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A B S T R A C T  
 

 

Trajectory tracking and positioning are essential requirements in many areas, including robots and 
autonomous vehicles. In some cases, such as in areas where GPS signals are weak or not available, 

trajectory tracking is used as an alternative positioning system. In these cases, simultaneous localization 

and mapping (SLAM), is of great importance as it does not require prior knowledge and empirical offline 
fingerprint. SLAM can be combined with signal processing algorithms among which, particle filter 

stands out. However, challenges exist such as particle weights degradation and particles impoverishment 

that need to be dealt with. In fact, the loss of particle diversity for estimation has led to the lack of 
particles. To overcome this problem, one solution is to diversify the selection of particles after 

resampling. In this paper, we proposed a crow search algorithm (CSA) to overcome these issues and 

improve position estimation. The simulation results showed that this algorithm greatly improved the 
performance of fast SLAM. 

doi: 10.5829/ije.2023.36.10a.09 
 

 

NOMENCLATURE 

CSA Crow Search Algorithm 𝑥𝑖,𝑖𝑡 Position of the crow 𝑖 in iteration 𝑖𝑡 

𝑥𝑘 The state of the moving vehicle or mobile robot in the time 𝑘  AP Awareness Probability 

𝑧𝑘 Observation in the time 𝑘 𝑓𝑙 Flight length 

𝑥𝑘
𝑖  The state of the particle 𝑖 in the time 𝑘  𝐹  Fitness function 

𝑤𝑘
𝑖  The weight of the particle 𝑖 in the time 𝑘 𝑣𝑐  Robobt velocity 

𝑞 Importance density (xv,yv) 2-D Position of the robot  

𝑙 Landmark position (xl,yl) 2-D landmark position 

𝑚𝑖,𝑖𝑡 Position of the crow's hide-out 𝑖 in the iteration 𝑖𝑡 Greek Symbols  

𝑖𝑡 Number of iterations 𝜙 Robot orientation 

 
1. INTRODUCTION1 
 
Simultaneous localization and mapping techniques have 

been around for many years in a variety of areas, such as 

human positioning, unmanned vehicles, submarines, and 

robots, including those used inside the human body. 

When SLAM was proposed nearly two decades ago it 

was initially viewed as a side idea. Nowadays, however, 

it is considered as an inexpensive and integral component 

of robots and automated moving objects technology. The 

SLAM problem can be categorized according to different 

factors. The SLAM technique used in robots first 
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introduced by Smith et al. [1] which was used to construct 

an unknown environment map, while simultaneously 

determining its location. In SLAM, unlike fingerprinting 

methods [2], both path and position are estimated online 

without the need for any prior knowledge of the 

environment. Different SLAM methods, despite their 

core similarities, are distinguished based on the way 

sensors are used and implemented. Kalman filters are one 

of the first techniques to solve SLAM. Extended Kalman 

Filter (EKF) [3] is used to estimate the state and position 

of environmental signals on a robot. Given controls 

𝑢0:𝑘 = {𝑢0, ⋯ ,𝑢𝑘} and robot observations 𝑧1:𝑘 =
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{𝑧1, ⋯ ,𝑧𝑘}, we look for the landmarks location or map (𝑙) 
and the pose 𝑥0:𝑘 = {𝑥0,𝑥1, ⋯ ,𝑥𝑘}. In other words, 

Kalman filter provides a solution to the online SLAM 

problem, 𝑝(𝑥𝑘,𝑙|𝑢0:𝑘, 𝑧1:𝑘). The EKF estimation has an 

error because it uses the Taylor series approximation of 

the nonlinear estimation function. Also, the EKF 

estimation is not of much help when the model is both 

non-linear and non-Gaussian. Therefore, solving the 

SLAM problem using the Monte Carlo method was one 

of the other methods proposed to overcome these 

challenges [4]. Instead of calculating the integral at all 

points in the Bayesian formulation, it does so by 

sampling at the points that have the greatest contribution 

to the integral calculation. Points sampling in Monte 

Carlo is performed using Perfect Monte Carlo, Rejection 

Sampling (RS), Importance Sampling (IS), and 

Sequential Importance Sampling (SIS) methods [5]. The 

idea behind the SIS method, which is a special case of IS, 

is to re-use the samples generated in the previous steps to 

sample the posterior distribution function in the new step. 

The challenge facing the SIS is weight degeneracy, 

where the variance of weights for the proposed 

distribution increases with each step. To overcome this, 

re-sampling can be used to reduce the variance of 

weights. The so-called resampling in SIS is called 

sequential importance resampling (SIR) or particle filter 

[6]. One of the methods of applying a particle filter to 

solve the SLAM problem is known as Fast SLAM. Fast 

SLAM breaks down a SLAM problem into a robot 

positioning problem and a set of landmark estimation 

problems that are conditional on the robot status 

estimation [7]. So far, advanced versions of Fast SLAM 

have been offered by Lei et al. [8], but all of them are 

based on one basic rule; as reported by Murphy [9], the 

representation as such is accurate due to the natural 

conditional independence in the SLAM problem. Fast 

SLAM uses a modified particle filter to estimate the 

posterior paths of the robot. Each particle has 𝑘 Kalman 

filters that estimate the K positions of the landmark based 

on the path estimation. The resulting algorithm is an 

example of a Rao-Blackwellized particle filter [10, 11].  

With the rapid development of computer hardware 

performance, particle filter is applied in SLAM [12]. The 

problem with the traditional particle filtering algorithm is 

the contrast between the degradation and the lack of 

particles. Re-sampling resolves the problem of particle 

degradation to some extent, but creates another problem 

known as sample depletion. In addition, high-precision 

estimation requires the application of large numbers of 

particles, which results in computational complexity and 

inconsistency.  

There are two conventional ways to overcome this 

problem. The first is to diversify the choice of particle 

location and the other is to better allocate weight to the 

particles. In this paper, we select the first solution to 

overcome this problem. To accomplish this method, 

scholars have conducted a great deal of studies and have 

reached the important point that particle filtering based 

on intelligent optimization mechanism of biological 

group is a new perspective [13, 14]. In fact, in these 

methods, the particles in the particle filter are considered 

as individuals in biological clusters, and the particle 

distribution using the simulated biological cluster motion 

law is more reasonable.   

Huang et al. [15], and Chen et al. [16], cuckoo and bat 

algorithms were introduced to have better performance of 

the particle filtering algorithm. Gao et al. [17] used the 

firefly algorithm transfer formula to recombine the 

particle sample. However, re-sampling is still required in 

this method and optimization of the duplicate particles is 

not performed. Tian et al. [18] optimized the particle 

filter using the firefly algorithm, which shows that the 

firefly algorithm can update particle states in a way that 

prevents particle starvation. Another advantage of this 

method is that the same computational efficiency can be 

achieved with fewer particles.  

Although these methods and other methods such as 

the use of genetic algorithms in target tracking and 

trajectory tracking control have been proposed [19–21], 

the issue of simultaneous mapping, in addition to 

localization, plays a very important role in robots and 

unmanned vehicles. Zhu et al. [12], combined the particle 

filtering mechanism in SLAM with improved firefly 

lighting formula.  Moreover, they used the dynamic 

equilibrium algorithm which delivers global and local 

simultaneously. 

Following new research on particle filtering that 

harnesses optimization mechanisms of intelligent bio-

groups [22, 23], these researches used CSA algorithm. 

Our goal is to merge CSA and particle filtering to 

improve resampling of particles, optimize particle 

weights and obtain higher accuracy with smaller number 

of particles. We term this method CSAPF-SLAM. 

In fact, by creating a reasonable variation in the 

position of the particles using mechanisms of intelligent 

bio-groups, we save them from getting involved in local 

extremes, and thus achieve a better estimate. It seems that 

the use of metaheuristic algorithm is efficient to diversify 

the selection of particles after resampling and among 

them we have chosen the crow search algorithm. Crow 

search algorithm is one of the MA algorithm that 

attracted much attention from researchers since it was 

introduced. The evaluation results of CSA show that it is 

very efficient for optimization problems, especially 

problems that science and engineering have difficulty to 

solve [24]. Meanwhile, this algorithm is easy to 

implement and has only a few parameters [25]. Also, by 

combining the particle filter and the crow search 

algorithm, it is possible to propose a fitness function that 

solves some problems such as entrapment in the local 

optimum due to the AP parameter. Furthermore, the 

algorithm uses particle filter to keep the balance between 
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the local and global search processes. In fact, a novel 

neighborhood assigning strategy has been introduced to 

optimize the local search. 

Short statement of precise problem addressed in this 

manuscript:  

• A new method for more accurate estimation of 

simultaneous localization and mapping in robots 

in non-linear and non-Gaussian condition. 

• A new algorithm to overcome the impoverishment 

problem in particle filter using CSA. 

• A new fitness function for SLAM using particle 

filter. 

In section II, we describe particle filter SLAM and 

CSA algorithm. Section III describes our proposed 

method and section IV demonstrates experimental 

valuations based on Sydney University Dataset [26, 

27]. Finally, section V concludes the paper.  

 

 

2. PARTICLE FILTER AND CSA ALGORITHM  
 

Since the proposed method is a combination of particle 

filter and crow search algorithm, we describe each of 

these, separately. We will then explain our proposed 

algorithm, i.e. CSAPF-SLAM. 

 

2. 1. Particle Filter SLAM Algorithm        As we 

know, in SLAM, we are dealing with two issues of 

localization and mapping [28]. The following equation 

is used for the problem of moving vehicle or mobile 

robot position in filter based SLAM algorithms: 

�̃�𝑘 = ∫𝑥𝑘 𝑝(𝑥𝑘|𝑧1:𝑘)𝑑𝑥𝑘  (1) 

where 𝑥𝑘 is the state of the moving vehicle or mobile 

robot in the time 𝑘 and 𝑧𝑘 is the observation in the time 

𝑘. 

Filter-based localization methods include the 

following two steps: 

A) Prediction step (time update): The Prediction step 

according to Chapman-Kolmogorov principle can 

be as follows: 

𝑝(𝑥𝑘|𝑢0:𝑘 , 𝑧1:𝑘−1, 𝑥0) = ∫ 𝑝(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘) ×
 𝑝(𝑥𝑘−1|𝑢0:𝑘−1, 𝑧1:𝑘−1, 𝑥0)𝑑𝑥𝑘−1  

(2) 

B) Correction step (measurement update): In time 𝑘, 

a value of 𝑧𝑘 is available and this can be used for 

the previous update (time update) via the Bayesian 

rule: 

𝑝(𝑥𝑘|𝑢0:𝑘 , 𝑧1:𝑘 , 𝑥0) =

 
𝑃(𝑧𝑘|𝑥𝑘  )𝑃(𝑥𝑘|𝑢0:𝑘 , 𝑧1:𝑘−1, 𝑥0)

𝑃(𝑧𝑘|𝑢0:𝑘 , 𝑧1:𝑘−1 )
  

(3) 

To overcome the limitation caused by the Gaussian 

condition of the distributions as well as the linearization 

error in EKF, the use of a particle filter is suggested by 

Arulampalam et al. [29]. In this case, the term 

𝑝(𝑥𝑘|𝑧1:𝑘) in Equation (1) is transformed into the 

following: 

𝑝(𝑥𝑘|𝑧1:𝑘) ≈ ∑ 𝑤𝑘
𝑖𝑁𝑠

𝑖=1 ∙ 𝛿(𝑥𝑘 − 𝑥𝑘
𝑖 )  (4) 

where 𝑥𝑘
𝑖  is the state of the particle 𝑖 in the time 𝑘 and 

𝑤𝑘
𝑖  is the weight of the particle 𝑖 in the time 𝑘, where 

particle weight is determined by the following 

equations: 

𝑤𝑘
𝑖 ∝

𝑝(𝑥0:𝑘
𝑖

|𝑧1:𝑘)

𝑞(𝑥0:𝑘
𝑖

|𝑧1:𝑘)
  (5) 

where 𝑞 is the importance density. Since it is common 

that only the filtered estimate of 𝑝(𝑥𝑘|𝑧1:𝑘)  is required 

at each time step, we have the following relation by 

performing a series of algebraic operations: 

𝑤𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖 ∙
𝑝(𝑧𝑘|𝑥𝑘

𝑖
)∙𝑝(𝑥𝑘

𝑖
|𝑥𝑘−1

𝑖
)

𝑞(𝑥𝑘
𝑖
|𝑥𝑘−1

𝑖 , 𝑧𝑘)
  (6) 

 

Considering the sequential importance resampling 

(SIR), which includes selecting the previous density 

𝑝(𝑥𝑘|𝑥𝑘−1) as the importance density 

𝑞(𝑥𝑘 |𝑥1:𝑘−1, 𝑧𝑘), we will have the following recursive 

equation: 

𝑤𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖 ∙ 𝑝(𝑧𝑘|𝑥𝑘
𝑖 )  (7) 

Finally, given the location and weight of each 

particle, the position of the robot or vehicle can be 

estimated according to the following equation: 

�̃�𝑘 = ∑ 𝑤𝑘
𝑗𝑁𝑠

𝑗=1 ∙ 𝑥𝑘
𝑗
  (8) 

 

 
1:  for 𝑖 = 1:𝑁𝑠  

2:       Randomly choose initial state 𝑥0
𝑖  in the search space 

3:       w0
i = 1 Ns⁄ 

4: end for 

5:k=1 

6:while (𝑘 <> 0) 

7:    // New pose selection and update weights with new 

observations 

8:     for 𝑖 = 1:𝑁𝑠        

9:           sample a new pose xk
i ~ p(xk|xk−1

i , uk) 

10:        wk
i = wk−1

i ∙ p(zk|xk
i ) 

11:    end for 

12: Apply the selected resampling method for the set of particles 
and their weights to get a new set of particles and weights  

13:  // Calculate the estimate (Same as probability integral from 

probability density function) 

14:     for 𝑗 = 1:𝑁𝑠  

15:          x̃k = wk
j
. xk

j
 

16:          xk+= x̃k   

17:     end for 

18:     𝑘 = 𝑘 + 1 

19:     if fitness function condition is realized  

20:     𝑘 = 0  

21:     end if 

22:end while 

Figure 1. Pseudo code for particle filter algorithm 
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In general, Figure 1 shows the pseudo code for 

particle filter algorithm for estimating the state. It should 

be noted that the fitness function is calculated based on 

the importance weight. 

So far, we have only discussed positioning in the 

SLAM algorithm, but mapping should also be performed 

in SLAM. In other words, we are dealing with the 

posterior probability density 𝑝(𝑥𝑘,𝑙|𝑢0:𝑘,𝑧1:𝑘,𝑥0). For 

our proposed algorithm, we will use one of the most 

efficient methods using a particle filter called Fast 

SLAM. As mentioned in the introduction, Fast SLAM 

uses only the particle filter according to the above 

equations to determine the position and uses a number of 

EKF for mapping. Therefore here, according to the 

posterior factorization provided by Murphy [9], the 

SLAM posterior will be as follows:  

𝑝(𝑥1:𝑘,𝑙1:𝑚|𝑧1:𝑘,𝑢0:𝑘−1) =
𝑝(𝑥1:𝑘|𝑧1:𝑘,𝑢0:𝑘−1) ∙  𝑝(𝑙1:𝑚|𝑥1:𝑘,𝑧1:𝑘)       

(9) 

where p(x1:k|z1:k,u0:k−1)  is the posterior density of the 

robot state and p(l1:m|x1:k,z1:k) is the position of the 

landmarks, which we have due to the conditional 

independence in the position of landmarks: 

𝑝(𝑥1:𝑘,𝑙1:𝑚|𝑧1:𝑘,𝑢0:𝑘−1) =
𝑝(𝑥1:𝑘|𝑧1:𝑘,𝑢0:𝑘−1) ∙ ∏ 𝑝(𝑙𝑖|𝑥1:𝑘,𝑧1:𝑘)𝑀

𝑖=1   
(10) 

The first term on the right side of the above equation is 

obtained by using the particle filter in accordance with 

Equation (3). In other words, for each particle in each 

step, after determining the position, the position of the 

landmarks must also be estimated. That is, each particle 

has a memory of 2𝑚 + 3, in which 𝑚 is the number of 

landmarks. Figure 2 will help us understand this concept. 

In this figure, 𝜇𝑘
𝑖  and Σ𝑘

𝑖   represent mean and covariance 

of particle 𝑖 at time 𝑘, respectively. Figure 3 displays the 

pseudo code for Fast SLAM. 

 

2. 2. Crow Search Optimization Algorithm (CSA)        
Crow search meta-heuristic is a relatively new 

algorithm introduced in 2016 inspired by Crows' social 

and intelligent behaviour by Askarzadeh [30]. Crows  

(family or species of crows) are recognized as one of 

the cleverest birds in nature. It can be said that after 

humans, crows have proportionally the largest brain 

among living beings, and this is the reason for the 

intelligent behaviour of these birds [30]. In fact, this is 

proven by the brain to body ratio. Reasons to consider 

crows as smart birds are summarized as follows: 

Ability to remember human faces, conspiracy 

capability, powerful memory, ability to solve problems 

and planning. Crows can remember faces and are able 

to alert an anonymous face to one another. They also 

have self-awareness in the mirror and are also able to 

make and use of tools, as well as communicate in 

sophisticated ways, or remember to hide their food for 

several months. Unknown communication systems 

exist among crows. One of them is the complex 

language between crows. Crows also stock their surplus 

food. It has been widely seen that other crows have 

found their food supply in pursuit of another. Because 

crows are cautious and masterful in hiding, researchers 

believe that crows cannot rob another food crop without 

planning. They are also highly capable of hiding and 

storing food. In fact, crows can predict the behaviour of 

thieves using their experience of theft and can 

determine the safest path to protect their warehouses 

from theft [30]. 

The CSA algorithm is such that, like all community-

based algorithms, it assumes 𝑁 as the number of crows 

in the d-dimensional search space. Each crow 𝑖 is 

defined by the vector in this search space as follows: 

𝑥𝑖,𝑖𝑡 = [𝑥1
𝑖,𝑖𝑡, 𝑥2

𝑖,𝑖𝑡, ⋯ , 𝑥𝑑
𝑖,𝑖𝑡]  (11) 

where 𝑖 = 1, 2, … , 𝑁, 𝑖𝑡 = 1, 2, … , 𝑖𝑡𝑚𝑎𝑥  and 𝑖𝑡𝑚𝑎𝑥  is 

the largest number of iterations. Each crow also has a 

memory that remembers the best experience of the 

hide-out location. In each iteration the position of the 

crow's hide-out 𝑖 is indicated by 𝑚𝑖,𝑖𝑡
 . This is the best 

location Crow 𝑖 has ever seen and is described as a 

vector: 

𝑚𝑖,𝑖𝑡 = [𝑚1
𝑖,𝑖𝑡, 𝑚2

𝑖,𝑖𝑡 , ⋯ ,𝑚𝑑
𝑖,𝑖𝑡]  (12) 

 

 

 

Figure 2. Memory diagram of each particle 

Particle (i) 
Vehicle or robot path at 

time k 

Mean and covariance of 

feature 1 

Mean and covariance of 

feature 2 
 ... 

Mean and covariance 

of feature m 

      

1 𝑥1:𝑘
1 = {(𝑥   𝑦   𝜃)𝑇}1:𝑘

1  𝜇1
1 Σ1

1 𝜇2
1 Σ2

1 … 𝜇𝑚
1  Σ𝑚

1  

2 𝑥1:𝑘
2 = {(𝑥   𝑦   𝜃)𝑇}1:𝑘

2  𝜇1
2 Σ1

2 𝜇2
2 Σ2

2 … 𝜇𝑚
2  Σ𝑚

2  

. . . . . . 

. . . . … . 

. . . . . . 

      

𝑁𝑠  𝑥1:𝑘
𝑁𝑠 = {(𝑥   𝑦   𝜃)𝑇}1:𝑘

𝑁𝑠  𝜇1
𝑁𝑠 Σ1

𝑁𝑠 𝜇2
𝑁𝑠  Σ2

𝑁𝑠 … 𝜇𝑚
𝑁𝑠 Σ𝑚

𝑁𝑠 



M. Abedini et al. / IJE TRANSACTIONS A: Basics  Vol. 36 No. 10, (October 2023)   1827-1838                                         1831 

 

 
1:for 𝑖 = 1:𝑁𝑠  

2:       Randomly choose initial state 𝑥0
𝑖  in the search space 

3:       w0
i = 1 Ns⁄  

4:end for 
5:k=1 

6:while (𝑘 <> 0) 

7: // New pose selection and update weights with new 

observations 

8:       for 𝑖 = 1:𝑁𝑠        

9:             sample a new pose xk
i ~ p(xk|xk−1

i , uk) 

10:           wk
i = wk−1

i ∙ p(zk|xk
i ) 

11:          // Incorporate the measurement 𝑧𝑘
𝑖  into the corresponding 

EKF for mapping 

12:             for 𝑗 = 1:𝑚        

13:                  update mean μj,k
i  

14:                  update covariance Σj,k
i  

15:             end for 
16:       end for 

17:      Apply the selected resampling method for the set of 

particles and their weights to get a new set of particles and 
weights  

18:     // Calculate the estimate (Same as probability integral from 

probability density function) 

19:       for 𝑗 = 1:𝑁𝑠  

20:            x̃k = wk
j
. xk

j
 

21:            xk+= x̃k 

22:            Estimate map using μk
j
 and Σk

j
 

23:       end for 

24:       𝑘 = 𝑘 + 1 

25:       if fitness function condition is realized  

26:       𝑘 = 0  

27:       end if 

28:end while 

 

Figure 3. Pseudo code for Fast SLAM 

 

 

Crows move around in search of better food sources 

or hide-outs. The steps for updating the crow's position 

are as follows: 

Step One: A crow, for example 𝑗, is randomly 

selected from the population. The crow 𝑖 tries to follow 

the crow 𝑗 to find his hideout (𝑚𝑗). In this case, two 

modes can be created based on the crow 𝑗's knowledge 

of the chase by 𝑖. A random number is generated with a 

uniform distribution between 0 and 1. If this random 

value is greater than a pre-defined parameter named as 

Awareness Probability (AP) we go to step 2, otherwise 

we go step 3. 

Step Two: In this step the crow j does not know that 

crow 𝑖 is chasing him. Thus, crow 𝑖, according to the 

following relationship, reaches the crow's hide-out  𝑗: 

𝑥𝑖,𝑖𝑡+1 = 𝑥𝑖,𝑖𝑡 + 𝑟𝑖 × 𝑓𝑙 × (𝑚𝑖,𝑖𝑡 − 𝑥𝑖,𝑖𝑡)  (13) 

where 𝑥𝑖,𝑖𝑡+1 is the location of crow 𝑖 in iteration 𝑡 + 1  

and 𝑥𝑖,𝑖𝑡 is the position of the crow 𝑖 in iteration 𝑡 and 

𝑚𝑖,𝑖𝑡 is the position of the crow 𝑗 in iteration 𝑡 and 𝑟𝑖 is 

the random number described earlier and 𝑓𝑙 is called 

flight length. Figure 4 schematically illustrates this case 

and shows the effect of 𝑓𝑙 on the search ability. Large 

values are the result of global search (far) and small 

values of 𝑓𝑙 are the result of local (neighbourhood) 

search. As shown in Figure 4, the next position of the 

crow 𝑖 is on the line between 𝑥𝑖,𝑖𝑡 and 𝑚𝑖,𝑖𝑡. If 𝑓𝑙 is less 

than 1, the next position of the crow 𝑖 is on a line that 

may exceed 𝑚𝑖,𝑖𝑡 if  𝑓𝑙 is greater than 1. 

Step Three: Crow 𝑗 knows that crow 𝑖 is chasing 

him. Therefore, to protect his stockpile from theft, crow 

𝑗 moves randomly to another location (search space) 

and the crow 𝑖 will be fooled. This can be summarized 

in what follows: 

𝑥𝑖.𝑖𝑡+1 =

{
𝑥𝑖,𝑖𝑡 + 𝑟𝑖 × 𝑓𝑙 × (𝑚𝑖,𝑖𝑡 − 𝑥𝑖,𝑖𝑡)     𝑖𝑓  𝑟𝑖 ≥ 𝐴𝑃

𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

(14) 

Step Four: After updating the crow's position 𝑖 its 

memory will also be updated as follows:  

𝑚𝑖.𝑖𝑡+1 = {
𝑥𝑖,𝑖𝑡+1,      𝑖𝑓  𝐹(𝑥𝑖,𝑖𝑡+1) < 𝐹(𝑚𝑖,𝑖𝑡)

𝑚𝑖,𝑖𝑡 ,                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (15) 

where 𝐹(. ) represents the value of the objective 

function. 

In CSA, all crows generate new positions and 

update their memory. These steps continue until the 

maximum number of iterations. Finally, the best 

memory response is selected as the CSA optimized 

response. 

In CSA, abundance and diversity are mainly 

controlled by the awareness probability parameter 

(AP). By reduction of awareness probability value, 

CSA is tendentious to encourage search on a local area  

 

 

 
Figure 4. Schematic of the CSA mode for 𝑓𝑙 < 1 and 𝑓𝑙 >
1. Crow 𝑖 can move along the line in different positions [30] 
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which is found by an appropriate response there. Thus, 

use of small values of AP, increases abundance. 

Furthermore, by increasing the AP value, the 

probability of searching for an area that is adjacent to 

the current appropriate response is less likely and CSA 

tends to have a global search space (randomly). 

Therefore, use of large values of AP increases 

abundance. Figure 5 displays the pseudo code for crow 

search algorithm [30]. 

 

 

3. CSAPF-SLAM ALGORITHM  
 

As mentioned in the introduction, the SIR method for 

particle sampling is used in response to particle 

degradation problems. However, the SLAM problem 

still involves other issues such as sample depletion and 

high precision estimation with fewer particles. In 

response to these problems, modern particle filtering 

based on intelligent optimization mechanism of the 

biological group is a new development direction. The 

particles in the particle filter are considered as 

individual’s in biological clusters and the distribution 

of particles is simulated using the motion laws of 

biological clusters. In other words, copying particles 

with higher weights and removing samples with lower 

weights and having the same history for the samples in 

the resampling process creates a challenge in 

resampling called particle impoverishment. In fact, the 

loss of particle diversity for estimation has led to the 

lack of particles. To overcome this problem, one 

solution is to diversify the selection of particles after 

resampling. That's why we go to biological group. In 

this article, the group of crows is considered as 

particles. 

The following notes are considered in order to adapt 

the Crow Search Algorithm to the SLAM: 

 

 
1: Randomly initialize the position of a flock of 𝑁  crows in the 

search space 

2: Evaluate the position of the crows 
3: Initialize the memory of each crow 

4: while iter < 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 

5:      for 𝑖 = 1:𝑁 (all 𝑁 crows of the flock) 

6:          Randomly choose one of the crows to follow (for 

example 𝑗) 
7:          Define an awareness probability 

8:               if  𝑟𝑗 ≥ 𝐴𝑃𝑗,𝑖𝑡𝑒𝑟 

9:                𝑥𝑖,𝑖𝑡𝑒𝑟+1 = 𝑥𝑖,𝑖𝑡𝑒𝑟 + 𝑟𝑖 × 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 × (𝑚𝑗,𝑖𝑡𝑒𝑟 − 𝑥𝑖,𝑖𝑡𝑒𝑟) 

10:             else 

11:              𝑥𝑖,𝑖𝑡𝑒𝑟+1 = 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 

12:              end if 

13:     end for 
14:     Check the feasibility of new positions 

15:     Evaluate the new position of the crows 

16:     Update the memory of crows 
17:end while 
 

Figure 5. pseudo code for crow search algorithm 

1. Initial Population Creation: Initial population is 

assumed to be equal to FastSLAM particles and 

their relationships are as follows: 

𝑥𝑖 = 𝑝𝑖 + 𝑢𝑛𝑖𝑓𝑟𝑛𝑑(−휀, 휀, 𝑠𝑖𝑧𝑒(𝑝))  (16) 

where 𝑥 and 𝑝 are crow and particle position, 

respectively. 휀 is a small number, 𝑠𝑖𝑧𝑒(𝑝) 

represents particle dimension and 𝑢𝑛𝑖𝑓𝑟𝑛𝑑(. ) is a 

random uniform distribution. In fact, crows are 

produced using this method based on the particles 

and with a slight difference from particles to 

maintain Fast SLAM correlation. 

2. Determine the fitness function of each crow: To 

have a criterion for updating a crow's memory, after 

updating its location, the appropriate fit function 

must also be selected. 
3. Crow position updating: The following relation can 

be used to update the state of a crow: 

 𝑥𝑘
𝑖 =

{
𝑥𝑘−1

𝑖 + 𝑟𝑖 × 𝑓𝑙𝑘−1
𝑖 × (𝑚𝑘−1

𝑗
− 𝑥𝑘−1

𝑖 )   𝑟𝑎𝑛𝑑 ≥ 𝐴𝑃

𝑝𝑘
𝑖 + 𝑢𝑛𝑖𝑓𝑟𝑛𝑑(−휀,휀,𝑠𝑖𝑧𝑒(𝑝))              𝑟𝑎𝑛𝑑 < 𝐴𝑃

  
(17) 

where 𝑚𝑗 is the best crow position that crow 𝑖 chases 

and 𝑟𝑎𝑛𝑑 is an arbitrary random number. 

Fast SLAM based on the crow search algorithm is 

obtained by substituting the position obtained from the 

crow search algorithm, i.e. Equation (17), in the 

observed position in Equation (8). Therefore, we will 

have the following for the mean value: 

�̃�𝑘 = ∑ 𝑤𝑘
𝑖𝑁𝑠

𝑖=1 ∙ 𝑥𝑘,𝐶𝑟𝑜𝑤
𝑖   (18) 

where 𝑥𝑘,𝐶𝑟𝑜𝑤
𝑖  is obtained by the following recursive 

algorithm: 

𝑥𝑘+1,𝐶𝑟𝑜𝑤
𝑖 =

{
𝑥𝑘,𝐶𝑟𝑜𝑤

𝑖 + 𝑟𝑖 × 𝑓𝑙𝑘
𝑖 × (𝑚𝑘

𝑗
− 𝑥𝑘

𝑖 )       𝑖𝑓  𝑟𝑗 ≥ 𝐴𝑃𝑘
𝑗

𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛                                  𝑜. 𝑤          
  

(19) 

Figures 6 and 7 show the flow and pseudocode of 

proposed algorithm, respectively, that help us in 

implementation and simulation.  

The fitness function in the proposed method is 

calculated based on an innovation. In fact, the 

calculated variance between distance of each particle 

from the average distance between each particle and 

position estimate at that moment is considered as a 

function of fitness. In other words: 

𝐹(�̃�) = ∑
𝑥𝑖−𝑥𝑎𝑣𝑔

𝑥𝑁

𝑁
𝑖=1   (20) 

where 𝐹 is the fitness function and �̃� is the estimated 

position using the proposed algorithm. The 

normalization factor (𝑥𝑁) [8], and 𝑥𝑎𝑣𝑔 are calculated 

as follows: 

𝑥𝑁 =

{
𝑚𝑎𝑥 |𝑥𝑖 − 𝑥𝑎𝑣𝑔|

1≤𝑖≤𝑚
, 𝑚𝑎𝑥 |𝑥𝑖 − 𝑥𝑎𝑣𝑔|

1≤𝑖≤𝑚
> 1  

1                                ,    𝑜𝑡ℎ𝑒𝑟𝑠                                   
  

 (21) 
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Figure 6. Flow of the proposed algorithm 

 

 
1: for 𝑖 = 1:𝑁𝑠  

2:        randomly choose initial state 𝑥0
𝑖  in the search space 

3:        w0
i = 1 Ns⁄  

4: end for 

5: k=1 

6: while (𝑘 <> 0) 

7: // New pose selection and update weights with new observations 

8:      for 𝑖 = 1:𝑁𝑠        

9:             sample a new pose xk
i ~ p(xk|xk−1

i , uk) 

10:            wk
i = wk−1

i ∙ p(zk|xk
i ) 

11:         // Incorporate the measurement 𝑧𝑘
𝑖  into the corresponding  

EKF for mapping 

12:            for 𝑗 = 1:𝑚        

13:                 update mean μj,k
i  

14:                 update covariance Σj,k
i  

15:            end for 

16:      end for 

17:   Apply the selected resampling method for the set of particles 
and their weights to get a new set of particles and weights  

18:   // Initialize crow based on each particle 

19:     for 𝑗 = 1:𝑁𝑠 

20:          𝑥𝑖 = 𝑝𝑖 + 𝑢𝑛𝑖𝑓𝑟𝑛𝑑(−휀, 휀, 𝑠𝑖𝑧𝑒(𝑝)) 

21:     end for 

22:     Initialize the memory of each crow  

23:     Set on number of iteration as  𝑖𝑡𝑒𝑟𝑚𝑎𝑥 

24:     while iter < 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  

25:          for 𝑖 = 1:𝑁𝑠 (all 𝑁 crows of the flock)  

26:          Randomly choose one of the crows to follow (for example 

𝑗)  
27:                Define an awareness probability 

28:                if  𝑟𝑗 = 𝐴𝑃𝑗,𝑖𝑡𝑒𝑟 

29:                    𝑥𝑖,𝑖𝑡𝑒𝑟+1 = 𝑥𝑖,𝑖𝑡𝑒𝑟 + 𝑟𝑖 × 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 × 

(𝑚𝑗,𝑖𝑡𝑒𝑟 − 𝑥𝑖,𝑖𝑡𝑒𝑟) 

30:                else  

31:                      𝑥𝑖,𝑖𝑡𝑒𝑟+1 =  
                              𝑎 𝑟𝑎𝑛𝑑𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 

32:               end if  
33:          end for  

34:          Check the feasibility of new positions  

35:          Evaluate the new position of the crows  
36:          Update the memory of crows 

37:          Determine the fitness function of each crow 

38:      end while 
39:       // Calculate the estimate (Same as probability integral from 

probability density function) 

40:       for 𝑗 = 1:𝑁𝑠  

41:            x̃k = wk
j
. xk

j
 

42:            xk+= x̃k 

43:            Estimate map using μk
j
 and Σk

j
 

44:       end for 

45:       𝑘 = 𝑘 + 1 

46:       if fitness function condition is realized  

47:       𝑘 = 0  

48:       end if 

49:end while 
 

Figure 7. Pseudo code for proposed algorithm 

 

 

𝑥𝑎𝑣𝑔 =
1

𝑁
∑ |�̃� − 𝑥𝑖|

𝑁
𝑖=1   (22) 

 

 

4. EXPERIMENTAL EVALUATION 
 

To evaluate the proposed method and compare it with 

the existing Fast SLAM method, we first deal with the 

problem solving scenario. In the scenario, we look at 

the problem-solving steps and the relationships 

between the sensor observations and the control 

functions to localization and estimate the position of the 

landmarks. 

 

4. 1. Scenario                  In general, our problem-solving 

scenario is as follows:  

1. The robot starts moving from a point and spatial 

variations relative to that point are measured. At the 

starting point of motion, we take space containing Ns 

particles that are randomly generated and have 

weights of 1 𝑁𝑠⁄ .  

2. The robot spends a moment along the way. In this 

case, we are faced with two issues: 
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A) Robot pose localization 

It is clear that the particles must also be moved to new  

points. This particle transfer is applied to each particle by 

control functions (steering angle, speed, and noise). 
 

[

𝑥(𝑘)

𝑦(𝑘)

∅(𝑘)
] = 𝑓(𝑥,𝑢) =

[
 
 
 
 𝑥(𝑘 − 1) + 𝛥𝑇 (𝑣𝑐 𝑐𝑜𝑠(𝜙) −

𝑣𝑐

𝐿
𝑡𝑎𝑛(𝜙)(𝑎 𝑠𝑖𝑛(𝜙) + 𝑏 𝑐𝑜𝑠(𝜙)))

𝑦(𝑘 − 1) + 𝛥𝑇 (𝑣𝑐 𝑠𝑖𝑛(𝜙) +
𝑣𝑐

𝐿
𝑡𝑎𝑛(𝜙)(𝑎 𝑐𝑜𝑠(𝜙) − 𝑏 𝑠𝑖𝑛(𝜙)))

𝜙(𝑘 − 1) + 𝛥𝑇
𝑣𝑐

𝐿
𝑡𝑎𝑛(𝛼) ]

 
 
 
 

  (23) 

 

where 𝑣𝑐, 𝐿, 𝑎 and 𝑏 are robot velocity, the distance 

between the front and rear wheels, the distance between 

the laser and the center of the rear axle and the distance 

between the laser and the center of the front axle, 

respectively. In this way we moved the particles to a new 

position. Now we need to update the weights as well, 

which is based on the relation wi
k ∝ wk−1

i ∙ p(zk|xk
i ). 

Obviously, sampling will also take place if necessary. 

After this step, particle impoverishment correction 

algorithms are performed by affecting location and 

weight. From the new position of the particles and their 

weights, the new location of the robot is approximated by 

Equation (8). If we use the CSAPF method, we conclude 

Equation (18) where 𝑥𝑘,𝐶𝑟𝑜𝑤
𝑖  is obtained by Equation 

(19).  

B) Determining the location of landmarks 

Based on the inverse of the observation model, which is 

the lj,k
i = h−1(zk,xk

i ), the position of each landmark is 

obtained from the point of view of each particle using 

EKF. In the following equation, lj,k
i    represents the 

position of Landmark 𝑗 from the perspective of particle i 

at time k, zk  is observation at time k, and xk
i   is the 

position of particle i at time k, which is obtained in 

section A. The function h, which is the observation 

model, has the following relations for the measurements 

of distance and angle sensors: 

[zr
zθ

] = h(x) = [
√(xl−xv)2+(yl−yv)2

atan(
(yl−yv)

(xl−xv)
)−ϕ+

π

2

]  (24) 

The above equation shows that if the position of the 

robot is known in two-dimensional coordinates (xv,yv) 

and its orientation is 𝜙 and the landmark position is 

(xl,yl), h indicates the measurements received by the 

sensors. Obviously, by inverting this function, the 

location of the landmarks can be approximated based 

on the position of the robot and observation 

measurements.  

3. The robot spends a moment on the path again. At this 

time, determining the position of the robot is like the 

second step. But landmark localization is divided into 

two categories: 

A) Facing new landmarks: The position of the new 

landmarks that the robot encounters are determined as 

in step two.  

B) Facing previous landmarks: If the robot sees the 

previous landmarks again, then the previous position is 

updated with new information. This happens with 

Kalman's gain. This way, using the ℎ function, a 

prediction about the measurements is made from the 

previous position of the landmark and the current 

position of the robot. In other words ẑ = h(lj,k−1
i ,xk

i ). 

Then, we get the updated position of this landmark 

using the 𝑙𝑗,𝑘
𝑖 = 𝑙𝑗,𝑘−1

𝑖 + 𝐾(𝑧𝑘,�̂�) where 𝐾 is Kalman 

gain. It should be noted that at any moment, we have 

assumed that the corresponding variables are known. 

This is one of the assumptions of using Fast SLAM. 

After stating the scenario, to prove the claim, the 

simulation must be performed using valid datasets. In the 

next section, we have dealt with the issue. 

 
4. 2. Simulation           In order to test the proposed 

algorithm, we use simulator and presented dataset in 

Sydney University [26]. In this simulator, the robot is 

equipped with steering wheel angle sensors, laser and 

encoder. We used MATLAB code to simulate a particle 

filter with 150 particles. In this paper, we apply crow 

search algorithm to particle filter based SLAM. This 

paper compares localization accuracy of particle filter 

SLAM and CSAPF-SLAM.  

1. System model  

The schematic diagram of robot motion and robot 

observation is selected in accordance with what is 

shown in literature [12] 

2. Performance analysis  

In MATLAB platform, in a 100m × 100m area, 

original PF-SLAM and CSAPF-SLAM are simulated. 

Robot motion velocity, sensor observation range and 

AP factor are considered 0.5 m/s, 15m and 0.3, 

respectively [12]. System Noise and observation noise 

are considered 0.1. In this paper, the position of the 

landmarks is considered constant in all run. In fact, in 

order to be a good reference for comparison, the data 

received by the sensors on robot and consequently the 

position of the landmarks is considered constant. 

However, this does not mean that the robot or vehicle 

is aware of landmarks position and this does not 

diminish the universality of the method. Figures 8 and 

9 demonstrate simulation results using Fast SLAM and 

the proposed CSAPF-SLAM algorithms respectively. 

Blue and red solid lines represent GPS information and 

estimated path of robot respectively. Green stars 

correspond to landmarks and red stars are their 

estimated position. Horizontal and vertical axis in both 
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figures are in meters. Form Figures 8 and 9 it is found 

that CSAPF-SLAM algorithm has a better performance 

and is closer to the original path (GPS information) than 

PF-SLAM and estimated position of landmarks are 

more accurate. The mean square error (MSE) criterion 

has been used to confirm performance improvement. 

Figures 10 and 11 show the considerable improvement 

of the path and landmarks' position, respectively. The 

graphs show the effect of increasing the number of 

particles on the landmarks position estimation error and 

the path estimation error. As can be seen, the error rate 

in the proposed method has improved significantly 

compared to the Fast SLAM method, and in both 

methods the error rate has decreased with increasing 

number of particles. Vertical axis in both figures are in 

meters. 

It should be noted that the MSE obtained for each 

particle is the result of the average number of times the 

program runs for that particle. In other words, due to 

the random nature of particle selection and the use of 

random distributions in parts of the crow search 

 

 

 
Figure 8. Bailey Simulator results for FastSLAM 

 

 

 
Figure 9.  Bailey Simulator results for CSAPF-SLAM 

 
Figure 10. Mean Square Error between true and estimated 

path for Bailey Simulator 

 

 

 
Figure 11. Mean Square Error between true and estimated 

landmarks position for Bailey Simulator 

 

 

algorithm, similar to other meta-heuristic methods, 

with one run of simulation, proposed method 

performance improvement may not always be observed 

with increasing particle number. However, more 

program runs lead to the conclusion that the MSE mean 

decreases with increasing number of particles. The 

number of runs in our simulations was equal to 5. 

3. Verification using real-world dataset 
To confirm the test in real conditions, a vehicle with 

the sensors mentioned in the previous section will travel 

outdoors for 30 minutes in the presence of trees for a 

distance of 4 km. So here, unlike the methods in which 

landmarks are moving [31], we consider them fixed. 
This data set is known as Victoria Park Dataset and we 

have used it in our work.  

Figures 12 and 13 show the results of Fast SLAM 

and CSAPF-SLAM simulations for Victoria Park 

Dataset, respectively. The horizontal and vertical axes 

are in meters. In both figures, the continuous blue dots 

represent the GPS information and the red line 
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represents the simulations from the two algorithms, and 

the stars represent the landmark position estimates. 

As can be seen from the comparison of the two 

figures, the proposed CSAPF-SLAM algorithm is more 

consistent with the information obtained from GPS. 

Here too, the MSE criterion is used for comparison. 

Figure 14 shows the MSE for estimating the path in 

terms of the number of particles. In this figure, it is clear 

that the proposed CSAPF-SLAM algorithm achieves a 

significant improvement compared to Fast SLAM. 

Another factor that is important to consider is the 

program running time. Although Figure 15 shows the 

longer time required to execute the proposed CSAPF 

method than Fast SLAM, but this amount of time 

increase versus increased accuracy seems negligible. 

It can be seen that in the simulations, if we increase 

the number of particles, 𝑁𝑠 in Figure 7, we get a higher 

accuracy estimate. Although by this we have lost more 

time for processing. Also, if we increase the velocity of 

the robot or vehicle, 𝑣𝑐  in Equation (23), the 

 
 

 
Figure 12. Fast SLAM simulation results using Victoria 

Park Dataset 

 

 

 
Figure 13. CSAPF-SLAM simulation results using Victoria 

Park Dataset 

 
Figure 14. Mean Square Error between true and estimated 

path for Victoria Park Dataset 

 

 

 
Figure 15. Running time of FastSLAM and CSAPF-SLAM 

for Victoria Park Dataset 

 

 

observations and as a result the estimation will be less 

accurate. The next factor that can lead to a more 

accurate estimate is the use of a higher quality laser. 

 

 

5. CONCLUSION 
 

In all particle filter-based algorithms, using resampling 

to overcome particle degeneracy leads to particle 

impoverishment. This problem is also present in 

particle filter-based SLAM methods. Although the 

effect of particle impoverishment improvement is not 

directly observable, a reduction in particle 

impoverishment can be seen in improving the estimate. 

Therefore, our criterion for examining the reduction of 

particle impoverishment is the rate of improvement of 

the estimate.  

There are two conventional ways to overcome this 

problem. The first is to diversify the choice of particle 

location and the other is to better allocate weight to the 

particles. In this paper, we select the first solution to 
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overcome this problem and we present a new method 

called CSAPF-SLAM.  

The proposed method was investigated using the 

Car Park Dataset and Victoria Park Dataset and the 

simulation results show that although more run time 

was spent, the estimation error was significantly 

reduced.  

In the future, situations could be considered in 

which the environment would include moving objects 

in addition to stationary objects, or the problem of 

cooperative SLAM for multiple robots could be 

considered in which multiple robots and their paths 

could be identified.  
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Persian Abstract 

 چکیده 
  ف ی ضع  GPS ی ها  گنالیکه س  یموارد، مانند مناطق   ی است. در برخ  ی خودران ضرور  هینقل  ل یها، از جمله ربات ها و وسا  نهیاز زم  یاریدر بس  یابی  ت یو موقع   ر یمس  یابیرد

  ت ی از اهم (SLAM) همزمان  یبردارو نقشه  یابیمکان   موارد،  نی شود. در ا  یاستفاده م  ن یگزی جا  یابی  تیموقع   ستمیس   کیبه عنوان    ر یمس  یابیرد  ستند،یدر دسترس ن  ایهستند  

  لتر یآنها ف  ان یکرد که در م  ب یترک  گنالیپردازش س  یها  تمیتوان با الگور   یرا م. SLAM ندارد   یتجرب  نیو اثر انگشت آفلا  یبه دانش قبل  یازین   رای برخوردار است، ز  ییبالا

منجر    تخمین  یتنوع ذرات برا  رفتنبا آنها مقابله کرد. در واقع، از دست   دیذرات وجود دارد که بادان  وزن ذرات و فق  تباهیمانند    ییحال، چالش ها  نیذرات برجسته است. با ا

 کلاغ  ی جستجو  تمیالگور  کیمقاله، ما    نی مجدد است. در ا  یبه انتخاب ذرات پس از نمونه بردار دنیراه حل، تنوع بخش  کیمشکل،    نیغلبه بر ا  ی. برامی شودذرات    فقدانبه  

(CSA) عملکرد  تم یالگور  نیدهد که ا  ی نشان م  یساز  هیشب  جی. نتامیکنی م  شنهادیپ  تیموقع   نیمسائل و بهبود تخم  نیغلبه بر ا  یبرا FastSLAM ی بهبود م   یادیرا تا حد ز  

 . بخشد
 
 

 


