + 𝐿[𝐻1(𝑦)]}] = 0.

  (59) 

𝑝3: 𝑦3(𝑥, 𝑡) = 0,

𝑝4: 𝑦4(𝑥, 𝑡) = 0,
  (60) 

so that the solution 𝑦(𝑥, 𝑡) is given by: 

𝑦(𝑥, 𝑡)  = 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + ⋯

 = 𝑎𝑡 + 𝑥𝑡2 +
𝑡6

30
−

𝑡6

30
+ 0 + 0 + 0 + ⋯

 = 𝑎𝑡 + 𝑥𝑡2

  (61) 

which is the exact solution to the problem (26, 36, 38). In 

some experiments, different approximate solutions are 

obtained by using HPM (36, 38). By applying HPM-LTM, 

we obtain exact solutions. Figure 9 displays the exact 

solution of Example 4.5 for various values of 𝑎 (0, 0.2, 0.4, 

0.6, 0.8), with y represented on the vertical axis and 𝑥 on the 

horizontal axis. The equation for the exact solution is given 

as 𝑎𝑡 + 𝑥𝑡2, where 𝑎 is a parameter that influences the 

behavior of the solution. Analyzing the graph in Figure 9, 

we observe that as the value increases, the corresponding y 

values also increase. This relationship indicates that higher 

values of a result in larger magnitudes of 𝑦. The curve for 

𝑎 =  0.8 exhibits the highest 𝑦 values, while the curve for 

𝑎 =  0 demonstrates the smallest values. This trend 

suggests that the parameter a significantly impacts the 

amplitude or magnitude of the solution. 

Figure 10 presents a 2D contour plot illustrating the 

behavior of the exact solution of Example 4.5 for different 

values of 𝑎 and 𝑥. The vertical axis represents the values of 

𝑎, while the horizontal axis represents the values of 𝑥. The 

contour lines depicted on the plot represent different levels 

of the solution, enabling us to visualize how the values 

change across various regions of the 𝑥 − 𝑎 parameter space. 

 

 
Figure 9. Exact solution of example 4.5 using HPM-LTM 

method for varying values of t, plotted in Python using 

Sympy and Matplotlib for different values of 𝑎 

 

 

 
Figure 10. 2D contour plot of the exact solution of example 

4.5 using the HPM-LTM method, plotted in Python using 

Sympy and Matplotlib 

 

 

By examining the contour lines in Figure 10, we can identify 

regions where the solution changes more rapidly. In areas 

where the contour lines are closer together, the solution 

exhibits significant variations or transitions over a small 

range of 𝑥 and 𝑎 values. Conversely, regions with widely 

spaced contour lines correspond to areas where the solution 

changes more gradually or remains relatively constant. This 

2D contour plot demonstrates that the behavior of the exact 

solution is highly dependent on the values of 𝑎 and 𝑥. The 

contour lines' proximity indicates the solution's sensitivity to 

changes in these parameters. It suggests that small variations 

in a and 𝑥 can substantially change the solution's magnitude 

or behavior. 

Despite the complexity of the solution, the contour plot 

provides an easily interpretable visual representation of the 

data. It allows us to identify critical regions, observe trends, 

and understand the relationship between the solution levels 

and the values of 𝑎 and 𝑥. This visualization aids in gaining 

insights into the behavior and properties of the exact 

solution in the context of Example 4.5. 
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In our research paper, we compared the efficiency of the 

HPM-LTM and traditional HPM methods. We performed 

this comparison by solving example 4.5 using both 

approaches. While both methods yielded the exact solution, 

our observations indicated that the HPM-LTM method 

significantly outperformed the HPM method. Using the 

HPM-LTM method, we achieved the desired result with just 

seven blocks of code. In contrast, the HPM method required 

48 blocks of code. This substantial difference in coding 

requirements demonstrates the efficiency gain offered by 

the HPM-LTM method. The improved efficiency of the 

HPM-LTM method is attributed to its optimized design, 

which provides a streamlined and less convoluted approach 

to problem-solving. The HPM-LTM method simplifies 

coding by eliminating unnecessary complexities and 

reducing coding requirements. 

Our study unequivocally demonstrates that the HPM-

LTM method is superior in efficiently and effectively 

solving complex problems compared to traditional methods. 

Our research findings highlight the advantages of adopting 

the HPM-LTM method for improved efficiency and 

effectiveness in problem-solving endeavors. 

 

 

5. CONCLUSION 
 

The proposed HPM-LTM method offers a novel and 

effective approach for solving linear and nonlinear partial 

differential equations, as demonstrated through illustrative 

heat and wave equations examples. By combining the 

Homotopy Perturbation Method with the Laplace 

Transform Method, the HPM-LTM method can handle 

nonlinear terms in equations while avoiding the limitations 

of traditional methods. Furthermore, Python's 

computational capabilities enable fast and accurate 

implementation of the HPM-LTM method. It is a practical 

computational tool for solving PDE problems in various 

domains, especially engineering, where efficient calculation 

time and large data volumes are essential. This study 

contributes to the advancement of computational tools for 

solving PDEs, and future research could explore the 

potential of the HPM-LTM method for more complex PDE 

problems. In summary, the HPM-LTM method offers a 

promising approach for solving PDEs with high accuracy 

and efficiency. 
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Persian Abstract 

 چکیده 
برای حل  سازی شده است،  که با استفاده از زبان پایتون پیاده  (HPM-LTM) روش تبدیل لاپلاس  - این تحقیق یک روش دقیق و نوآورانه به نام روش اختلالی هماتوپی  

، روش ما با موفقیت  (LTM) با روش تبدیل لاپلاس (HPM) کند. با ترکیب تکنیک اختلالی هماتوپیمعرفی می  (PDEs) کارآمد معادلات دیفرانسیل جزئی خطی و غیرخطی

با دقت اصطلاحات  HPM-LTM های هس، رویکردایدهد. با استفاده از چند جملهشود، پاسخ میبه معاملات مهمی که توسط معادلات دارای اجزای غیرخطی ایجاد می 

، از  PDE شود. برای نشان دادن کارایی روش ما، ما آن را به طور گسترده در پنج سناریو نماینده ازهای دقیق و قابل اعتماد منجر می حلکند و به راهغیرخطی را مدیریت می 

های معمولی کند و برتری آن نسبت به روشرا تأیید می  HPM-LTM ت و قابلیت اعتماد قابل توجه روشبریم. نتایج جامع ما دقجمله معادلات حرارت و موج، به کار می

های ناشی از  دهد. علاوه بر این، روش ما محدودیتسازی دارند و ممکن است خطاهای گردایی ایجاد کنند، را مورد تأکید قرار می که نیاز به فرضیات محدود کننده یا گسسته

ای گسترده  پذیری روش پیشنهادی ما از طریق استفاده موفق از آن در مجموعهکند. قدرت، کارایی و انعطافهای هماتوپی سنتی را برطرف می خطاهای عددی موجود در تکنیک

با تأکید خاص بر رشته   PDE متنوع  شود. این تحقیق یک مشارکت مهم به توسعه ابزار محاسباتی قدرتمند برای حل مسائلهای مختلف تأیید میدر زمینه  PDE از مسائل 
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