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A B S T R A C T  
 

 

Copper-based alloys are one of the most popular materials in the power distribution, welding industry, 
hydraulic equipment, industrial machinery, etc. Among different methods for the fabrication of Cu 

alloys, mechanical alloying (MA) is the major approach due to the fact that this approach is simple, 

inexpensive, suitable for mass production, and has a high capacity for homogeneous distribution of the 
second phase. However, the prediction of the hardness of products is very difficult in MA because of a 

lot of effective parameters. In this work, we designed a feed-forward back propagation neural network 

(FFBPNN) to predict the hardness of copper-based nanocomposites. First, some of the most common 
nanocomposites of copper including Cu-Al, Cu-Al2O3, Cu-Cr, and Cu-Ti were synthesized by 

mechanical alloying of copper at varying weight percentages (1, 3, and 6). Next, the alloyed powders 

were compacted by a cold press (12 tons) and subjected to heat treatment at 650˚C. Then, the strength 
of the alloys was measured by the Vickers microscopy test. Finally, to anticipate the micro-hardness of 

Cu nanocomposites, the significant variables in the ball milling process including hardness, size, and 

volume of the reinforcement material, vial speed, the ball-to-powder-weight-ratio (BPR), and milling 

time; were determined as the inputs, and hardness of nanocomposite was assumed as an output of the 

artificial neural network (ANN). For training the ANN, many different ANN architectures have been 

employed and the optimal structure of the model was obtained by regression of 0.9914. The network was 
designed with two hidden layers. The first and second hidden layer includes 12 and 8 neurons, 

respectively. The comparison between the predicted results of the network and the experimental values 

showed that the proposed model with a root mean square error (RMSE) of 3.7 % can predict the micro-
hardness of the nanocomposites.   

doi: 10.5829/ije.2023.36.10a.17 
 

 
1. INTRODUCTION1 
 

Nanocomposites and advanced materials have a 

widespread application in various fields, and based on the 

production methods, there are different generation 

strategies [1-3]. Adding alloying elements to the copper 

lattice is a common way to increase the mechanical 

properties alongside the electrical properties of copper-

based composites. In other words, copper alloys are able 

to strengthen without a major decrease in their electrical 

properties [4, 5]. The creation of a saturated solid solution 

and the nano-sized precipitations in the copper lattice is 
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a desirable method to increase the toughness, tensile 

strength, creep resistance, and thermal stability of Cu 

with negligible reduction in the electrical conductivity [6, 

7]. Except for Cu-Be, different copper-based alloys are 

being developed. Cu-Ti alloy is a striking example, 

which is a favorable alternative for Cu-Be. In general, Cu 

composites have proper strength, excellent electrical 

conductivity, high corrosion resistance, and suitable 

thermal stability [8, 9]. Likewise, each of the Cu-based 

composites has various applications. For instance, Cu–Al 

in solar powers and memory alloys [10], Cu-Al2O3 in 
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electrodes [11], Cu-Cr in fuel cells [12], and Cu-Ti in 

solar cells [13]; are being used.   

The common methods for fabrication copper 

composites including in-situ reduction [14], melting and 

casting [15, 16], electrolysis [17], hydrothermal [18], 

severe plastic deformation (SPD) [19], sol-gel [20, 21], 

accumulative roll-bonding (ARB) [22], and high-energy 

ball milling [5, 23]. Among these approaches, 

mechanical alloying is a simple, inexpensive, and 

environmental-friendly process with the uniform 

dispersion of the alloying elements and has been widely 

used for the fabrication of advanced materials and 

nanocomposites [24, 25].  

The effective parameters during the milling process 

influence various properties of Cu nanocomposites, 

especially the micro-hardness. The wrong combination 

of the MA parameters leads to an undesirable product and 

disrupts the balance between the electrical and 

mechanical properties of Cu-based nanocomposites. The 

exact determination of the micro-hardness of Cu-based 

composites results in the optimal usage of the process for 

the widespread synthesizing of copper nanocomposites.  

There are several numerical analyses for the 

prediction of desirable output and optimization of the 

process, such as ANN [26], Genetic Algorithm [5], and 

Taguchi [27, 28]. ANN owing to its high capacity for the 

classification of big data, reaching a trusted solution, and 

approaching various variables, is a powerful machine 

learning approach for the prediction of outputs [29-31]. 

This method could be used as a parallel process with non-

linear handling and adaptability which has a high 

capability to analyze various factors (noisy data) to 

predict the outputs. As a result, the artificial neural 

network is widely used in mechanical alloying owing to 

various major factors and the stochastic nature of the 

MA. The mechanism of ANN is also relatively simple 

and is based on training and then the anticipation of 

output. Nevertheless, no previous study has investigated 

a comprehensive model for the anticipation of the 

hardness of the main copper composites. 

In this study, Cu-Al, Cu-Al2O3, Cu-Cr, and Cu-Ti 

with different percentages of the reinforcement elements 

were produced by MA. Then, the generated Cu 

composites were analyzed by X-ray powder diffraction 

(XRD) and scanning electron microscopy (SEM). 

Afterward, the sintering process was carried out and the 

micro-hardness of the Cu solid solutions was investigated 

via a Vickers hardness tester. Lastly, the obtained 

hardness data were used to design an ANN for predicting 

the micro-hardness of Cu-nanocomposites.  

 

 

2. ANN MODELING 
 

ANN is based on the intelligent creatures learning 

procedure containing interrelated cells called nodes or 

neurons. They are the basic computational units that are 

linked together through the signals. The signals aggregate 

into layers and signal transmission between input and 

output is performed several times [32]. ANN is 

constructed of the input, hidden, and output layers. The 

learning process of a neural network includes regulating 

the neuron’s bias, altering the weights, and output 

normalization via the transfer functions. The process of 

the training process will be extended till the ANN 

network reach near the favorable output and attain a 

reasonable percentage error.  

The mathematical equation of an artificial neural 

network is able to be extracted from the mentioned 

component including biases, weights, transfer functions, 

and neurons. The connection between neurons is defined 

by Equation (1):  

𝑥 = ∑ 𝑤𝑖𝑥 + 𝑏 
𝑝
𝑖=1   (1) 

where x is the output and 𝑝 is the number of components 

in the layer. 𝑤𝑖𝑥  and b are the weight and bias, 

respectively.  
 

 

3. EXPERIMENTAL 
 

High-purity flakes of copper, chromium, aluminum, 

alumina, and titanium were chosen as the precursors. 

Specimens with different weight percentages of the 

second phase (1, 3, and 6) were mechanically alloyed in 

a planetary ball mill under the Argon. Two sizes of balls 

(15 and 10 mm in diameter) were used and BPR was kept 

at 15:1. The primary raw material was copper powders 

(15 g). Cu-Al and Cu-Al2O3 were milled for 40 h and the 

activation time for Cu-Ti and Cu-Cr was 90 h at a vial 

speed of 350 rpm. The selection of milling times was 

based on the experience of similar studies for the creation 

of the solid solution of Cu alloys.  

A Philips X’PERT MPD (Cu-Kα) was used to 

analyze the crystallographic structures of samples. 

Morphology and size of Cu particles were studied by 

SEM (Cam Scan mv2300). For the annealing of the 

specimens, the alloying powders were molded to a 

thickness of 1 mm and a diameter of 1 cm. 1.4 g of 

samples were have been pressed by an automatic powder 

cold press machine (12 tons). The annealing process was 

applied in a simple heat treatment oven for 30 minutes at 

650˚C under Argon atmosphere. The Vickers hardness 

testing was carried out as stated in the ASTM 

International Standards (E-348-89) and hardness was 

monitored by an impression of a load (98.7 mN) which is 

applied smoothly for 5 s at high magnification.  
 

 

4. RESULTS AND DISCUSSION 
 

The XRD patterns of Cu-based solid solutions after the 

mechanical alloying are shown in Figure 1. It is very 



1934                                 R. M. Babaheydari et al. / IJE TRANSACTIONS A: Basics  Vol. 36 No. 10, (October 2023)   1932-1941 

 

significant to confirm the creation of XRD patterns of 

Cu-based solid solutions. In the MA process, all of the 

particles are rigorously distorted through the collision of 

the balls which causes a rise in the atomic diffusion and 

regional temperature [33]. The solubility of alloying 

elements in Cu is increased by raising the temperature. 

Simultaneously, the concentration of crystallographic 

defects (dislocations, stacking faults, and vacancies) was 

significantly developed throughout the MA. 

Consequently, the flakes become work-hardened after a 

while, and the width of peaks was also enhanced by the 

rise in the work-hardening of the micro-strain [9]. 

Growth in weight percentage of the second phase brings 

on the height reduction and width broadening of the XRD 

profiles, as well as, peaks shifting to lower angles (except 

Cu-Al2O3). Chromium, titanium, and aluminum have a 

larger atomic size than Cu. Thus, the disintegration of the 

reinforced materials and increasing concentration in the 

copper lattice rise the lattice constant of copper and move 

the X-ray diffraction patterns to the left. The non-

movement of the major peaks of Cu in the XRD patterns 

of Al2O3 illustrates that the particles of alumina were not 

dissolved within the copper lattice.  
The morphology of the samples is depicted in Figures 

2-5. The particle size of Cu-Al alloys is declined by 

proportion enhancement in Al2O3. Generally, particles 

are soft at the start of the MA, although, they were welded 

together and tend to agglomeration during the 

mechanical alloying [34]. The reduction of powder 

particle size of Al2O3 follows two distinct mechanisms. 
 

 

 
Figure 1. XRD of Cu-Al (a), Cu- Al2O3, Cu-Cr, and Cu-Ti 

nanocomposites prepared by MA 

 

 

First, through incorporating the Cu particles. Second, 

by increasing the strain of the lattice via fracturing the  
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Figure 2. SEM images of Cu-Al alloys with 1, 3, and 6 

weight percentages 
 

 

 

 

 
Figure 3. SEM images of Cu-Al2O3 samples with 1, 3, and 

6 weight percentages 

alumina particles during the milling process. Therefore, 

the crisp particles of Al2O3 are broken and become 

smaller by rising the work hardening [35]. 

The long milling time due to high cold working (90 

h) results in the dissolution of chromium in the copper 

matrix. Moreover, the dissolution of Cr in the structure 

was increased at high chromium proportions, thereby 

fracturing and crisping of Cu parties were performed. In 

addition, intense work-hardening leads to the formation 

of micro-cracks and motion-less dislocations, because of 

the BCC crystallographic structure of Cr. The other 

micro-cracks will be created at the margin of the 

particles. Cr powders will be spread in the matrix and 

induce these micro-cracks to develop and open [36]. So,  

 

 

 

 

 
Figure 4. SEM images of Cu-Cr alloys with 1, 3, and 6 

weight percentages 
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it can be assumed that the higher percentage of chromium 

results in the smaller Cr composite particles at the same 

activation time. Finally, fine and uniform morphology is 

acquired by repeated fractures.  

Likewise, the particle size distribution of copper-

titanium alloys is reduced and they also became 

agglomerated because of the long activating time (90 h) 

and creation of a balance between fracture and cold 

welding. The hexagonal close-packed (HCP) crystal 

structures of Ti particles are trapped between Cu powders 

with the face-centered cubic (FCC) structures, which 

have a more quick work-hardening than Cu [37]. At the 

current step, the higher fragile Ti powders are spread into 

the smoother Cu powders and they generate small cracks 

in their margins which significantly decreases the 

mechanical properties of the composites [36].  

Figure 3 shows SEM images of Cu-Al2O3 samples 

with 1, 3, and 6 weight percentages. SEM images of Cu-

Cr alloys with 1, 3, and 6 weight percentages is shown in 

Figure 4. Also, Figure 5 depicts SEM images of Cu-Ti 

alloys with 1, 3, and 6 weight percentages. 

The micro-hardness of the products after the heat 

treatment is represented in Figure 6. Cu-1wt%Al2O3 and 

Cu-6wt%Ti had the lowest and highest micro-hardness, 

respectively. It is worth noting that the inserted forces 

during the pressing stage did not cause a major change in 

the hardness of specimens. This is  because of an 

extensive cold hardening of the particle during the 

process [36].  

The number of vacancies and dislocations declined 

significantly after the annealing procedure. This process 

is similar to solid solutions, which decomposed after the 

heat treatment step [38]. Hence, porosity, grain 

boundaries, and particles of alloying elements are the 

main reasons for residual resistivity. 

By enhancement in the percentage of the second 

phase, the hardness of all Cu-based composites was 

raised. As mentioned previously, the enhancement 

volume of alloying elements causes a boost in the lattice 

constant and strength of nanocomposites. A higher 

proportion in reinforcement materials, richer solid 

solution, and a higher density of dislocations result in Cu 

cold working and as a result, micro-hardness of the 

composites was improved. On the one hand, a high 

amount of coherent precipitates will be created because 

of the high content of a solid solution in aging. On the 

other, defects create favored areas to precipitate. 

Therefore, generated precipitates inhibit the 

recrystallization and recovery. 

Ti has low solvability in Cu at ambient temperature 

(less than 0.1% of atomic weight) [39]. During the MA 

process, the density of Ti in the Cu lattice is raised and 

attained a balance status. The created Ti super-saturation 

in the copper matrix via mechanical alloying and 

sintering presents an appropriate condition for the 

fabrication of Ti with a nano-scale structure. 
 

 
Figure 5. SEM images of Cu-Ti alloys with 1, 3, and 6 

weight percentages 

 

 

Subsequently, the creation of the rich titanium particles 

in the Cu lattice at the annealing stage coincides with the 

recovery and recrystallization. This phenomenon 

frequently ceased the softening procedure. Formed Cu4Ti 

at the beginning steps of heat treatment is in the shape of 

uniform nanostructures [40]. The mentioned precipitates 

are produced inside the grain boundaries [41] and they 

act as obstacles to dislocation movements. As a result, 

they will delay recovery and recrystallization, and the 

micro-hardness of nanocomposites will be increased.  

Similar to Cu-Ti, the mentioned hardening 

mechanism is valid for Cu-Cr and Cu-Al alloys and so 
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the second phase rises the heat of recrystallization and 

postpones the recrystallization and recovery. Uniform 

precipitation of copper-chromium and copper-aluminum 

that was created at the aging step, causes the halt of re-

crystallization and rises the strength. The maximum 

hardness in copper-based composites is achievable if all 

of the effective variables in the milling and annealing 

steps are performed accurately. Figure 7 indicates the 

schematic diagram of the ideal Cu-based nanocomposites 

with homogenous dispersion of nano-sized particles in 

the grains.  
 

4. 1. ANN Architecture             There is no general rule 

to determine the minimum or the maximum number of 

required datasets in an ANN network [42]. However, it 

seems the model needs a reasonable number of data to 

avoid under-training or over-training. Here, 12 and 85 

data were used for verification and training of the model, 

respectively.  
FFBPNN was used for the learning module. Feed-

forward back propagation neural network is a specific 

type of ANN with many capabilities to attain favorable 

outcomes and is extensively applied in the MA to 

participate in major variables in previous works [43-45]. 

There are two steps per turn of the process in FFBPNN. 
 
 

 
Figure 6. The micro-hardness of the Cu-based composites at 

different weight percentages of alloying element 

 

 

 
Figure 7. Schematic illustration of an ideal nano-dispersed 

of the second phase particles to achieve the maximum 

strength in the Cu-based nanocomposites 

First is the specification of a random number for all 

weight factors which is the feed-forward. Next, altering 

the weights to reach the outcome with lower error and 

closer to the actual quantity which is the back-

propagation. The cycle is done frequently till the 

outcome of the model reaches the closest actual value for 

all of the training data [46, 47].  

Basically, there is no straightforward way to optimize 

the structure of an ANN model [29]. For the effective 

function of the network, various learning architectures 

have been applied to assess the structure of the network 

during the learning step. The created model includes two 

hidden layers with input and output layers. The hidden 

layers include 12 and 8 neurons in the first and second 

layers, respectively. Input parameters were the hardness, 

volume, and size of reinforcements, BPR, speed and time 

of ball-milling, and the initial size. As well as, the 

hardness of the nanocomposite was the output. Figure 8 

shows the graphical abstract of the designed ANN.  

In order to compute the regression, the finite element 

method and the trained model were applied. The 

regression is illustrated in Table 1. Regarding the 

regression, “Tansig”, “Purelin”, and “Logsig” are the 

finest functions for the hidden layers (1st and 2nd) and 

output layer, respectively (number 10). Obviously, trial 

and error do not follow a general pattern. As a result, it 

needs to train the network several times to reach an 

acceptable error without any specific approach. The trial 

and error strategy is used vastly in other similar studies 

in order to find a more suitable network structure and 

decrease the regression [48, 49]. 

To design the network, MATLAB (2014) owing to its 

user-friendly was used. Moreover, the Levenberg–

Marquardt algorithm due to rapid training ability was 

employed for training the model. In addition, the log-

sigmoid activation function was utilized as the transfer 

function. This is a non-linear and S-shaped function 

which is defined according to Equation (2):    

𝑓(𝑥) =
1

1+𝑒−𝑥                                                                   (2) 

The collected data had been normalized and 

homogenized (0.1-0.9) according to Equation (3): 

N = 0.8 (
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
) + 0.1                    (3) 

RMSE is defined as the standard deviation of the 

differences between the actual and predicted values. 

Here, the RMSE of the model was calculated using 

Equation (4):   

RMSE =
1

N
∑ (

|True value−Predicted value|

True value
× 100)N

1          (4) 

 

4. 2. ANN Results               Regression analysis was 

performed for testing the precision of the designed 

network. Figure 9 illustrates the result of the regression 

analysis. Based on Figure 9, the general regression is 
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Figure 8. Architecture of the designed ANN 

 
 
TABLE 1. The values of regressions for different ANN 

structures 

Regression 

(R2) 

Nodes in 

hidden layers 
Transfer function 

No. 
Layer 

one 

Layer 

two 

Output 

layer 

Hidden layers 

Layer 

one 

Layer 

two 

0.8843 12 16 Tansig Tansig Tansig 1 

0.7634 7 12 Purelin Logsig Tansig 2 

0.6674 5 3 Tansig Logsig Logsig 3 

0.4219 5 7 Logsig Logsig Logsig 4 

0.7396 6 9 Purelin Logsig Logsig 5 

0.5732 7 3 Logsig Tansig Logsig 6 

0.9318 12 16 Tansig Tansig Tansig 7 

0.8843 7 12 Purelin Logsig Tansig 8 

0.7634 5 3 Tansig Logsig Logsig 9 

0.9914 8 12 Logsig Purelin Tansig 10* 

*Best ANN structure 

 

 

0.9914. The result of the regression graph shows that 

there is a good fit between experimental hardness and 

predicted hardness. Therefore, the network model is 

prepared to anticipate the micro-hardness of copper 

composites with a reasonable percentage of error. 
For verification of the generated model, a comparison 

between experimental and predicted data was performed. 

The error of the network was calculated by 3.7% 

regarding Equation (4). Table 2 indicates the actual and 

anticipated values for the micro-hardness of the different 

Cu nanocomposites. The validation results confirm that 

created network is reliable and with high accuracy 

anticipates the experimental values of the micro-

hardness. As a consequence, it can be assumed that the 

designed ANN could predict another similar study with 

such high reliability and approximation. Additionally, the 

created model results in a more proximate evaluation of 

lab-based works, due to several major variables in  
 

 
Figure 9. The regression of the ANN model 

 

 
TABLE 2. Comparison of the actual and predicted values for 

different Cu-based nanocomposites  

Experimental Micro-

Hardness (HV( 

Anticipated Micro-

Hardness )HV) 
Samples 

169 171 Cu-1wt%Al 

185 183 Cu-3wt%Al 

228 232 Cu-6wt%Al 

78 89 Cu-1wt%Al2O3 

133 143 Cu-3wt%Al2O3 

141 153 Cu-6wt%Al2O3 

209 210 Cu-1wt%Cr 

218 219 Cu-3wt%Cr 

229 228 Cu-6wt%Cr 

170 175 Cu-1wt%Ti 

276 276 Cu-3wt%Ti 

312 293 Cu-6wt%Ti 

 

 

mechanical alloying and the complexity of coordinating 

and launching them.   

 
 
5. CONCLUSION  
 
1. The morphology of Cu-based alloys was 

fundamentally different from each other and tends to 

be smaller particles via the rising volume of the 

reinforcement materials. Adding Al2O3 to the Cu 

matrix forms a sheet-like morphology; while adding 

aluminum, chromium, and titanium leads to 

homogeneous morphology in Cu-based composites  . 

2. The hardness of the alloys was raised via the 

enhancement in the percentage of the second phase. 

Al2O3 and Ti had the lowest and highest impact on 

the micro-hardness, respectively. 



R. M. Babaheydari et al. / IJE TRANSACTIONS A: Basics  Vol. 36 No. 10, (October 2023)   1932-1941                                 1939 

 

3. The FFBPNN with 12 and 8 neurons in the first and 

second hidden layers, respectively, is an efficient 

approach for the anticipation of the microhardness of 

Cu nanocomposites produced via mechanical 

alloying.  

4. To design a reliable ANN architecture, “Tansig”, 

“Purelin”, and “Logsig” are the favourable 

activation functions for the hidden layers (1st and 

2nd), and output layer, respectively.  

5. RMSE of the proposed network for prediction of the 

micro-hardness of Cu nanocomposites was 3.7%.  
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Persian Abstract 

 چکیده 
وش های مختلف  های بر پایه مس یکی از پرطرفدارترین مواد در توزیع برق، صنعت جوش، تجهیزات هیدرولیک، ماشین آلات صنعتی و غیره می باشند. در میان رنانوکامپوزیت

است و ظرفیت بالایی برای توزیع همگن فاز دوم   که این روش ساده، ارزان، مناسب برای تولید انبوه .رویکرد اصلی است (MA) برای ساخت آلیاژهای مس، آلیاژ مکانیکی 

 (FFBPNN) خوردر این کار، ما یک شبکه عصبی انتشار برگشتی پیش  .به دلیل وجود پارامترهای مؤثر بسیار دشوار است MA بینی سختی محصولات دربا این حال، پیش .دارد

با   Cu-Ti و Cu-Al  ،Cu-Al2O3  ،Cu-Cr های مس از جملهترین نانوکامپوزیت ابتدا، برخی از رایج .های مبتنی بر مس طراحی کردیمبینی سختی نانوکامپوزیت برای پیش 

 650تن( متراکم شده و تحت عملیات حرارتی در دمای   12سپس پودرهای آلیاژی توسط پرس سرد ) .( سنتز شدند6و    3،  1آلیاژ مکانیکی مس در درصدهای وزنی متفاوت )

های مس، متغیرهای مهم بینی ریزسختی نانوکامپوزیت در نهایت، برای پیش .سپس استحکام آلیاژها با تست میکروسکوپ ویکرز اندازه گیری شد .نددرجه سانتیگراد قرار گرفت

ن ورودی تعیین شد و سختی و زمان آسیاب؛ به عنوا (BPR) کننده، سرعت ویال، نسبت وزنی توپ به پودرای شامل سختی، اندازه و حجم مواد تقویتدر فرآیند آسیاب گلوله

برای آموزش شبکه عصبی مصنوعی، بسیاری از معماری های شبکه عصبی مصنوعی مختلف   .در نظر گرفته شد (ANN) نانوکامپوزیت به عنوان خروجی شبکه عصبی مصنوعی

 8و    12لایه پنهان اول و دوم به ترتیب شامل   .خفی طراحی شده استاین شبکه با دو لایه م .به دست آمد  9914/0به کار گرفته شده است و ساختار بهینه مدل با رگرسیون  

نتایج پیش  .نورون است بین  میانگین مربعات خطابینیمقایسه  با ریشه  پیشنهادی  نشان داد که مدل  تواند ریزسختی  درصد می 3.7 (RMSE) شده شبکه و مقادیر تجربی 

 .بینی کندها را پیش نانوکامپوزیت
 


