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A B S T R A C T  
 

 

The failure of shear-type beam-column joints in reinforced concrete (RC) frames during severe 

earthquake attacks is a critical concern. Traditional methods for determining joint shear capacity often 

lack accuracy due to improper consideration of governing parameters, impacting the behaviour of these 
joints. This study assesses the capabilities of machine learning techniques in predicting joint shear 

capacity and failure modes for exterior beam-column joints, considering their complex structural 

behaviour. An artificial neural network (ANN) model is proposed for predicting the shear strength of 
reinforced exterior beam-column joints. ANN, a component of artificial intelligence that learns from past 

experiences, is gaining popularity in civil engineering. The ANN model is developed using a dataset 

comprising material properties, specimen dimensions, and seismic loading conditions from previous 
experimental investigations. The model considers twelve input parameters to predict shear strength in 

exterior beam-column joints. Training and testing of the ANN model are conducted using established 

design codes, empirical formulas, and a specific algorithm. The results demonstrate the superiority of 
the proposed Shallow Feed Forward Artificial Neural Network (SFF-ANN) compared to previous 

approaches. The effectiveness of an Artificial Neural Network (ANN) model was quantitatively assessed 

in this study, with a focus on its performance in comparison to various design codes commonly used in 
structural engineering. The model was assessed using the coefficient of determination (R2) and achieved 

R-squared values of 99%, 94%, and 98% during the training, testing, and validation stages, respectively. 

The study highlights the significance of beam reinforcement as a key element in estimating shear 
capacity for exterior RC beam-column connections. Although the proposed models exhibit a high degree 

of precision, future research should focus on developing improved models using expanded datasets and 

advanced algorithms for enhanced pattern recognition and performance. 

doi: 10.5829/ije.2024.37.01a.07 
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1. INTRODUCTION 
 

Beam-column joints are vital components of reinforced 

concrete moment resisting frames (RCMRF), and they 

are particularly susceptible to seismic loads as failure in 

these joints can result in the collapse of the entire 

structure (1). Extensive investigations following 

earthquakes have emphasized the significance of beam-

column joints as they significantly influence the overall 

seismic performance of reinforced concrete (RC) frames 

(2). Beam-column joints play a crucial role in 

maintaining the structural integrity of the system. 

However, during strong seismic events, these joints may 

experience large deformations, leading to a reduction in 

their capacity to carry lateral and gravity loads. This can 

result in partial damage or even the complete collapse of 

the structure (3). In modern building design, joint shear 

failure is a common type of failure observed in beam-

column joints.  

This failure mode often occurs because the joints 

were not designed to withstand the anticipated loads 

based on the capacity design principles recommended in 

contemporary seismic codes. Shear failure in beam-

column joints, even at relatively low deformations, is a  

brittle failure mode that can potentially trigger a 

building's collapse (4). Given the critical role of beam-

column joints and their vulnerability to seismic forces, it 

is imperative to properly design and reinforce these joints 

to ensure the overall safety and integrity of structures in 

seismically active regions. 

Determining the dimensions of the strut and cut-point 

regions, which are crucial for predicting the shear 

strength of beam-column joints, presents a significant 

challenge when using the Strut and Tie Model (STM) (5). 

The shear strength of the joint plays a vital role as the 

beam-column joint can become a weak link if it is not 

adequately considered. Previous research has employed 

various individual-type machine learning (ML) 

algorithms, such as ANN-PSO, SVM, XGBoost, and 

decision trees, for predicting the shear strength of 

reinforced concrete joints (6). Among these techniques, 

ANN, GEP, and fuzzy logic-based evaluations of cement 

strength have shown promise as efficient ML-based 

prediction techniques for engineering structures (7). 

The resisting mechanisms provided by the beam-

column joint are fundamental in enabling RC-framed 

buildings to withstand seismic excitations (8). In 

predicting the shear strength of RC joints, the 

deformation of Type 2 joints indirectly informs the 

prediction of member shear strength and follows the 

conservative approach recommended by ACI 352-R02 

(9). Before the adoption of "earthquake-resistant" 

structural design in the late 1970s and early 1980s, many 

buildings were primarily designed to carry gravity loads, 

lacking sufficient shear strength, flexural capacity, and 

flexibility to resist strong seismic ground motions (10). 

In the design and seismic analysis of tall structures, 

lateral load-resisting systems like RC shear walls are 

commonly utilized. Accurately predicting the capacity of 

these systems is a critical aspect of the design process 

(11). Predicting the capacity becomes complex due to the 

reinforcement characteristics of concrete and the 

interactions between flexure and shear. Furthermore, the 

response of the structure during seismic activity can 

influence the behaviour of the joint (12). 

The limited lateral force-carrying capacity of beam-

column joints is influenced by the material properties 

used during the structure's construction, which in turn 

impact the overall response of the structure (13). To 

ensure structural safety and prevent shear failure, it is 

crucial to accurately forecast the shear strength of RC 

beam-column joints in the design process (14). With the 

advancement of Artificial Intelligence in recent years, 

there has been a paradigm shift towards applying 

machine learning (ML) methods for predicting the shear 

strength of beam-column joints (6). As part of this trend, 

the present research aims to analyze the shear strength 

prediction of beam-column joints using a neural network 

tool in MATLAB. 

 

 

2. LITERATURE SURVEY 
 
For the forecast of outer beam-column joint shear 

capacity, Alagundi and Palanisamy (2) proposed using an 

artificial neural network. The simulations show that the 

suggested model of the neural network can predict the 

Exterior Beam-Column joint’s shear strength. There are 

three effective artificial neural network methods, radial 

basis function neural network (RBFNN), back-

propagation neural network (BPNN) and generalized 

regression neural network (GRNN) Zhang et al. (15) 

suggested identifying the failure modes and shear 

strengths. With the results, the testing and training phases 

are compared, which prove that both GRNN, BPNN and 

RBFNN models are powerful approaches for predicting 

the mode of failure and shear strength. By using ANN, 

Gene Expression Programming (GEP) and Network-

Based Group Method of Data Handling (GMDH-NN) 

Naderpour et al. (16) predicted shear strength. The 

simulation confirms the ability of the patterns expected 

by, GMDH-NN, GEP and ANN which are appropriate 

for use as a tool in forecasting the concrete shear walls 

with high accuracy and shear strength. For the forecast of 

shear strength an artificial neural network model was 

proposed by Alagundi and Palanisamy (17) in the Joint 

of reinforced concrete exterior BC joints are themed to 

seismic loading; thus, the proposed ANN model can be 

used. For estimating the reinforced concrete shear 

strength, the beam-column is subordinated to regular load 

Marie et al. (6) proposed a framework. The simulation 

also reveals that the shear strength of the joint was 
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predicted by using the Kernel regression, where the 

experimental values are closer than the joint shear 

strength which is predicted by using the parametric 

equation. Detailed methodologies and discussions of the 

two disciplines were presented by Marcos and Silva (3). 

Powerful digital technologies and computer systems 

showed dominance by presenting the regression and 

performance analysis through different trained neural 

network models.  

To determine the RC beam-column joints stochastic 

shear strength Yu et al. (18) employed, the GPR 

algorithm. The simulations show that the kernel can 

efficiently enhance the generalization performance and 

prediction accuracy of the GPR Truong et al. (19) 

presented the Bayesian optimization (BO), BO-XGBoost 

hybrid model and extreme gradient boosting (XGBoost) 

algorithms was made and its hyperparameters were 

improved based on a collection of data of 320 test 

specimens. The suggested model exposed that the beam 

width, effective depth, tension reinforcement ratio, shear 

span-to-depth ratio and concrete compressive strength 

are crucial to the deep beams' shear strength. Zayan et al. 

(20) presented the ANN model offered a more accurate 

tool to compute R and capture the impacts of five primary 

parameters: steel reinforcement ratio, concrete 

compressive strength steel yield strength, steel fibre 

aspect ratio fibre and volumetric ratio given from trial 

data. The gathered results show that the first significant 

argument is the compressed power of the concrete. Al-

Bayati (21) introduced a numerical pattern for the 

calculations of shear strength in the exterior and interior 

reinforced concrete beam-column joints that are 

subordinated to seismic loads. The results of 110 

exteriors and 105 interiors of beam-column joints 

gathered from the literature, the fresh pattern is gauged. 

This research study contributes to the shear strength of 

the beam-column joint and its prediction using artificial 

neural networks. 

Mabrouk et al. (22) evaluate the effect of using 

different shear reinforcement details on the punching 

shear behaviour of interior slab column connections. A 

comprehensive experimental program is conducted on 

sixteen specimens having the same concrete dimensions 

of 1100×1100×160 mm where the slab depth is chosen to 

be less than that stipulated by different design codes. The 

parameters under examination were the type of shear 

reinforcement arranged in a cross shape perpendicular to 

the column edges (single leg, multi-leg, and closed 

stirrups), the spacing between stirrups (25 and 50 mm), 

and the extended length covered by the stirrups (300 and 

425 mm). Experimental results showed that slabs 

reinforced with multi-leg or closed stirrups, even for 

slabs with a thickness of 160 mm, had an increase in the 

shear capacity by up to 40% depending on the stirrup 

amount. A noticeable enhancement in ductility was also 

observed. 

Singh and Sangle (23) presented a nonlinear static 

response of a vertically oriented coupled wall subjected 

to horizontal loading. The 3-storey vertically oriented 

coupled wall interconnected with coupling beams is 

modelled as solid elements in a finite element (FE) 

software named Abaqus CAE and the steel reinforcement 

is modelled as a wire element. For the simulation of 

concrete models, a concrete damaged plasticity 

constitutive model is taken into consideration in this 

research. Moreover, with the help of concrete damage 

plasticity parameters, the validation of two rectangular 

planar walls was executed with an error of less than 10%. 

Finally, these parameters are used for modelling and 

analyzed the static behaviour of coupled walls connected 

with coupling beams. Furthermore, the maximum 

unidirectional horizontal loading helped in obtaining the 

compression and tensile damage as well as scalar 

stiffness degradation. 

Sfaksi et al. (24) concern a numerical study of the 

behaviour of reinforced masonry (RM) structures under 

seismic loading. These structures are made of small 

hollow elements with reinforcements embedded in the 

horizontal joints. They were dimensioned according to 

the rules and codes commonly used. They are subject to 

vertical loads due to their weight and to horizontal loads 

due to seismic forces introduced by the accelerograms. 

The software used is the non-linear analysis program 

Drain2D, based on the finite element method, where the 

shear panel element was introduced. A series of 

calculations were performed on several structures at 

different levels, excited by three major accelerograms (El 

Centro, Cherchell, and Kobe). Throughout the study, our 

main interest was to evaluate the behaviour factor, 

ductility, and failure mode of these structures while 

increasing the intensity of earthquakes introduced. The 

results of this present study indicate that the average 

values of the behaviour factor and the global ductility 

were of the order of q≈μ≈3.00. The reinforced masonry 

structures studied have been broken by interstage 

displacement. 

The literature review provides valuable insights into 

the use of various techniques for predicting shear strength 

in beam-column joints. Several authors have proposed 

the application of artificial neural networks (ANN) to 

forecast the shear strength of exterior beam-column 

joints (2, 17). Different types of ANN models, including 

radial basis function neural network (RBFNN), back-

propagation neural network (BPNN), and generalized 

regression neural network (GRNN), have shown 

promising results in predicting failure modes and shear 

strengths. Furthermore, other researchers have explored 

the effectiveness of machine learning algorithms such as 

gene expression programming (GEP) and network-based 

group method of data handling (GMDH-NN) in 

predicting shear strength (16). The application of these 

techniques, along with ANN, has demonstrated high 
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accuracy in forecasting concrete shear walls and their 

shear strength. 

Additionally, studies have utilized techniques like 

kernel regression, Bayesian optimization (BO), and 

extreme gradient boosting (XGBoost) to determine the 

stochastic shear strength of RC beam-column joints (3, 6, 

18, 19). These techniques have shown improvements in 

prediction accuracy and generalization performance. 

Moreover, the use of artificial neural networks (ANN) 

has proven to be an accurate tool for computing shear 

strength, considering various parameters such as steel 

reinforcement ratio, concrete compressive strength, steel 

yield strength, steel fibre aspect ratio, and volumetric 

ratio.  

Furthermore, studies have examined the behaviour of 

vertically oriented coupled walls under horizontal 

loading (23). Nonlinear static response analysis, 

incorporating concrete damaged plasticity constitutive 

models, has been conducted to assess the behaviour of 

these structures. The analysis includes the evaluation of 

compression and tensile damage, as well as scalar 

stiffness degradation. Lastly, a numerical study explores 

the behaviour of reinforced masonry structures under 

seismic loading (24). The study investigates the effects of 

vertical and horizontal loads on these structures, with a 

focus on behaviour factors, ductility, and failure modes. 

Results indicate that the average values of the behaviour 

factor and global ductility are approximately 3.00, and 

the reinforced masonry structures exhibit failure due to 

interstage displacement. 

In conclusion, the literature review presents a diverse 

range of approaches and techniques employed to predict 

shear strength in beam-column joints and analyzed the 

behaviour of related structural elements. These studies 

contribute to the advancement of knowledge in this field 

and provide valuable insights for designing safer and 

more resilient structures. 

 

 
3. RESEARCH PROBLEM DEFINITION AND 
MOTIVATION 
 
Flexural strengthening garnered the majority of attention 

than shear strengthening in RC beams and it has received 

very little research. Particularly dangerous are structures 

exhibiting brittle failure to shear force. Shear, a sudden, 

unexpected structural collapse mechanism is mostly 

caused by this. Deep beams are subject to shear force, 

which has a shear span to effective depth proportion (a/d) 

smaller than two. The behaviours of a deep beam exposed 

to vertical static stress differ significantly from those of a 

narrow beam in both the analytical approach and design. 

Because of the fast and brittle fracture of RC beams 

caused by shear action and the absence of logical design 

formulas in building regulations, the behaviour and 

design of RC beams under shear remain a source of worry 

for structural engineers. 

The deformations that beam-column connections 

experience under earthquake loading have a substantial 

impact on the seismic behaviour of reinforced concrete 

structures. Some locations fail before they should under 

powerful earthquakes if they are not properly planned. 

The researchers show several variables, such as column 

and beam dimensions, joint transverse reinforcement 

yield strength, concrete compressive strength, volumetric 

joint reinforcement ratio, beam longitudinal 

reinforcement ratios, beam eccentricity, and column axial 

load, affect joint shear strength. The shear strength of 

joint elements makes it challenging to forecast the 

connection between beams and columns. Machine 

learning (ML) approaches are being used to forecast the 

beam-column joint’s shear strength of connections as a 

result of the recent advancements in AI. Shear strength is 

crucial while applying ML to forecast joints. Based on 

the outcomes of earlier experiments, the most crucial 

variables that impact shear strength joint were selected to 

develop a parametric equation to predict joint shear 

strength. 
 

The Objective of the Study  

• To study how different parameters impact beam-

column joints' shear strength.  

• To prepare data from pre-existing literature to model 

a neural network in MATLAB.  

• Using prepared data Neural Network Model was 

trained and tested in MATLAB.  

• To compare the analytical results extracted from 

MATLAB with experimental results from Pre-

Existing Literature. 

 

 

4. PROPOSED RESEARCH METHODOLOGY 
 

Failure in shear is a sort of brittle failure with no warning 

signs, hence numerous studies have been conducted in 

the literature. To reduce shear failure in design 

techniques and preserve structural safety, it is crucial to 

properly forecast the strength of the RC beam-column 

connections. This problem can be resolved by using ML 

techniques, such as ANNs, as reliable modelling tools for 

calculating the shear strength of the joint and its 

connections in the beam-column. ANNs give patterns for 

a variety of artificial and natural phenomena, many of 

which are difficult to model using conventional 

parametric techniques. Consequently, the article 

proposed using Artificial Neural Network (ANN) with 

Shallow Feed-Forward (SFF) architecture for estimating 

the strength of exterior RC beam-column connections 

was subsequently proposed in the article. The block 

diagram of the proposed method is shown in Figure 1. 
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Figure 1. Block Diagram of the Proposed Work 

 

 

A better understanding of the variables influencing 

the shear strength joint of connections in beam-column 

can be achieved by using machine learning analysis to 

look into the significance of input variables. This could 

result in the recommendation of useful potential methods 

for exploratory studies and the facilitation of lab 

experiments. The provisions for estimating joint shear 

strength for the six national codes viz., EN 1998-1:2004 

(European Code EC-8), CSA A3.3:2004 (Canadian 

Code), IS 13920:2016 (Indian Code), NZS 3101-1:2006 

(New Zealand Code), ACI 318-14 (American Code), and 

AIJ:2010 (Japanese Code) have been compared and 

evaluated in the current study using 13 experimental 

findings gathered from the literature. The 

aforementioned codes recommend different limitations 

on the parameters viz. confinement of joint by the 

effective joint depth, eccentricity between beam and 

column, beams, concrete compressive strength, and 

effective joint width. An investigation of the parameters' 

effects on joint shear strength revealed significant 

discrepancies between the code projections. The 

methodology equates forecast joint shear strength values 

with known experimental results to provide a credible 

design strategy. 

 

4. 1. Experimental Program        The primary objective 

of this study is to examine the periodic behaviour of 

exterior beam-column joints in reinforced concrete 

structures. To train, test, and validate the neural network, 

data sets have been prepared using experimental studies 

conducted by various researchers. The shear strength of 

these external beam-column joints is influenced by 

multiple factors, and a suggested approach involves 

utilizing an artificial neural network to predict this 

strength. Key inputs for the ANN model include the 

compressive strength of the concrete, the supports at the 

bottom and top of the beam, the beam-to-column depth 

ratio, the beam bar index, the depth and width of the joint, 

the yield strength of the linear support in the beam, the 

column load index, the joint shear reinforcement index, 

and the length of the beam. To assess the performance of 

the neural network, statistical measures such as the 

coefficient of correlation, root mean square error, and 

scatter index are employed. 

In Figure 2, a typical exterior beam-column 

connection in an RC frame is illustrated. This region of 

the frame, where the beam and columns intersect, is 

subjected to both gravitational and lateral loads, resulting 

in significant shear forces, axial forces, and bending 

moments. The analysis considered the coupling between 

the beam and column in this joint region, taking into 

account these various forces. The beam's flexural 

capacity within the reference joint subassembly, as 

determined by geometry, reinforcing details, and material 

parameters, was estimated to be approximately 75 kN at 

the point of yielding for the longitudinal reinforcement. 

The dimensions of the concrete beam and column were 

assumed to be 230mm×230 mm, with a concrete grade of 

M25, while the axial load applied to the column was 

considered to be 1000kN. All other relevant factors were 

obtained from the respective codes and standards. 

 

4. 2. Parameters Affecting Joint Behaviour        
Previous experimental findings have highlighted the 

substantial influence of material strength, both in steel 

and concrete, on the shear capacity of beam-column 

joints. Additionally, the level of confinement plays a 

crucial role in determining the behaviour of these joint 

systems. Confinement can be provided through cross 

supports within the joint or by incorporating the framing 

of cross beams and slabs into the linking area. The 

adequate constraint of the joint core is necessary to 

effectively transfer shear forces, anchor the beam 

reinforcement, and transmit the axial load of the column. 

To assess the degree of confinement, the volume of cross 

support in the connection region is calculated and then 

divided by the core volume, gross volume, or the 

effective volume for a single layer of transverse 

reinforcement. This computation yields the volumetric 

confinement ratio. The ratio that exhibits the strongest 

correlation with the results is identified as a significant 

contributing factor in determining the joint's strength. 

 

 

 
Figure 2. Geometry and Reinforcement Details 

(Dimensions in mm) 
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Furthermore, several additional parameters have been 

identified as influential factors impacting the shear 

strength of the joint. These include the eccentricity 

between the longitudinal beam and column center lines, 

the sizes of the column and beam, and the magnitude of 

the axial load applied to the column. Consideration of 

these parameters is essential for a comprehensive 

understanding of the joint behaviour and shear strength. 

To evaluate the influence of different parameters on 

joint shear strength, a correlation coefficient is employed 

as defined in Equation 5. In this statistical approach, the 

independent variable x represents various parameters, 

while the dependent variable y represents the joint shear 

strength. Establishing a direct comparison between shear 

strength and each variable, this gain insights into their 

relationship. It is important to note that these correlation 

values provide approximate estimations of the 

parameters' impact on shear strength, as the correlations 

are expected to exhibit nonlinearity. While there may be 

correlations among the individual parameters, this 

analysis does not consider cross-correlations. The 

primary objective at this stage is to understand the degree 

of association between the parameters and joint shear 

strength. Interestingly, the results indicate that the joint 

geometry has a relatively minor influence compared to 

the reinforcement ratio and axial load, which exhibit high 

correlation coefficients. This finding highlights the 

significance of the reinforcement ratio and axial load in 

determining joint shear strength. 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥, 𝑦) =
∑(𝑥−�̅�)∙(𝑦−�̅�)

√∑(𝑥−�̅�)2∙∑(𝑦−�̅�)2
  (1) 

The important variables that might be taken into 

account in the joint strength prediction are chosen when 

the correlation coefficients are achieved. Concrete 

compressive strength and volumetric joint reinforcement 

ratio, which shows the confinement given by the 

transverse reinforcement, are the two most important 

criteria, as was previously mentioned. As a result, values 

for the spacing, joint core, gross area, number of 

transverse reinforcing layers, and stirrup area are 

obtained. According to the following equations, the 

volumetric transverse reinforcement ratio can be 

calculated in three different ways by using the joint core 

volume, the effective confined amount as the gross bond 

volume and the efficient volume contains one covering 

of joint transverse reinforcement. 

 

4. 2. 1. RC Beam-Column Joint Modelling          The 

shear and compression acting forces for a typical external 

RC beam-column junction under seismic load are 

depicted in Figure 2. In the joint core𝑉𝑗ℎ, the flat joint 

shear force can be calculated as follows: 

𝑉𝑗ℎ = 𝑇𝑏 − 𝑉𝑐1  (2) 

where: 

𝑇𝑏 = 𝐴𝑠𝑏 ∙ 𝑓𝑏  (3) 

where, 𝐴𝑠𝑏 and 𝑓𝑏 represent the area and stress of the 

longitudinal reinforcement of the beam, respectively, 𝑉𝑐1 

represents the horizontal shear of the column above the 

joint, and 𝑇𝑏  illustrates the tensile force in the beam 

longitudinal reinforcement. The following formulas are 

used to compute the column shear above the joint, the 

beam shear𝑉𝑏, and the beam flexural moment 𝑀𝑏. 

𝑉𝑏 =
𝐴𝑠𝑏𝑓𝑏𝑗𝑏𝑑

𝐿
  (4) 

𝑀𝑏 = 𝑉𝑏 ∙ 𝐿  (5) 

𝑉𝑐1 =
𝐿+ℎ𝑐/2

𝐻
𝑉𝑏  (6) 

where, 𝐻 is the height of the column, which is equal to 

the height between the upper and lower column inflexion 

points, 𝐿 is the length from the beam’s inflexion point to 

the column's face, ℎ𝑐 is the total height of the column 

cross-section, and 𝑗𝑏𝑑 is the internal moment arm of the 

beam cross-section, which can be calculated as follows: 

𝑗𝑏𝑑 = ℎ𝑏 −
𝑥𝑏

3
− 𝛿𝑠𝑏   (7) 

In Equation 7, ℎ𝑏 is denoted as the breadth of the 

beam, 𝑥𝑏 for the intensity of the contraction zone in the 

beam cross-section, and 𝛿𝑠𝑏 for the distance between the 

closest edge of the beam cross-section and the centroid 

of the tensile beam reinforcement. By imposing the 

equilibrium of the internal forces on the beam after 

confirming that the concrete in compression remains 

within the elastic range, the value of 𝑥𝑏 can be derived, 

which leads to: 

𝑏𝑏𝑥𝑏
2

2
+ (𝐴𝑠𝑏 + 𝐴𝑠𝑏

′ )𝑛ℎ,𝑏𝑥𝑏 − (𝐴𝑠𝑏𝑑𝑏 +

𝐴𝑠𝑏
′ 𝛿𝑠𝑏

′ )𝑛ℎ,𝑏 − 𝐴𝑠𝑏
′ 𝛿𝑠𝑏

′ = 0  
(8) 

where, 𝛿𝑠𝑏
′  is the distance from the centroid of 

compressive beam reinforcement to the closest edge of 

the beam cross-section, 𝑏𝑏 is the thickness of the beam 

cross-section at the face of the column, 𝐴𝑠𝑏
′  is the area of 

longitudinal compressive reinforcement, 𝑑𝑏 is the 

efficient breadth of the beam cross-section, and 𝑛ℎ,𝑏 is 

the modular ratio given by: 

𝑛ℎ,𝑏 =
𝐸𝑠𝑏

𝐸𝑐
  (9) 

where, 𝐸𝑐 is the concrete elastic modulus, which can be 

assumed to be 4700 MPa if its value is not specified, and 

𝐸𝑠𝑏  is the reinforced elastic modulus of the beam 

reinforcement. The following method is used to compute 

the joint shear. 

𝑀𝑏 = 𝑃(𝐿 + 𝑑1)  (10) 

where, 𝑃 is the failure load (N), 𝐿 is the distance from the 

load’s application point to the column’s face (mm), and 

𝑑1 is the cover (mm). The strain in the tensile support of 



S. Ramavath and S. R. Suryawanshi/ IJE TRANSACTIONS A: Basics  Vol. 37 No. 01, (January 2024)  67-82                                  73 
 

the beam is given a value. The process is terminated, if 

the moment produced by the force in the beam tensile 

reinforcement equals the moment computed in Equation 

10. If not, the assumed strain is raised gradually until the 

moment equals the moment specified in Equation 11. The 

elastic modulus of the reinforcement was estimated to be 

200 GPa. The formula for shear strength joint is 

represented as follows: 

𝑉𝑗 = 𝑇𝑏 − 𝑉𝑐𝑜𝑙   (11) 

where, 𝑇𝑏  is the tensile force in the beam longitudinal 

reinforcement (N), 𝑉𝑐𝑜𝑙  is the force of the shear in the 

upper column (N), and 𝑉𝑗 is the joint shear force (N). 

 

4. 3. Artificial Neural Network (ANN) Model for 
Shear Strength Prediction       Artificial Neural 

Networks (ANN) is a computational framework inspired 

by the learning process of the human brain. In the human 

brain, information is received and stored in the 

connections between neurons, forming a complex 

network. Similarly, an ANN consists of interconnected 

artificial neurons that can process and store information. 

The main goal of an ANN is to establish a relationship 

between input data and corresponding output, similar to 

how the human brain recalls information from its 

network of neurons. Through training, an ANN modifies 

its internal components to learn from the input-output 

patterns presented during the training process. 

Once trained, an ANN can be used as a prediction 

model for new inputs that were not part of the training 

dataset. It uses the learned information from the training 

phase to make predictions for the missing data. However, 

the accuracy of these predictions is a crucial concern. To 

address this issue, the available data is divided into two 

parts: a training set and a testing set. The ANN is trained 

using the training set, and the predictions made by the 

model are compared with the known output values from 

the testing set. High performance in the testing phase 

indicates a reliable prediction model that generalizes well 

beyond the training data, avoiding overfitting. However, 

optimizing the weights in ANNs with multiple hidden 

layers can be challenging due to issues like vanishing 

gradients and convergence to local minima. Even with 

large datasets, these problems can limit the performance 

of ANNs with deep architectures, posing a bottleneck in 

their optimization process. 

 

4. 3. 1. Shallow Feed Forward Neural Network          
Neural network fitting occurs when a series of neurons, 

connected through activation functions, are accumulated. 

During the training of a neural network, the coefficients 

of the activation functions in each neuron are gradually 

optimized. The adjustment of biases and weights is 

performed to establish a relationship between the input 

and output values provided in the training dataset. The 

performance of the network is evaluated using an error 

function, such as mean squared error, which compares 

the neural network's response to the training objective. 

To facilitate learning during the training process, back-

propagation algorithms are commonly employed. These 

algorithms update the weights (w) and biases (b) of each 

neuron in a way that minimizes the performance function 

(error). This minimization process involves propagating 

the output error backwards from the output layer to the 

hidden and input layers, adjusting the weights and biases 

accordingly. 

For this work, an SNN pattern with an easy form and 

ideal performance containing a hidden layer and an 

output layer was used. Among these, the hidden layer has 

several neurons, whereas the output layer just has one. 

Figure 3 depicts the topology of the SNN model. Each 

output of the neuron in an SNN model's hidden layer can 

be described as Equation 12. 

𝑦𝑖 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖
𝑁
𝑖=1     (𝑖 = 1,2, ⋯ , 𝑖 ≤ 𝑁)  (12) 

where, 𝑦𝑖  denotes the neuron’s output, 𝑁 is denoted as 

the whole value of the hidden layer’s neurons,  𝑤𝑖  and 𝑏𝑖 

stand for the 𝑖𝑡ℎ neuron’s weight and bias, respectively; 

and 𝑥𝑖 stands for the input data, which is made up of 

𝑥1, 𝑥2, ⋯,  and 𝑥𝑛. The hidden layer’s neurons perform a 

nonlinear transformation on the input signal 𝑥𝑖 to create 

the output signal𝑦𝑖 . The activation function within the 

secret covering is the Sigmond nonlinear function𝜎(𝑥), 

which is not readily divergent and is simple to derive 

during the transfer process. It can be expressed as 

follows: 

𝜎(𝑥) =
1

1+𝑒−𝑥  (13) 

The system can obtain the creation of the SNN model 

as shown in the equation according to the topology of the 

SNN model. 

𝑌 = 𝑊 ∑ 𝜎(∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖
𝑁
𝑖=1 ) + 𝐵 = 𝑊𝑁

𝑖=1 ∑ 𝑦𝑖 +𝑁
𝑖=1

𝐵  
(14) 

where, 𝑊 and 𝐵 represent the output layer’s weight and 

bias, respectively. The output value 𝑌 of the SNN pattern 

can be produced after linear transformation from the 

output signal 𝑦𝑖  of each hidden layer in the neuron, which 

is transferred to the output layer. The output layer’s 

activation function is the linear function. The Mean 

 

 

 
Figure 3. Shallow Neural Network Topology 
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Squared Error (MSE), whose minimal value denotes the 

best curve fit for the dataset, is used to determine when 

the function ends during training. To compare the MSE 

of the output value of the SNN pattern 𝑌 with the test data 

�̂�, the weights and biases of the neurons inside the hidden 

and output layers are changed. Iterative training learning 

using the error descent along the gradient direction 

method is used to determine the model parameters 

corresponding to the minimum root of the MSE. 
 

4. 4. Database Collection          The effectiveness and 

validity of the proposed model in the training process rely 

significantly on the quantity and quality of the data 

available. To ensure reliable results, a comprehensive 

database of reinforced concrete joint tests has been 

meticulously compiled. The database includes detailed 

information on geometric dimensions, material 

properties, specific configurations, and the stress-strain 

history of the specimens. 

The data collection process focuses on gathering 

testing results from various references, specifically 

targeting specimens with plain reinforced concrete. 

These specimens cover a wide range of parameters, such 

as different amounts of joint, beam, and column 

reinforcement, diverse material characteristics, varying 

column axial loads, eccentricities, and transversely 

framed beams. It is important to note that retrofitted 

specimens have been excluded from the database to 

maintain consistency and relevance. 

Table 1 in this section summarized the results of 120 

specimens tested by Hanson et al. (25), Karayannis et al. 

(26) and Salim et al. (27). In all of these experimental 

studies where joints in beam-column are subordinated to 

monotonic or cyclic load until one of the collapse types 

of failure in the joint or beam yielding followed by joint 

failure is presented. 

 

 
TABLE 1. Dataset Collection 1 

Investigator  
fc′, 

ksi 

fyc, 

ksi 

fyb, 

ksi 

Lb, 

in. 

hb, 

in. 

bb, 

in. 
ρ ρ′ 

Lc, 

in. 

hc, 

in. 

bc, 

in. 
ρc 

P/fc′

Ag 

γj 

TEST 

Hanson et al. 

(25) 

Specimen 

ID 
3.3 64.8 51 120 20 12 0.02 0.01 137 15 15 0.05 0.86 11.6 

 Unit 3 4.9 68.1 66.5 63 16 16 0.02 0.02 166 16 16 0.02 0.1 10.8 

 Unit 4 4.9 68.1 66.5 63 16 16 0.02 0.02 166 16 16 0.02 0.25 12.4 

Pantelides et 

al. (28) 
Unit 6 4.9 68.1 66.5 63 16 16 0.02 0.02 166 16 16 0.02 0.25 11.7 

 Unit 5 4.6 68.1 66.5 63 16 16 0.02 0.02 166 16 16 0.02 0.1 10.4 

Wong et al. 

(29) 

BS-L 4.48 75.6 75.4 52 17.7 10.2 0.01 0.01 98.1 11.8 11.8 0.02 0.15 8.13 

BS-U 4.5 75.6 75.4 52 17.7 10.2 0.01 0.01 98.1 11.8 11.8 0.02 0.15 8.78 

BS-LL 6.12 75.6 75.4 52 17.7 10.2 0.01 0.01 98.1 11.8 11.8 0.02 0.15 8.8 

BS-L-LS 4.58 75.6 75.4 52 17.7 10.2 0.01 0.01 98.1 11.8 11.8 0.02 0.15 8.79 

BS-L-V2T10 4.73 75.6 75.4 52 17.7 10.2 0.01 0.01 98.1 11.8 11.8 0.02 0.15 10 

BS-L-V4T10 4.1 75.6 75.4 52 17.7 10.2 0.01 0.01 98.1 11.8 11.8 0.02 0.15 10.8 

BS-L-600 5.28 0 75.4 52 23.6 10.2 0.01 0.01 98.1 11.8 11.8 0.02 0.15 6.74 

Ghobarah et 

al. (30) 

T1 4.48 61.7 61.6 65.8 15.8 9.84 0.01 0.01 108 15.7 9.84 0.02 0.19 12.1 

T2 4.48 61.7 61.6 65.8 15.8 9.84 0.01 0.01 112 15.7 9.84 0.02 0.1 12.2 

Karayannis et 

al. (26) 

B0 4.59 84.3 84.3 39.4 11.8 7.87 0.01 0.01 59 11.8 7.87 0.01 0.05 8.18 

C0 4.59 84.3 84.3 39.4 11.8 7.87 0.01 0.01 59 11.8 7.87 0.01 0.05 8.6 

Tsonos et al. 

(31) 

L1 2.61 66.8 70.5 35.4 11.8 7.88 0.01 0.01 55.1 7.87 7.87 0.02 0.21 10.2 

L2 2.61 66.8 70.5 35.4 11.8 7.88 0.01 0.01 55.1 7.87 7.87 0.02 0.21 11.6 

O1 2.61 66.8 70.5 35.4 11.8 7.88 0.01 0.01 55.1 7.87 7.87 0.02 0.21 10.2 

Antonopoulos 

et al. (32) 

C1 2.82 66.8 84.8 39.4 11.8 7.87 0.01 0.01 50.9 7.87 7.87 0.02 0.06 7.04 

C2 3.44 66.8 84.8 39.4 11.8 7.87 0.01 0.01 50.9 7.87 7.87 0.02 0.05 7.31 

Sarsam et al. 

(33) 
EX2 7.5 61.6 80 56 12 5.98 0.01 0.01 60 8.03 6.18 0.03 0.19 9.15 
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Filiatrault et 

al. (34) 
S1 4.93 69 69 78.8 17.7 13.8 0.01 0.01 118 13.8 13.7 0.03 0.08 12 

Hoffschild et 

al. (35) 
— 3.82 65.4 83.2 32.2 7.9 6.5 0.01 0.01 99.8 7.48 7.48 0.01 0.13 10.5 

Park et al. 

(36) 

UJ2-EW 3.96 68.1 72.2 96 30 16 0.01 0.01 145 18 18 0.03 0.17 8.76 

UJ2-NS 3.96 68.1 72.2 96 30 16 0.01 0.01 145 18 18 0.03 0.15 8.37 

Hassan et al. 

(37) 

UJ1-EW 4.3 70 68 96 18 16 0.02 0.02 145 18 18 0.03 0.31 14.4 

UJ1-NS 4.3 70 68 96 18 16 0.02 0.02 145 18 18 0.03 0.31 13.1 

UJ2-EW 4.43 70 77 96 30 16 0.01 0.01 145 18 18 0.03 0.45 9.97 

UJ2-NS 4.43 70 77 96 30 16 0.01 0.01 145 18 18 0.03 0.45 9.47 

BJ1-EW 4.41 70 77 96 18 16 0.02 0.02 145 18 18 0.03 0.45 11.4 

BJ1-NS 4.41 70 77 96 18 16 0.02 0.02 145 18 18 0.03 0.45 10.8 

Salim et al. 

(27) 
S1 4.39 68.1 66.8 35.8 11.8 5.91 0.02 0.01 74.8 7.09 7.09 0.02 0.09 8.59 

 

 

The following factors are taken into consideration for the 

neural network’s inputs in the current study: Joint width 

(𝑏𝑗), Joint depth (ℎ𝑐), Compressive strength of concrete 

(𝑓𝑐), Beam Reinforcement at the Top (𝑇𝐴𝑠𝑡), Beam 

Reinforcement at the Bottom (𝐵𝐴𝑠𝑡), Beam length (𝐿), 

Yield strength of beam bars (𝑓𝑦𝑏), Joint Shear 

Reinforcement Index (𝜑𝑠), Column Axial Load Level 

(𝑃𝑦), Beam Bar Index (𝑥𝑏), Beam-Column depth ratio 

(ℎ𝑏/ℎ𝑐) and𝜏. Table 2 displays the experiment analysis 

of the 53 data that were obtained for this investigation. 

The MATLAB scripting language is used to construct an 

object-oriented framework to collect certain joint 

specimen properties. A gathering of sample assets and 

measured outcomes, such as concrete strength, joint type, 

joint reinforcement ratio, etc., constitute an instance of 

the experiment class. 

 

 
TABLE 2. Dataset Collection 2 

S. no. 𝒃𝒋 𝒉𝒄 𝒇𝒄 𝑻𝑨𝒔𝒕 𝑩𝑨𝒔𝒕 𝑳 𝒇𝒚𝒃 𝝋𝒔 𝑷𝒚 𝒙𝒃 𝒉𝒃/𝒉𝒄 𝝉 

1 280 300 31 0.806 0.806 1500 520 0 0 0.1538 1.5 3.75 

2 280 300 33 0.806 0.806 1500 520 0.0819 0 0.1538 1.5 4.631 

3 280 300 42 0.806 0.806 1500 520 0.1442 0 0.1538 1.5 5.7024 

4 280 300 36 0.6045 0.6045 1500 520 0 0 0.1154 2 3.381 

5 280 300 42 0.6045 0.6045 1500 520 0.0928 0 0.1154 2 4.2857 

6 280 300 30 0.6045 0.6045 1500 520 0.2184 0 0.1154 2 4.0714 

7 200 200 35 0.5234 0.5234 900 510 0.6602 0.1429 0.1333 1.5 4.3 

8 200 200 35 0.5134 0.5134 900 495 1.0322 0.1429 0.0933 1.5 4.1 

9 200 200 22 0.77 0.77 900 495 1.2184 0.2273 0.14 1.5 5.8 

10 200 200 22 0.77 0.77 900 495 0.9767 0.2273 0.14 1.5 5.55 

11 200 300 34 0.755 0.755 1000 580 0.2603 0.05 0.24 1 3.6333 

12 200 300 34 0.755 0.755 1000 580 0.6764 0.05 0.24 1 3.45 

13 200 300 32 0.785 0.785 1000 580 0 0.05 0.3 1 3.35 

14 200 300 32 0.785 0.785 1000 580 0.0854 0.05 0.3 1 3.65 

15 100 200 21 0.785 0.785 1000 470 0 0.1 0.2 1 3.3 

16 100 200 21 0.785 0.785 1000 470 0.2564 0.1 0.2 1 3.6 

17 100 200 21 0.785 0.785 1000 470 0.5179 0.1 0.2 1 3.6 

18 100 200 23 1.18 1.18 1000 470 0 0.1 0.3 1 4.2 
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19 100 200 23 1.18 1.18 1000 470 0.245 0.1 0.3 1 4.85 

20 100 200 23 1.18 1.18 1000 470 0.4949 0.1 0.3 1 4.4 

21 200 200 36 0.2617 0.2617 1000 574 0 0.0486 0.0667 1.5 1.8 

22 200 200 36 0.2617 0.2617 1000 574 1.0212 0.0486 0.0667 1.5 1.9 

23 280 300 34 1.209 1.209 1500 520 0 0.1607 0.2308 1 6.0119 

24 280 300 31 0.806 0.806 1500 520 0 0.1605 0.1538 1.5 3.75 

25 280 300 36 0.6045 0.6045 1500 520 0 0.1607 0.1154 2 3.381 

26 280 300 33 0.806 0.806 1500 520 0.1692 0.1605 0.1538 1.5 4.75 

27 280 300 28 0.806 0.806 1500 520 0.3673 0.1607 0.1538 1.5 4.7976 

28 280 300 33 0.806 0.806 1500 520 0.0819 0.1605 0.1538 1.5 4.631 

29 280 300 42 0.806 0.806 1500 520 0.1442 0.1607 0.1538 1.5 5.7024 

30 280 300 31 0.806 0.806 1500 520 0 0.1502 0.1538 1.5 3.7619 

31 280 300 31 0.806 0.806 1500 520 0 0.1502 0.1538 1.5 4.0595 

32 215 230 19 0.7137 0.7137 1375 300 0.2185 0.0798 0.2091 1.4348 2.8311 

33 250 250 26 0.5491 0.5491 1375 300 0.7136 0.0615 0.1455 1.32 2.832 

34 350 350 24 0.7272 0.7272 1780 417 1.5629 0 0.18 1.1429 3.4612 

35 350 350 20 0.7272 0.7272 1780 417 1.7121 0 0.18 1.1429 3.6816 

36 370 420 67 1.3639 1.3639 1900 430 1.0651 0.0188 0.2917 1.0714 6.4157 

37 370 420 69 1.3639 1.3639 1900 430 1.3075 0.0183 0.2917 1.0714 7.2844 

38 370 420 71 1.3639 1.3639 1900 430 1.1358 0.0178 0.2917 1.0714 6.9498 

39 370 420 73 1.3639 1.3639 1900 430 1.1202 0.0173 0.2917 1.0714 6.686 

40 200 200 16 0.77 0.77 1100 585 0 0.0719 0.14 1.5 2.925 

41 200 200 19 0.77 0.77 1100 585 0 0.0605 0.14 1.5 2.875 

42 200 200 15 0.77 0.77 1100 585 0.0839 0.0767 0.14 1.5 3.1 

44 275 300 39 0.7856 0.7856 850 570 0 0 0.12 1.6667 2.3273 

45 275 300 39 0.7856 0.7856 850 570 0 0.0932 0.12 1.6667 2.7152 

46 275 300 37 0.7856 0.7856 850 570 0 0.1867 0.12 1.6667 3.3455 

47 275 300 39 0.7856 0.7856 850 570 0 0 0.12 1.6667 2.9576 

48 275 300 40 0.7856 0.7856 850 570 0 0.0909 0.12 1.6667 3.1515 

49 275 300 38 0.7856 0.7856 850 570 0 0.1914 0.12 1.6667 3.6 

50 275 300 43 0.7856 0.7856 850 485 0.2005 0 0.12 1.6667 4.1939 

51 275 300 43 0.7856 0.7856 850 485 0.2005 0.0846 0.12 1.6667 4.6545 

52 275 300 43 0.7856 0.7856 850 485 0.2005 0.1691 0.12 1.6667 4.7636 

53 275 300 43 1.2872 1.2872 850 515 0.2005 0 0.1536 1.6667 4.4485 

 

 

5. EXPERIMENTATION AND RESULTS DISCUSSION 
 

The suggested ANN model is created via MATLAB code 

and operates in MATLAB. The codes are developed in 

MATLAB with its toolbox. The dataset (input and 

output) used in this section is the same as the regression 

models' dataset. A popular training algorithm (so-called 

"Trainlm" (34)) that updates weight and bias values 

according to Levenberg-Marquardt optimization is used. 

Activation functions for the hidden and output layers are 

hyperbolic tangent sigmoid (Tansig) and linear transfer 

function (Purelin), respectively. To achieve the best-

performing model, a single ANN architecture is built 

with the hidden layer neurons set through 

experimentation (trial and error). Gradient descent is 

utilized to minimize error in the current study's 

backpropagation-type training procedure, which is used 

in shallow feed-forward with a single hidden layer. Using 
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the Levenberg-Marquardt algorithm, the network is 

trained. The achievement of the ANN model is quantified 

using statistical metrics. 

In Figure 4, the analysis focuses on the shear strength 

of beam-column joints according to various concrete 

grades. Specifically, this study employs grade M25 

concrete and compares it with other grades such as M35, 

M40, and M30 across six different codes. The analysis 

aims to determine the shear strength of beam-column 

joints for each concrete grade within these codes. The 

results of this analysis reveal that the shear strength of 

M25 grade concrete in the beam-column joint is 

calculated as 2.6. This value indicates improved ductility 

and stiffness in the anchorage system, which can be 

attributed to reduced crack width and the formation of 

multiple cracks in the joint. Based on the findings, it can 

be concluded that the ACI 318-14 code provides a more 

suitable prediction for shear strength in the beam-column 

joint. 

 

5. 1. Models Evaluation Measures          To evaluate 

the constructed prediction models, a mathematical 

technique commonly employed in research to study 

machine learning models was utilized in this study. 

Several mathematical measures were employed to assess 

the accuracy of the models, including measures that 

aimed to minimize the discrepancy between the observed 

and predicted shear strength and others that aimed to 

identify the best-fit model. Eight evaluation measures 

were employed to accurately assess the anticipated 

accuracy of the models. These measures included the 

determination coefficient, Mean Square Error (MSE), 

Root Mean Square Error (RMSE), and Mean Absolute 

Error (MAE). In evaluating the models, better 

performance is indicated by lower values of MSE and 

higher values of the determination coefficient (R2), which 

should be closer to 1. By employing these evaluation 

measures, the study aimed to provide a comprehensive 

and accurate assessment of the predictive accuracy of the 

models. 
 

 

 
Figure 4. Shear Strength of Joint with Several Codes 

Figure 5 illustrates the Mean Squared Error (MSE) 

curve, which provides valuable insights into the training 

process. Initially, the error exhibits a rapid decline, 

indicating effective learning. As the training progresses, 

the rate of error reduction slows down. Notably, the 

MSEs of the validation data and test data follow a similar 

pattern to that of the training data, indicating the model's 

consistency and reliability. The minimum MSE value for 

the validation performance, reaching 0.00010534, is 

achieved after 13 training iterations. Importantly, no 

significant overfitting is observed up to this point, which 

is evident from the similar characteristics of the error in 

the test set and validation set. Consequently, the training 

results of this model can be considered reasonable and 

promising. The performance analysis for prediction 

accuracy is illustrated in Figure 6. 

To evaluate the influence of different parameters on 

joint shear strength, a correlation coefficient is employed 

as defined in Equation 5. In this statistical approach, the 

 

 

 
Figure 5. Mean Square Error Performance Analysis 

 

 

  
(a) (b) 

 
(c) 

Figure 6. Performance Analysis for Prediction Accuracy 
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independent variable x represents various parameters, 

while the dependent variable y represents the joint shear 

strength. Establishing a direct comparison between shear 

strength and each variable, this gain insights into their 

relationship. It is important to note that these correlation 

values provide approximate estimations of the 

parameters' impact on shear strength, as the correlations 

are expected to exhibit nonlinearity. While there may be 

correlations among the individual parameters, this 

analysis does not consider cross-correlations. The 

primary objective at this stage is to understand the degree 

of association between the parameters and joint shear 

strength. 

Interestingly, the results indicate that the joint 

geometry has a relatively minor influence compared to 

the reinforcement ratio and axial load, which exhibit high 

correlation coefficients. This finding highlights the 

significance of the reinforcement ratio and axial load in 

determining joint shear strength. 

The Levenberg-Marquardt method was used to train 

an optimised feed-forward neural network for each 

response parameter. Table 3 illustrates this neural 

network training and testing procedure with different 

initial, stooped, and target value parameters. To prevent 

overfitting, where the network perfectly matches the 

training data but performs poorly on the testing set, the 

number of epochs is kept to a minimum during the 

development of the optimal topology of the networks. 

Seven trained neural networks were used as experimental 

data and the findings of the FE study. 

In Figure 7, the comparison between predicted and 

actual responses is displayed for different parameters of 

the response curves. The data points forming clusters 

along the diagonal line indicate the accuracy of the 

trained neural networks. The validation set was utilized 

to assess the generalizability of the model and to prevent 

overfitting by halting the training process. The R-squared 

(R2) value measures the proportion of variance in the 

response variable that can be predicted by the trained 

artificial neural network. In this study, the R2 values 

range from 0.92 to 0.99, indicating a high level of 

prediction accuracy. The ANN model achieves R- 

squared values of 99%, 94%, and 98% for the training, 

 

 
TABLE 3. Testing and Training of Neural network model 

Unit 
Initial 

Value 

Stopped 

Value 

Target 

Value 

Epoch 0 14 1000 

Elapsed Time - 00:00:00 - 

Performance 22.8 0.0323 0 

Gradient 65.6 0.0182 1e-07 

Mu 0.001 0.001 1e+10 

Validation Checks 0 6 6 

 
Figure 7. Target Data versus Predicted Response in the 

Training, Validation, and Test Sets 

 

 

testing, and validation sets, respectively, across all the 

data. These results demonstrate the robust performance 

of the ANN model in accurately predicting the responses, 

providing a reliable tool for estimating the desired 

parameters. 

To ensure the superior robustness of the neural 

network model compared to traditional fitting methods, a 

random sampling method was employed for data set 

segmentation. Moreover, the Levenberg-Marquardt 

method was utilized for training the Self-Organizing 

Neural Network (SNN). The results, as presented in 

Table 4, highlight the overall superiority of ANN training 

and testing compared to other algorithms. This 

demonstrates that the proposed ANN model exhibits 

excellent alignment with experimental test results when 

compared to alternative models. Furthermore, the 

empirical model demonstrates improved performance 

compared to the results obtained from existing codes, 

emphasizing its effectiveness and accuracy. 

 

 
TABLE 4. Results for Test Dataset with Existing Techniques 

Test ANN STM Emp 

11.6 13.16 10.1 11.4 

10.8 12.46 11.5 11 

12.4 12.69 12.8 11.6 

11.7 12.69 12.4 11.6 

10.4 12.33 11.1 11 

8.13 9.13 9.16 8.98 

8.78 9.14 9.17 8.98 

8.8 9.44 10.4 8.98 

8.79 9.15 9.25 8.98 
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10 9.19 9.37 8.98 

10.8 9.04 8.83 8.98 

6.74 8.55 8.11 7.78 

12.1 11.44 12 11.3 

12.2 11.32 10.7 11 

8.18 7.83 9.79 11 

8.6 7.83 9.62 11 

10.2 10.20 7.99 9.21 

11.6 10.20 7.79 9.21 

10.2 10.20 7.79 9.21 

7.04 7.13 6.79 8.98 

7.31 7.36 7.27 8.98 

9.15 10.72 11.9 9.15 

12 9.88 10.4 9.7 

10.5 8.96 10.8 10.7 

8.76 7.77 8.81 8.57 

8.37 7.66 8.79 8.52 

14.4 11.82 13.2 12 

13.1 11.82 13.2 12 

9.97 9.48 10.2 9.55 

9.47 9.48 10.4 9.55 

11.4 11.66 10.1 9.06 

10.8 11.66 10.2 9.06 

8.59 9.31 9.34 8.52 

 

 

In Figure 8, several plots depict the analysis of the full 

data set, including the correlation coefficient (CC) plot 

comparing actual values with predicted values, the error 

histogram, and the graph illustrating predicted versus 

accurate shear strength values. Figure 8a presents the CC 

plot, where a correlation coefficient of 98.24% 

demonstrates a strong correlation between the predicted 

values and the actual values. This indicates that the ANN 

model's predictions align well with the true values. 

Figure 8b displays an error histogram, showcasing the 

distribution of errors between the predicted and actual  

 

 

  

(a) (b) 

Figure 8. CC Plot for Actual and Predicted Values 

shear strength values. Approximately 85% of the 

predictions made by the ANN model fall within a 9% 

margin of error. This suggests that the model performs 

well in accurately estimating the shear strength values, 

with a relatively small margin of error for the majority of 

predictions. These visualizations highlight the 

effectiveness of the ANN model in capturing the 

correlation between predicted and actual shear strength 

values and demonstrate its ability to generate accurate 

predictions for the full data set. 

In Figure 9, a performance analysis graph is 

presented, comparing precision and recall for concrete 

cracking, spalling, rebar exposure, and rebar buckling. 

The objective was to evaluate the network's performance 

as the percentage of modules varied and to analyse its 

impact on the model's effectiveness. The curve precision-

recall (PR) was employed for this assessment, as shown 

in Figure 9. 

For the cracking model, the obtained values range 

from 0.764 to 0.831. Notably, the proposed SFF-ANN 

network achieves an accuracy that is 8.8% higher 

compared to other models, indicating its improved 

performance in predicting concrete cracking. The PR 

curve provides insights into the precision and recall 

achieved by the model, offering a comprehensive 

evaluation of its performance across different scenarios. 

The results demonstrate the superiority of the SFF-ANN 

network in accurately predicting concrete cracking, 

leading to enhanced accuracy and improved performance 

compared to alternative models. 

In Figure 10, a comparison analysis is presented, 

comparing the performance of the Artificial Neural  

 

 

 
Figure 9. Precision Vs Recall Performance Graph 

 

 

  
(a) (b) 

Figure 10. Comparison Analysis of ANN with Two Datasets 
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Network (ANN) with the Strut and Tie Model (STM) and 

Empirical Model (Emp). Figure 10(a) focuses on the 

analysis of the ANN test data using dataset 1. The plot 

showcases the regression lines for the three models, 

representing the line of best fit that minimizes the total 

error of the model. It is important for the relationship 

between variables to be linear, and this can be visually 

assessed through a scatter plot. In this case, the data 

points exhibit a distribution implying a linear 

relationship. In Figure 10(b), a comparative analysis is 

conducted using dataset 2, and the regression plot is 

determined for the ANN, ACI, and Eurocode models. 

The scatter plot in this case does not align in a straight 

line but appears more scattered. This indicates that in the 

comparative study of ANN, the collected dataset 

performs better when compared to dataset 2. These 

visualizations in Figure 10 provide insights into the 

comparative performance of the ANN model against the 

Strut and Tie Model (STM) and Empirical Model (Emp.). 

The results suggest that the ANN model shows promising 

performance, particularly when compared to the specific 

datasets analyzed in this study. 
 

 

6. RESEARCH CONCLUSION 
 

The article successfully developed an artificial neural 

network (ANN) model using artificial intelligence 

technology to assess the reinforced concrete shear ability 

of external beam-column (BC) joints. Experimental data 

from various literature works were gathered and 

assembled to create an input and output data set for the 

ANN model. The proposed ANN model outperformed 

other models and empirical formulas provided in design 

codes in terms of precision and accuracy. 
• The ANN-based model, implemented in MATLAB, 

can effectively predict the shear strength of external 

BC joints made of reinforced concrete. 

• Five main parameters, namely joint aspect ratio, 

joint transverse reinforcement, concrete compressive 

strength, beam reinforcement ratio, and joint width, 

were used to develop the ANN model. 

• The ANN model's effectiveness was quantitatively 

assessed using the coefficient of determination (R2), 

with R-squared values of 99%, 94%, and 98% 

obtained during the training, testing, and validation 

stages, respectively. 

• Comparison of the ANN model results with 

experimental data showed strong agreement and 

better alignment compared to results calculated 

using various design codes such as ACI 318-14, EN 

1998-1:2004, NZS 3101-1:2006, CSA A3.3:2004, 

AIJ:2010, and IS 13920:2016. 

• The proposed SFF-ANN model, which combines the 

ANN model with experimental data, is considered an 

efficient tool for predicting the shear strength of 

interior joints exposed to cyclic loading. 

In conclusion, this research contributes to the 

scientific field by introducing an ANN model that 

outperforms existing empirical formulas and design 

codes in accurately predicting the shear strength of 

reinforced concrete external BC joints. The study's 

findings have significant practical implications, as the 

developed model can be applied to real-world projects, 

providing engineers with a reliable tool for assessing the 

performance and structural integrity of external BC 

joints. This joint shear strength prediction model can be 

readily implemented into joint response models for the 

evaluation of earthquake performance and inelastic 

responses of building frames.  

Consequently, the proposed model holds tremendous 

potential as a valuable resource for researchers and 

reinforced concrete engineers, enabling them to make 

precise estimations of the joint shear strength of beam-

column connections. This model proves particularly 

advantageous in two key aspects: it operates within the 

input data ranges established in this study, ensuring 

accuracy, and it significantly reduces both time and cost 

compared to the construction of alternative numerical 

schemes. As such, this model emerges as an efficient and 

cost-effective tool for professionals in the field, 

streamlining the estimation process while maintaining 

reliability. Further research should focus on gathering 

field data and conducting comparative studies to validate 

the model's predictions and explore its applicability in 

diverse structural configurations. 
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Persian Abstract 

 چکیده 
  ی برش  تیظرف  نییتع   یبرا  یسنت  یاست. روش ها  یاتیح  ینگران  ک یزلزله    دیدر هنگام حملات شد (RC) بتن مسلح  یدر قاب ها  یو ستون نوع برش  ریشکست اتصالات ت

  ت ی ظرف  ی نیبشیرا در پ   ن یماش  ی ریادگی  یهاک یتکن   یهات یمطالعه قابل  ن یندارند. ا  یاتصالات، دقت کاف  ن یحاکم بر رفتار ا  یدر نظر گرفتن نادرست پارامترها  لی اتصال اغلب به دل

  یبرا (ANN) یمصنوع یمدل شبکه عصب کی. کندیم یابیها ارزآن دهیچیپ یبا توجه به رفتار ساختار ،یستون خارج-ریاتصالات ت یشکست برا یهامشترک و حالت یبرش

عمران    یدر مهندس  رد،یگ  یگذشته درس م  ات یکه از تجرب  یجزء هوش مصنوع،  ANN .استشده  شنهادیپ  شدهت یتقو  یستون خارج-ریاتصالات ت  یمقاومت برش  ینیبشیپ

 نیاست. ا  افتهیتوسعه    یقبل  یتجرب  قات یاز تحق  یلرزه ا  یبارگذار  طیشامل خواص مواد، ابعاد نمونه و شرا  یبا استفاده از مجموعه داده ا ANN کند. مدل  یم  دایپ  تیمحبوب

 جادیا یطراح ی با استفاده از کدها ANN مدل شی. آموزش و آزماردیگی در نظر م یستون خارج-ریدر اتصالات ت یمقاومت برش ینیبشیپ یبرارا  یمدل دوازده پارامتر ورود

  ی کردها ی با رو  سه یدر مقا (SFF-ANN) کم عمق   یروش یپ  ی مصنوع  یشبکه عصب   یدهنده برترنشان   ج یشود. نتا  ی خاص انجام م  تمیالگور  کیو    یتجرب  یشده، فرمول ها

 یمختلف که معمولاً در مهندس  یطراح  یبا کدها   سهیمطالعه با تمرکز بر عملکرد آن در مقا  نیدر ا  یبه صورت کم(ANN) یمصنوع  یمدل شبکه عصب  کی  یاست. اثربخش  یقبل

و    شآزمای  آموزش،  مراحل  طول  در  ٪98  و  ٪94  ،٪99  ب یترتبه   squared -Rریشد و مقاد  ی ابیارز R)2 (نیی تع   ب یشد. مدل با استفاده از ضر  یابیارز  شوند،ی سازه استفاده م

. اگرچه کندی برجسته م  یخارج RC ستون-ریاتصالات ت  یبرا  ی برش  تیدر برآورد ظرف  یدیعنصر کل   کیرا به عنوان  ریت تیتقو  تیمطالعه اهم  نیبه دست آمد. ا  ی اعتبارسنج

 یهاتم یو الگور  افتهیتوسعه  یهابا استفاده از مجموعه داده  افتهیبهبود  یهاتوسعه مدل  یبر رو  دیبا  ندهیقات آیتحق  دهند،ی از دقت را نشان م  ییدرجه بالا  یشنهادیپ  یهامدل

 و عملکرد بهتر الگو تمرکز کند صیتشخ یبرا شرفتهیپ

 

 

 


