A Behavioural Model for Accurate Investigation of Noisy Lorenz Chaotic Synchronization Systems

Document Type : Original Article

Authors

1 Mazandaran Institute of Technology, Babol, Iran

2 Faculty of Electrical Engineering, Babol University of Technology, Babol, Iran

Abstract

This paper presents a behavioral model for noisy Lorenz chaotic synchronization systems. This simple simulation-based model can be used for accurate noise voltage derivation of the chaotic oscillators and the investigation of chaotic synchronization systems. Moreover, the effects of circuitry noise on synchronization of Lorenz systems were analysed by using the proposed model. The performance of the synchronization system was numerically evaluated using ADS and MATLAB-SIMULINK environments. The measurement of Mean Squared Error (MSE) and Error to Noise Ratio (ENR) demonstrates that circuitry noise has a remarkable effect on the performance of chaotic Lorenz synchronization systems. For instance, the results showed that for low Signal to Noise Ratios (SNRs), i.e., , the circuitry noise changed the ENR performance up to 1dB.

Keywords

Main Subjects


  1. Brahmbhatt, B. and Chandwani, H., "Modified second order generalized integrator-frequency locked loop grid synchronization for single phase grid tied system tuning and experimentation assessment", International Journal of Engineering, Transactions B: Applications, Vol. 35, No. 2, (2022), 283-290. doi: 10.5829/ije.2022.35.02b.03.
  2. Khosravi, A. and Gholipour, R., "Parameter estimation of loranz chaotic dynamic system using bees algorithm", International Journal of Engineering, Transactions C: Aspects, Vol. 26, No. 3, (2013), 257-262. doi: 10.5829/idosi.ije.2013.26.03c.05.
  3. Dhanuskodi, S.N., Vijayakumar, A. and Kundu, S., "A chaotic ring oscillator based random number generator", in 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), IEEE. (2014), 160-165.
  4. Cao, H., Zhang, R. and Yan, F., "Spread spectrum communication and its circuit implementation using fractional-order chaotic system via a single driving variable", Communications in Nonlinear Science and Numerical Simulation, Vol. 18, No. 2, (2013), 341-350. doi: 10.1016/j.cnsns.2012.06.027.
  5. Mobini, M., Kaddoum, G. and Herceg, M., "Design of a simo deep learning-based chaos shift keying (DLCSK) communication system", Sensors, Vol. 22, No. 1, (2022), 333. doi: 10.3390/s22010333.
  6. Aslinezhad, M., Sezavar, A. and Malekijavan, A., "A noise-aware deep learning model for automatic modulation recognition in radar signals", International Journal of Engineering, Transaction B: Applications, Vol. 36, No. 8, (2023), 1459-1467. doi: 10.5829/IJE.2023.36.08B.06.
  7. Mobini, M. and Kaddoum, G., "Deep chaos synchronization", IEEE Open Journal of the Communications Society, Vol. 1, (2020), 1571-1582. https://doi.org/10.48550/arXiv.2104.08436
  8. Khan, M.Z., Sarkar, A. and Noorwali, A., "Memristive hyperchaotic system-based complex-valued artificial neural synchronization for secured communication in industrial internet of things", Engineering Applications of Artificial Intelligence, Vol. 123, (2023), 106357. http://doi.org/10.1016/j.engappai.2023.106357
  9. Moskalenko, O.I., Hramov, A.E., Koronovskii, A.A. and Ovchinnikov, A.A., "Effect of noise on generalized synchronization of chaos: Theory and experiment", The European Physical Journal B, Vol. 82, (2011), 69-82. doi: 10.1140/epjb/e2011-11019-1.
  10. Sangiorgio, M., Dercole, F. and Guariso, G., "Forecasting of noisy chaotic systems with deep neural networks", Chaos, Solitons & Fractals, Vol. 153, (2021), 111570. https://doi.org/10.1016/j.chaos.2021.111570
  11. Moon, S., Baik, J.-J. and Seo, J.M., "Chaos synchronization in generalized lorenz systems and an application to image encryption", Communications in Nonlinear Science and Numerical Simulation, Vol. 96, (2021), 105708. https://doi.org/10.1016/j.cnsns.2021.105708
  12. Taheri, M., Chen, Y., Zhang, C., Berardehi, Z.R., Roohi, M. and Khooban, M.H., "A finite-time sliding mode control technique for synchronization chaotic fractional-order laser systems with application on encryption of color images", Optik, Vol. 285, No., (2023), 170948. https://doi.org/10.1016/j.ijleo.2023.170948
  13. Gharaibeh, A., "A behavioral model of a built-in current sensor for iddq testing", Texas A & M University, (2010),
  14. Tamaddondar, M. and Noori, N., "Hybrid massive mimo channel model based on edge detection of interacting objects and cluster concept", International Journal of Engineering, Vol. 35, No. 2, (2022), 471-480. doi: 10.5829/IJE.2022.35.02B.23.
  15. Cuomo, K.M., Oppenheim, A.V. and Strogatz, S.H., "Synchronization of lorenz-based chaotic circuits with applications to communications", IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 40, No. 10, (1993), 626-633. doi: 10.1109/82.246163.
  16. Khanzadi, M.R., Kuylenstierna, D., Panahi, A., Eriksson, T. and Zirath, H., "Calculation of the performance of communication systems from measured oscillator phase noise", IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 61, No. 5, (2014), 1553-1565. doi: 10.1109/TCSI.2013.2285698.
  17. Schwabedal, J.T., Pikovsky, A., Kralemann, B. and Rosenblum, M., "Optimal phase description of chaotic oscillators", Physical Review E, Vol. 85, No. 2, (2012), 026216. doi: 10.1103/PhysRevE.85.026216.
  18. Jin, L., Zhang, Y. and Li, L., "One-to-many chaotic synchronization with application in wireless sensor network", IEEE Communications Letters, Vol. 17, No. 9, (2013), 1782-1785. doi: 10.1109/LCOMM.2013.081313.131169.
  19. Godbole, D., "Phase noise models for single-ended ring oscillators", (2000).
  20. Kaddoum, G., Fournier-Prunaret, D., Chargé, P. and Roviras, D., "Chaos synchronization between lorenz systems using two numerical integration methods", in Proc. Conf. Nonlinear Dyn. Electron. Syst. (2014), 91-94.
  21. Pecora, L.M., Carroll, T.L., Johnson, G.A., Mar, D.J. and Heagy, J.F., "Fundamentals of synchronization in chaotic systems, concepts, and applications", Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 7, No. 4, (1997), 520-543. https://doi.org/10.1103/PhysRevLett.64.821
  22. Li, G., Tan, N. and Li, X., "Weak signal detection method based on the coupled lorenz system and its application in rolling bearing fault diagnosis", Applied Sciences, Vol. 10, No. 12, (2020), 4086. doi: 10.3390/app10124086.
  23. Duong, B.P., Kim, J.Y., Jeong, I., Im, K., Kim, C.H. and Kim, J.M., "A deep-learning-based bearing fault diagnosis using defect signature wavelet image visualization", Applied Sciences, Vol. 10, No. 24, (2020), 8800. https://doi.org/10.3390/app10248800.
  24. Zhou, C., Kurths, J., Kiss, I.Z. and Hudson, J.L., "Noise-enhanced phase synchronization of chaotic oscillators", Physical review Letters, Vol. 89, No. 1, (2002), 014101. https://doi.org/10.1103/physrevlett.89.014101.
  25. Chernoyarov, O., Glushkov, A., Lintvinenko, V., Matveev, B. and Faulgaber, A., "Digital root-mean-square signal meter", International Journal of Engineering, Transactions B: Applications, Vol. 33, No. 11, (2020), 2201-2208. doi: 10.5829/IJE.2020.33.11B.11.