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A B S T R A C T  
 

 

The study of factors influencing the performance of PE pipe against rapid crack expansion is of great 
significance for the safe use of PE pipe. This paper analyzes the role of each step in the algorithm based 

on the theoretical basis of random forest, and proposes an improved random forest method based on 

recursive feature elimination by changing the node splitting rules to address the shortcomings of the 
random forest classification accuracy. The method is used to analyze the effect of rapid crack expansion 

of PE pipe in terms of pipe size and wall thickness, impact knife speed, and notched impact strength of 

simply supported beams. Under the same conditions, the extended crack lengths of DN260, DN150 and 
DN65 pipes are 197, 164 and 128 mm, respectively, while the crack lengths of PE80 pipes are 24, 210 

and 239 mm at impact knife speeds of 10, 15 and 20 m/s, respectively. The higher the notched impact 

strength of the simple beam, the higher the critical pressure value and the better the RCP resistance. The 
study of rapid crack expansion of PE pipe based on deep learning algorithm can identify the main internal 

and external factors affecting the RCP resistance of PE pipe and provide a solid basis for PE pipe life 

prediction. 

doi: 10.5829/ije.2023.36.12c.14 
 

 
1. INTRODUCTION1 
 
Polyethylene pipes have many advantages over 

traditional metal pipes and have become the best choice 

for urban pipeline networks [1, 2]. Polyethylene pipes 

have excellent toughness, with a minimum elongation at 

break of 350% required for tensile testing. Therefore, it 

can usually undergo a large deformation and is very 

adaptable to foundation settlement as well as pipeline 

deflections [3-5]. In impact tests, brittle fracture occurs 

only when the specimen is sharply notched within the 

service temperature range [6-8]. Polyethylene is an inert 

material, and at 20°C, polyethylene is resistant to strong 

acid and alkali corrosion candles [9], solving the problem 

of the need to strictly consider corrosion protection when 

laying traditional pipelines [10]. Polyethylene pipes are 

easy to install and have good welding properties, which 

is due to the solubility of polyethylene pipes [11-13]. 

With the improvement of raw material performance, 

the resistance of PE pipes to crack sprouting and to rapid 

crack expansion has dramatically increased. Most of the 

methods for rapid crack evaluation of PE pipes [14-16] 
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generally suffer from complex experimental conditions 

and poor reproducibility, which seriously restrict the 

development process of PE pipes [17-19]. There are still 

many blank areas for research exploration in various 

aspects of PE pipe manufacturing, welding and laying, 

testing and maintenance. The study of material resistance 

to rapid crack growth of PE pipes can provide scientific 

guidance for the selection of materials, welding, 

inspection and evaluation, life prediction and other key 

issues of PE pipes and promote the safe, standardized and 

stable development of PE pipes by exploring in depth the 

performance of PE pipes. 

With an increase in the usage of polyethylene pipes, 

more and more researchers have investigated their rapid 

crack expansion. Nikolaev and Zaripova [20] Baktizin 

et al. [21] and Vasiliev et al. [22] tested the resistance 

to rapid crack expansion of different types of single-

peaked MDPE pipes and indicated that single-peaked 

MDPE pipes have sufficient RCP resistance to be used in 

gas distribution systems. A small-scale accelerated and 

reliable testing method was proposed by Liu and Kleiner 

[23], Naseri and Barabady [24] Rajeev and Kodikara 
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[25] for the S4 test of conventional plastic pipes against 

rapid crack expansion using a large amount of material 

and time consuming, and was experimentally verified for 

double-peaked MDPE pipes. Thaduri et al. [26], 

Transport [27], Sepideh et al. [28] proposed a new 

method for evaluating the resistance of PE pipes to rapid 

crack expansion at low temperatures to optimize the 

problem that the traditional evaluation method is not 

comprehensive enough. 

Also, Enrico [29] Kim et al. [30] Mohamed and 

Jawhar [31] proposed  a method for the evaluation of 

rapid crack expansion in PE pipes by analyzing the main 

causes of rapid crack expansion in PE pipes. On the other 

hand, Narayanan and Sankaranarayanan [32] 

Gafarova [33] investigated the effect of fatigue crack 

extension in HDPE pipes from the point of view of 

molecular weight distribution and proposed a possible 

link between the potential failure mechanism of cracked 

primary fibers and feed-back kinetics. Mohamed and 

Jawhar [34] Shammazov et al. [35] Jin and Eydgahi 

[36] analyzed the rapid crack expansion of polyethylene 

pressure pipes using simulation methods and proposed a 

test experiment method for testing the resistance of 

polyethylene pipes to rapid crack expansion. 

In this paper, we investigate the fast crack extension 

life prediction of PE pipe based on deep learning. Firstly, 

the theoretical basis of random forest is studied, decision 

trees are constructed based on Bagging idea, and results 

are derived by systematic voting using a classification 

model composed of multiple decision trees. Secondly, 

the method of using recursive feature elimination is 

proposed to improve for the defects of random forest, and 

the accuracy of random forest is im-proved by changing 

the node fracture rule. Then, fast crack expansion 

experiments are designed for different PE pipe sizes in 

different environments, where the special material is 

divided into PE80 and PE100, and the pipe sizes are 

divided into DN160, DN63 and DN315, and the SDR is 

fixed at 11. Finally, the experimental data were analyzed 

based on random forest with recursive feature 

elimination to study the effects of pipe size and wall 

thickness, impact knife speed and simply supported 

beam. The effects of notch impact strength on the RCP 

resistance of PE pipe were investigated. 

 

 

2. MATERIALS AND METHODS 
 

2. 1. Improved Random Forest Algorithm        The 

random forest algorithm selects CART trees as the base 

classifier, uses the Bagging algorithm to randomly select 

a subset from the original data set samples as training 

samples, and then randomly selects a subset of features 

from multiple features in the training samples, on which 

a decision tree is generated, and the classification results 

of the random forest were obtained by decision tree 

voting. In the construction of the random forest, the 

sample selection and attribute selection were obtained by 

random sampling, so it had better generalization ability. 
Random Forest (RF) is an integrated learning 

algorithm, which is essentially a combinatorial classifier 

composed by a large number of decision trees [37, 38]. 

The actual class of the random forest is obtained by 

voting from Vasiliev et al. [22] Liu et al. [39] Palaev et 

al. [40] a large number of decision trees. The random 

forest algorithm combines the random subspace idea and 

the best partitioning idea, without many restrictions in 

terms of hyperparameters, with a simple and easy to 

understand structure not easy to overfit, and can handle 

missing and unbalanced data sets very well [41-44]. Its 

model training and prediction are efficient and stable, so 

it is widely used in clustering and regression 

classification. The principle of random forest algorithm 

is shown in Figure 1. 

Random forest algorithm is a common integrated 

algorithm, which is combined by a large number of 

decision trees. The decision tree itself has poor 

classification accuracy and is a typical representative of 

weak classifiers [45-47]. The integration of weak 

classifiers together can significantly improve the 

accuracy of the overall classifier. Each decision tree of 

random forest is computed separately from different self-

help samples, and multiple decision trees are generated 

and clustered together to form a forest. The classification 

error of a decision tree is determined by the classification 

effect of different trees and the degree of correlation 

between trees [48-50]. The random forest is improved by 

splitting the nodes based on the decision tree, which 

usually selects the best feature attribute among all the 

feature attributes as the base for splitting when the nodes 

are split [51, 52], but the random forest generally selects 

some feature attributes randomly for a higher degree of 

generalization, and then performs the selection of the best 

feature attribute on this basis [53, 54]. A simple voting 

operation is applied to all the decision tree classification 

results of the random forest to derive the category results 
 

 

Raw data set

Bootstrap Sampling

  

Voting for the final results

Decision outcome 1 Decision outcome 2 Decision outcome n  

Training Subset 2Training Subset 1 Training Subset n

 
Figure 1. Random Forest algorithm principle 
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of the overall random forest, so the random forest 

classification accuracy is higher. 

The composition of the random forest follows the 

following idea: 

(1) Bagging idea: The random forest algorithm is able to 

randomly draw 2

3

  samples from the original sample set 

T to build a training subset. Each of these subsets builds 

a decision tree. Assume that to form a random forest with   

decision trees, self-help sample sets are first obtained by 

the Bagging algorithm. The data that are not drawn are 

recorded as out-of-bag data (OOB), and the 

generalization ability of the random forest is measured by 

the error. The error can reflect the classification accuracy 

and can also judge the feature importance (VIM). The  

OOB error is calculated for each decision tree, and the   

error is calculated again after randomly disrupting the 

out-of-bag data for variable ix  , and the average of the 

two differences is the VIM value of the current variable. 

Variable Xi   in the j tree of VIM  is: 

1

1
( ) ( ( ) ( ))

N
j j

i m m m m

n

VIM x I Y Y I Y Y
N



=

= = − =  
(1) 

Variable ix  in the random forest VIM  is: 

1

1
( )

N

i

p

VIM VIM x
N =

= 
 

(2) 

where N  represents the amount of observed data for the  

J tree  OOB,  OOB the m th observation,  𝑌𝑚
𝑗

 and   the 

estimated results of  m observation of the  J  tree   OOB 

before and after random swapping, and   I the two values 

are equal to 1 and unequal to 0. 

(2) Constructing decision trees.  n self-help sample sets 

generate  n classification trees each. The sample feature 

vector is M. The traditional decision tree selects the best 

features from  M feature vectors, while the random forest 

first randomly selects m (m∙ M) features from M. Each 

decision tree is split by selecting the m optimal features 

from the   feature vectors, and the classification trees are 

fully grown without pruning. 

(3) Voting for the final classification result. The random 

forest algorithm helps to improve the diversity of 

decision trees by constructing different training subsets, 

which in turn improves the accuracy of the random forest 

as a whole n   decision tree models will eventually 

produce n  classification results: 

1 2{ ( ), ( ), , ( )}ny x y x y x  (3) 

Equation (3) is a classification model system consisting 

of   n decision tree model. 

Combined classification model voting yields overall 

classification categories: 

1
( ) arg max ( ( ) )

n

ii
T x Z y x A

=
= =  (4) 

In Equation (4), A  represents the blockage fault category, 

( )iy x  represents the individual decision tree 

classification model, ( )T x  represents the combined 

classification model, and ( )Z x  represents the schematic 

function.     

A random forest can be viewed as a collection of 

classification models ( ) { ( )}H x h x=  formed by 

combining ( 1)m m   classification models 

1 2( ), ( ), , ( )mh x h x h x . The classification models are 

trained by randomly selecting subsample sets from 

sample sets ( , )D X Y , and vectors Y  are obtained by 

classifying attribute features X . The edge function is 

defined as:                                                                          

arg min( , ) ( ( ) ) max ( ( ) )m m m m
j Y

X Y av I h X Y av I h x j


= = − =  
(5) 

where ( )I func  is the indicator function, j  represents the 

vector of classification errors, and ( )mav func  represents 

the mean value. argmin( , )X Y  is the ability of the 

classifier to accurately categorize the next classified 

sample ( , )X Y  by analyzing the difference between the 

average number of votes that were correctly classified 

and the maximum number of votes for classification 

deviation. A higher value of argmin( , )X Y  indicates a 

higher confidence level of the classifier and more reliable 

classification of the classification model.                 

We expect the edge function of the classification 

model set H  to be high, which means that the number of 

correctly classified base classifiers is higher than the 

number of incorrectly classified base classifiers, i.e., 

argmin( , ) 0X Y  . However, there are situations where 

incorrect classification results are obtained. Such 

misclassified results are usually presented by the 

generalization error. The generalization error for the set 

of classification models is calculated as:                             

*

, (arg min( , ) 0)X YPE P X Y=   (6) 

where argmin( , ) 0X Y   denotes that the test sample is 

misclassified in the whole combined classifier and 

represents the probability that the sample is misclassified 

in the combined classifier. Therefore a low value of 

generalization error means that the model classifies 

better. 

According to the large number theorem and the 

structure of the decision tree itself, it is proved that the 

generalization error converges to a certain value when the 

size of the decision tree in the random forest is larger, 

satisfying Equation (7): 

*

,lim ( ( ( , ) ) max ( ( , ) ) 0)X Y
m j Y

PE P P h X Y P h x j  
→ 

= = − =   
(7) 

where m  is the random forest size,   is the random 

vector of individual classification models, and ( , )h X   is 
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the output of the classification models based on attribute 

features X  as well as  . 

As the random forest grows in size, it will gradually 

converge to a certain value without overfitting due to 

excessive increase in the decision tree. 

Definition of RF edge function: 

The classification ability of classification model set 

H  is influenced by the individual classification models, 

and the combined value of the classification results of the 

individual classification models is the classification 

performance of the entire classification model set H . The 

classification ability of classification model set H  can be 

described as the expected value of ( , )mr X Y : 

( ( , ))S E mr X Y=  (8) 

ˆ( , ) arg max ( ( , ) )
j Y

j X Y P h X j 


= =  (9) 

ˆ( , ) ( ( ( , ) ) ( ( , ) ( , )))mr X Y E I h X Y I h X j X Y  = = − =  (10) 

ˆ( , , ) ( ( , ) ) ( ( , ) ( , ))rmg x y h X Y I h X j X Y  =  = − =  (11) 

From the above equation we can derive: 

2 2( , ) ( ( , , )) ( , , ) ( , , )mr X Y E rmg X Y E rmg X Y rmg X Y   
= =  (12) 

The variance of the edge function is derived from the 

above equation: 

,var( ) cov ( ( , , ) ( , , ))X Ymr E rmg X Y rmg X Y  
=  (13) 

( , )    is the correlation between the two. represents 

the standard deviation. Therefore var( )mr  simplifies to 

Equation: 

2var( ) ( ( , ) ( ) ( )) ( ( )) ( var( ))mr E sd sd E sd E          
  =   (14) 

where   is the mean value of base classifier correlation. 

S  is the average intensity of the base classifier. The 

upper bound of generalization error *PE  can be obtained 

as: 

* 2 2(1 ) /PE S S −  (15) 

*PE A larger upper bound value indicates that more 

samples are misclassified and the overall classification of 

the combined classifier is not good. It can be seen that the 

classification accuracy of the combined classifier is 

related to the correlation between each classifier and the 

classification ability of the individual classifier itself. 

Therefore, the classification accuracy of random forest 

can be improved by reducing the correlation of decision 

trees and improving the classification accuracy of each 

decision tree. 

The classification accuracy of random forest is the 

most reliable way to verify its performance. The 

classification accuracy characterizes how well the actual 

labeled categories match the algorithm's classification 

categories. Random forest is a high-precision algorithm 

among classification algorithms, and although its 

performance varies in different datasets, it basically 

maintains in the range of 70% to 90%. 
 

 

2. 2. Improved Random Forest based on Recursive 
Feature Elimination           In this section, we perform 

the combination of RFE and random forest. First, the 

combination of random forest and RFE forms RF-RFE, 

which is able to decide the size of the final feature subset 

more rationally and avoid the influence caused by human 

factors. Recursive feature elimination (RFE) is a strategy 

to deal with the problem by combining machine learning 

methods with it in the process of each iteration to 

construct a model using the current set of features and 

evaluate the importance of the current features with the 

performance of the model. 

RF-RFE algorithm is used for feature selection, first 

use random forest algorithm to get the importance 

ranking of features, according to the principle of 

backward iteration first delete the features with the 

smallest feature importance, then the remaining features 

again use random forest algorithm to get the importance 

ranking of new features, in turn delete the features with 

small feature importance, RF-RFE feature selection 

method in the process of each iteration, will re-evaluate 

the current set of remaining features, and the score of 

each feature is adjusted during repeated iterations, 

overcoming the drawback that the feature selection result 

of single random forest needs repeated trials to get the 

feature subset, making the feature subset not only 

reliable, but also of better quality. 

When applying the RF-RFE algorithm for feature 

selection, the first is the process of random forest, using 

the bootstrap resampling method to draw multiple 

samples from the original sample, constructing a decision 

tree for each bootstrap sample, all the decision trees 

constitute a random forest, calculating the feature 

importance in the regression model, at this time, the 

backward iterative feature evaluation is introduced, and 

the features with small feature importance are removed. 

After using the random forest algorithm again to 

calculate the remaining feature importance until finally 

only one feature is left, the most feature set is selected 

according to the correlation coefficient and root mean 

square error, and the flow chart of RF-RFE algorithm is 

shown in Figure 2. 

The process of RF-RFE algorithm for feature 

selection is: 

Step 1: Assuming that the original number of data 

samples is n , bootstrap sampling is applied to randomly 

select b  subsets of samples with release, and b  

regression trees are constructed based on these subsets of 

samples, and the samples that are not drawn during each 

bootstrap sampling form b  out-of-bag data, which form 

the test sample of the random forest. 
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Figure 2. The RF-RFE algorithm flow chart 

 

 

Step 2: Let the number of variables in the original sample 

set be, select a randomly selected variable at each node 

of each regression tree as an alternative variable, and then 

select the optimal branch in it according to certain 

criteria, so that each decision tree grows to the maximum. 

Step 3: The set of 1 regression trees generated in step b  

becomes a random forest regression model, and the effect 

of the random forest regression model is evaluated using 

the mean square 
OOBMSE  of the residuals predicted using 

out-of-bag data, 
OOBMSE  which is calculated as: 

1 2

1

( )
n

OOB

OOB i i

i

MSE n y y−

=

= −  
(16) 

where, iy  is the actual value of the dependent variable in 

the out-of-bag data. OOB

iy  is the predicted value of the 

random forest for the out-of-bag data. 

Step 4: The mean decline MSE value is calculated from 

the mean square of the residuals predicted by out-of-bag 

data. The importance of the variables in the random forest 

regression can be measured by the mean decline MSE  

value, where a larger value indicates a more important 

feature. 

Step 5: After calculating the average decline MSE  value, 

the features with the smallest importance are firstly 

deleted according to the principle of backward iteration, 

and then the remaining features are repeated from steps 

1-4, and the features with small importance are gradually 

deleted until the last feature is left, and after the results 

are output, the number of features with the smallest root 

mean square error and the largest correlation coefficient 

is selected as the result of feature selection for remote 

sensing estimation of forest biomass. 

The RF-RFE algorithm for feature selection 

reevaluates the current set of remaining features during 

each iteration, and the score of each feature is adjusted 

during repeated iterations, overcoming the drawback that 

the feature selection results of a single random forest 

require repeated trials to obtain a subset of features. 

 

 

3. RESULTS  
 
3. 1. PE Pipe Rapid Crack Expansion Test            Rapid 

crack propagation (RCP) of polyethylene (PE) pipes 

refers to the phenomenon of PE pipes being subjected to 

external forces (e.g., building construction, irregular 

welding, etc.) during use and the formation of cracks 

generated by stress under the pressure of the medium 

inside the pipe (e.g., tap water, natural gas, etc.), which 

expand at a rate of several hundred meters per second 

along the length of the pipe [55, 56]. 

The fluid pressure inside the tube induces stress in the 

tube wall. The tube wall stores strain energy because it is 

in a stress-acting state. When rapid crack growth occurs 

in the light tube wall, the tube wall changes from a stress-

acting state to a stress-free state. The original strain 

energy stored in the tube wall is released for the 

production of new crack area. This means that the 

released strain energy of the tube wall acts as a crack 

driving force [44, 57]. This released energy is transported 

to the crack tip by the stress wave of the tube wall 

material. The stress wave velocity is the velocity of the 

acoustic wave within the tube wall material. 

In this paper, we obtained the influence factors 

affecting the service life of PE pipes through rapid 

extension cracking experiments, and then analyzed the 

obtained data based on RF-RFE algorithm to establish the 

life prediction method. The description of the samples of 

PE pipe special material is shown in Table 1. 

In this paper, pipe series with larger outside diameters 

and thicker walls were selected for testing, while pipe 

series Dn160 (SDR11), Dn63 (SDR11) and Dn 315 

(SDR11) were selected for comparative testing in order 

to compare the effect of different wall thicknesses and 

sizes on the rapid crack expansion of PE pipe. The 

finished pipe samples are shown in Table 2. 

Experimental steps: 

Step 1: Process the tubes in a cryogenic cabinet at 

(0±2)°C for the appropriate time according to the 

standard requirements for different thicknesses of tubes. 

 

 
TABLE 1. Samples of special materials for polyethylene pipes 

Number Special materials Molecular weight distribution 

1 PE80-1 Bimodal 

2 PE80-2 Unimodal 

3 PE100-1 Bimodal 

4 PE100-2 Unimodal 

5 PE100-3 Bimodal 
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TABLE 2. Tube samples for main test purposes 

Tube  

Raw 

material 

number 

Tube specifications 

Nominal 

diameter 

Standard 

Dimension Ratio 

number    

GS-001 1# DN65 SDR11 

GS-002 2# DN65 SDR11 

GS-003 3# DN65 SDR11 

GS-004 4# DN65 SDR11 

GS-005 5# DN65 SDR11 

GS-006 1# DN150 SDR11 

GS-007 2# DN150 SDR11 

GS-008 3# DN150 SDR11 

GS-009 4# DN150 SDR11 

GS-010 5# DN150 SDR11 

GS-011 1# DN260 SDR11 

GS-012 2# DN260 SDR11 

GS-013 3# DN260 SDR11 

GS-014 4# DN260 SDR11 

GS-015 5# DN260 SDR11 

 

 
Step 2: Fill the pipe sample with fluid (air or water, 

usually air). 

Step 3: Given test temperature and pressure. 

Step 4: An impact is made at one end of the pipe to 

initiate a rapidly propagating longitudinal crack. 

Step 5: Use the internal baffle and external locating ring 

of the test setup to limit edge expansion after cracking 

and rapid decompression before expansion (uncracked 

portion) of the sample. 

Step 6: Keep the temperature constant and change the 

pressure to find the critical point (4.7 times the OD 

length) for stopping and cracking. The higher the critical 

pressure 
4Pcs , the better the resistance of the material to 

crack expansion. 

 

3. 2. Determination of Critical Pressure           When 

the test pressure value was less than 0.8 MPa, the crack 

length increased very slowly with an increase in the test 

pressure, and the curve was relatively flat, and the crack 

length at each pressure point did not exceed 500 mm. 

After that, with an increase in the pressure, the increase 

of crack length tends to slow down again and the curve 

tends to be horizontal. This phenomenon indicates that 

there is a sudden change in the crack extension of the 

material as the pressure increases, i.e., there is a critical 

value of RCP Pc , which is the result of the tough-brittle 

transformation of the internal structure of the pipe. The 

critical pressure determination is shown in Figure 3. 

The critical pressure values for tubes GS-002 to GS-

015 can be obtained in the same way. 

The RF-RFE algorithm was used to analyze the 

experimentally obtained data, and the main factors 

influencing the RCP of PE pipe were pipe size and wall 

thickness, impact knife speed, and notched impact 

strength of the simple beam. The effect of pipe size and 

wall thickness on rapid crack expansion is shown in 

Figure 4. Under the same experimental conditions, the 

extended crack length for PE100-3 pipe is 203 mm for 

size DN260, 170 mm for size DN150 and 136 mm for 

size DN65. For PE100-2 pipe, the extended crack lengths 

for sizes DN260, DN150 and DN65 are 197, 164 and 128 

mm in that order. For different pipe specialties, the 

average crack length is 189 mm for DN260 size, 156 mm 

for DN150 size and 122 mm for DN65 size. 

The results of RCP experiments with different pipe 

sizes using the same PE pipe material show that the 

critical pressure values of the different materials differ 

greatly and the results are not related to the basic physical 

parameters such as density and melt flow rate of the PE 

pipe material. The critical pressure values of the same 

pipe material extruded with different pipe diameters 

increase as the pipe OD decreases and the wall thickness 

becomes thinner, and no RCP damage occurs at 0°C 

 

 

 
Figure 3. Critical pressure determination 

 

 

 
Figure 4. Effect of pipe size and wall thickness on rapid 

crack propagation 
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when the pipe diameter is reduced to DN63. This proves 

that the larger the outside diameter of the pipe and the 

thicker the wall, the greater the risk of RCP damage at 

low temperatures. 
 

 

4. DISCUSSION 
 

The effect of impact knife speed on crack extension is 

shown in Figure 5. For GS-001 pipe, the crack length was 

11 mm at the impact knife speed of 9 m/s and 24, 210 and 

239 mm at the impact knife speeds of 10, 15 and 20 m/s. 

For GS-003 pipe, the crack length was 17 mm at the 

impact knife speed of 9 m/s and 55, 252 and 256 mm at 

the impact knife speeds of 10, 15 and 20 m/s, 

respectively. When the impact knife speed is less than 9 

m/s, the pipe cracking does not occur any damage, and 

only when the impact knife speed is greater than 9 m/s, 

the effective impact can occur, but the crack cracking 

length does not increase rapidly with the increase of 

impact speed, and there is no obvious change of crack 

cracking length when the impact knife speed is greater 

than 20 m/s. 

A comparison of the notched impact strength and 

critical pressure values of the simply supported beam is 

shown in Figure 6. A specific feature of polymers is their 

ability to deform with respect to time under applied loads. 

So, for our samples the impact strength for the 

polyethylene pipeline was 1.021 MPa and 1.56, 1.819, 

2.029, 0.225 MPa for pipe diameters of 31.9 mm, 18.2 

mm, 17.4 mm, at an ambient temperature of 23°C. The 

impact toughness for polyethylene pipework was always 

greater than or equal to 1.8 MPa. The samples with lower 

values of notched impact strength of the simple beam also 

had lower value. The samples with the highest notched 

impact strength of the simple beam also had better RCP 

performance, which indicates that there is a relationship 

between the impact strength and RCP performance of the 

material. At the same time, the notched impact strength 

and values are not linear, for example, the impact strength 

of GS-001 is higher than that of GS-002, but the value of 
 
 

 
Figure 5. Effect of impact knife velocity on crack 

propagation 

 
Figure 6. Effect of notched impact strength of simple 

support beam on crack propagation 
 
 

GS-002 is higher than that of GS-001. This indicates that 
the notched impact strength and the critical pressure 
values of the special materials for pipes are not in 
complete correspondence. 
 
 

5. CONCLUSION 
 

The experience of operation of gas pipelines made of 

polyethylene pipes has shown high resistance of the 

material to natural gas and less resistance to lower 

resistance to gaseous propane-butane mixture. From 

exposure to the vapour phase of these gases the material 

swells, and at prolonged stay in the liquid phase, it loses 

some of its mass. This is particularly low-density 

polyethylene, which swells considerably when exposed 

to these gases. 

Like paraffins, polyethylene is inert to the action of 

many other substances, such as water, acids, alkalis. The 

active substances that that have some effect on 

polyethylene polyethylene include aromatic 

hydrocarbons (benzene, toluene, xylene), alcohols 

(methyl, ethyl), oils (vegetable, mineral, silicone), animal 

fats, inorganic oils (metal-containing oils), synthetic 

detergents. detergents. The impact of active media is 

manifested to a greater extent on polyethylene structures 

under stress. К passive substances include water, 

inorganic acids, inorganic salts, multi-atomic alcohols 

(glycerin, polyethylene, polyethylene, etc.). alcohols 

(glycerine, glycol), paraffins, etc. 

This paper analyzes the factors influencing the role of 

rapid crack expansion in PE pipe using a random forest 

algorithm with recursive feature elimination. the average 

crack length for the DN260 size is 189 mm and is within 

20 m/s, the faster the impact knife speed, the greater the 

length of the crack. There are many factors affecting the 

rapid cracking of PE pipes, mainly influenced by the 

material's own factors and external factors. 

(1) Different types of PE resin prepared pipes have 

different ability to resist rapid crack expansion, such as 

PE100 prepared pipes are better than PE80 pipes. 
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(2) The larger the diameter of PE pipe, the more likely it 

is to cause rapid crack expansion, while the effect of wall 

thickness on rapid cracking of pipe depends on the 

situation. 

(3) Under the same conditions, the higher the critical 

pressure value that the pipe can withstand, the better the 

pipe's resistance to rapid crack expansion. 

(4) The use of temperature directly affects the flexibility 

of PE pipe, and the use of PE pipe in low temperature 

conditions is more likely to cause rapid crack expansion 

of the pipe. 
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Persian Abstract 

 چکیده 
ار است. این مقاله نقش هر مرحله در  مطالعه عوامل موثر بر عملکرد لوله پلی اتیلن در برابر انبساط سریع ترک از اهمیت زیادی برای استفاده ایمن از لوله پلی اتیلن برخورد

مبتنی بر حذف ویژگی بازگشتی با تغییر قوانین تقسیم گره برای  کند و یک روش جنگل تصادفی بهبود یافته  الگوریتم را بر اساس مبنای نظری جنگل تصادفی تجزیه و تحلیل می 

کند. این روش برای تجزیه و تحلیل اثر انبساط سریع ترک لوله پلی اتیلن از نظر اندازه لوله و ضخامت دیواره، سرعت بندی تصادفی جنگل پیشنهاد می های دقت طبقهرفع کاستی 

  DN65و    DN260  ،DN150های  گی تیرهای تکیه گاه ساده استفاده می شود. در شرایط یکسان، طول ترک توسعه یافته لولهضربه چاقوی ضربه ای و مقاومت ضربه ای برید

به ترتیب. هر   m/sمتر است.  میلی  239و    210،  24و    15،  10ای  های ضربهدر سرعت   PE80های  های لولهمتر است، در حالی که طول ترکمیلی  128و    164،  197به ترتیب  

بهتر است. مطالعه گسترش ترک سریع لوله پلی اتیلن بر اساس الگوریتم یادگیری    RCPمقاومت ضربه ای بریدگی تیر ساده بیشتر باشد، مقدار فشار بحرانی بالاتر و مقاومت    چه

 برای پیش بینی عمر لوله پلی اتیلن فراهم کند.  لوله پلی اتیلن را شناسایی کرده و مبنای محکمی RCPعمیق می تواند عوامل داخلی و خارجی اصلی موثر بر مقاومت 
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