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A B S T R A C T  
 

 

Voice activity detectors are presented to extract silence/speech segments of the speech signal to eliminate 

different background noise signals. A novel voice activity detector is proposed in this paper using 
spectro-temporal features extracted from the auditory model of the speech signal. After extracting the 

scale, rate, and frequency features from this feature space, a sparse structured principal component 

analysis algorithm is used to consider the basic components of these features and reduce the dimension 
of learning data. Then these feature vectors are employed to learn the models by the sparse non-negative 

matrix factorization algorithm. The model learning procedure is performed to represent each feature 

vector with a proper sparse rate based on the selected atoms. Voice activity detection of the input frames 
is performed by computing the energy of the sparse representation for each input frame over the 

composite model. If the calculated energy exceeds a specified threshold, it indicates that the input frame 

has a structure similar to the atoms of the learned models and concludes that the observed frame has 

voice content. The results of the proposed detector were compared with other baseline methods and 

classifiers in this processing field. These results in the presence of stationary, non-stationary and periodic 

noises were investigated and they are shown that the proposed method based on model learning with 
spectro-temporal features can correctly detect the silence/speech activities. 

doi: 10.5829/ije.2023.36.08b.08 
 

 
1. INTRODUCTION1 
 
One of the research fields in the speech signal processing 

is detection of silence/speech areas of the speech signal 

performed by a voice activity detector (VAD). The VAD 

block has an important role to eliminate the background 

noise from the speech signals. So far, different feature 

domains have been used to determine voice activities 

since the performance of VAD is closely related to the 

type of these extracted features. In these methods, an 

attempt is made to separate the speech frames from the 

silent sections of the speech signal. The energy of speech 

signal frames and the calculation of the zero-crossing rate 

(ZCR) are the most advanced features in this processing 

area [1]. Since various detectors have been introduced in 

many fields, this paper only deals with the methods 

presented based on the model learning technique. 

Ahmadi, and Joneidi [2] proposed a VAD algorithm 
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based on the sparse representation technique using an 

orthogonal matching pursuit algorithm (OMP) followed 

by the K-singular value decomposition (K-SVD) 

dictionary learning method. The detection criterion of 

voice activity was based on the energy in the sparse 

representation of the input frame over the learned voice 

dictionary. You et al. [3] proposed a VAD algorithm 

based on the sparse representation technique using the 

Bergman iteration method and online dictionary learning. 

In this algorithm, the sparse power spectrum criterion 

was defined to calculate two types of features and decide 

on the label of the input frames. This criterion was 

achieved by averaging over the different signal segments 

that include the short segment average spectrum and long 

segment average spectrum. The labels of the different 

parts of the input frame are determined by calculating the 

energy in these frames. You et al. [4] optimized 

algorithm for learning speech and noise dictionaries. The 
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goal of this optimization procedure was to reduce the 

coherence value between the learned dictionaries to 

obtain a robust VAD algorithm in the different noise 

conditions. The features used in this method were the 

modified versions of the features presented by You et al. 

[3] and include the long-time average energy and the 

long-time dynamic threshold. Also, Teng and Jia [5] 

designed a VAD algorithm using a non-negative sparse 

coding method with a noise reduction procedure. In this 

method, the input noise signal is first represented in the 

combined dictionary which contains the atoms associated 

with the speech and noise signals. The coefficients 

related to voice segments are then used as the desirable 

features in the conditional random field (CRF) method to 

model the correlation between the feature sequences and 

detect the speech and noise labels for each input frame. 

Mavaddaty et al. [6] used the spectro features of speech 

signal spectrograms to learn the models using the 

concepts of sparse representation and the K-SVD 

algorithm. In this work, two supervised and semi-

supervised methods were presented to eliminate the 

background noise from the speech signal. The main part 

of each method was the presented voice activity detector 

in the wavelet packet transform domain.  

The purpose of this paper is to increase the detection 

accuracy as much as possible based on the proposed 

model-based method by applying the spectro-temporal 

features. In this paper, scale, rate, and frequency 

characteristics extracted from the auditory model of the 

speech signal were used to learn models that show the 

structure of active parts of speech signals. In the 

following, the dimension of the mentioned features was 

reduced by the parse structured principal component 

analysis (SSPCA) algorithm and then the sparse non-

negative matrix factorization (SNMF) algorithm is 

employed to learn the dimensionless feature sets. 

In the second part of this paper, the auditory model 

and its extractive features are introduced. Section 3 

introduces the SNMF model  and the proposed VAD 

algorithm. In section 4, the performance of the proposed 

method is evaluated and the paper is concluded in section 

5. 

 

 

2. Spectro-Temporal Representation Using 
Auditory Model  

 
As stated, the recognition process to detect speech areas 

of the speech signal and separate these frames from the 

silence frames has a great importance in many speech 

processing applications. In this paper, the spectro-

temporal features are used to identify the speech 

segments of the speech signals that can be described 

using the auditory model. In this model, the auditory 

spectrum related to each speech is calculated. Then, the 

spectro-temporal features are extracted using this 

spectrogram and the auditory cortex model [7]. The 

features of the auditory cortex model have four 

dimensions: scale Ω, speech rate ω, frequency f, and time 

or frame number t. The auditory part of the cortical model 

is implemented by a time-frequency filter bank.  Each 

filter can operate at different rates and scales to simulate 

the cochlear of the human ear and the first layer of the 

auditory brainstem. This procedure of filtering at 

different rates and scales is performed linearly in the 

spectro-temporal space by the wavelet transform function 

or the two-dimensional Gabor filter [7-9]. 

The block diagram of the auditory cortex model is 

shown in Figure 1. Initially, the acoustic signal enters the 

filter bank that consist of 128 uniformly distributed 

bandpass filters along the frequency-logarithmic axis that 

models the performance of the outer membrane of the 

human ear. The output of this filter bank with a time-

frequency structure passes from three steps: a derivative 

high pass filter, a nonlinear compressor, and a low pass 

filter to simulate the inner portion of the human ear. In 

the following, the auditory spectrogram of the speech 

signal is obtained by the first-order derivative, half-wave 

rectifier, and integrator. Then, the spectro-temporal 

content of the auditory spectrum is achieved by a filter 

bank consisting of a two-dimensional Gabor filter. Then, 

a four-dimensional speech cortical signal including Ω 

scale in cycles/octave, speech velocity or rate ω in Hertz, 

frequency f, and the frame number of the input speech 

signal t is yielded . 

 

 

3. THE PROPOSED VOICE ACTIVITY DETECTOR 
 

In this section, the proposed VAD algorithm is presented 

using the extracted spectro-temporal features and SNMF-

based model learning. The proposed method employs 

model learning technique to represent the structure of the 

input frame. Model learning in this paper is performed by 

the sparse non-negative matrix factorization algorithm, 

which is the non-negative matrix factorization (NMF) 

procedure that has been added to the nonlinearity 

constraint. 

The combination of the sparse and NMF coding 

algorithms results in a model learning method called 

SNMF [10-12]. This technique results in a sparser 

representation than the NMF algorithm to apply the 

sparse constraints. In the SNMF algorithm, which is more 

robust than the NMF algorithm, the generalized Kolbeck-

Leibler divergence method used to determine lower 

approximation error in the data representation. In the 

sparse encoding technique, each input signal frame can 

be represented as a linear combination of the dictionary 

atoms. In this procedure, it is determined which set of 

atoms and coefficients represent the data frame with the 

least approximation error. These sparse coefficients for 

all input signal frames constitute the H sparse coefficient 

matrix, which is one of the outputs of the SNMF 

algorithm. Many coefficients in the sparse matrix H have 
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a zero value and indicate that each data frame can be 

represented only by a limited number of dictionary 

atoms. The sparsity or cardinality parameter determines 

the number of atoms in each representation procedure. 

The data matrix containing signal frames S can be 

modeled as follows by sparse coding: 

(1) S WH=  

where 
N LW R is a learned model or dictionary in which 

the columns are atoms. The W dictionary matrix contains 

L columns or atoms 
L

l l{W} =1  with the unit norm 

( ):,
W , , ,

l
  l L=  = 

2
1 1

. Also, the K-sparse coefficient matrix 

H with L≫K includes the representation coefficients 

related to the input data matrix [13]. The sparse 

representation problem that consists of the approximation 

error and sparse constraint parts is formulated as follows 

[13]: 

(2) 
*

H

H argmin S WH   s.t.  H C
2

2 0
= −   

where C represents the sparse rate or the number of non-

zero coefficients in each row of the sparse matrix H. This 

parameter must be set correctly to avoid massive coding. 

If the high value is selected for this parameter, the large 

numbers of atoms participate in the representation of the 

input data frame that is improper. On the other hand, if 

the low value is selected for this parameter, the atoms are 

not enough to represent the data structure, and then the 

approximation error increases. The NMF algorithm 

performs a linear analysis on the observed data matrix 
N MS R  and factorizes the input data matrix into two 

dictionary matrix 
N LW R  and the coefficient matrix 

L MH R  as I WH= with non-negative values, which L 

is smaller than M and N [13]. These matrices are 

employed to solve the following optimization problem: 

(3) 
( )  

  ( )

, , ,,
,

:,,

min , ( log( )

) . . , 0, W 1

i j i j i ji j
i j

li j
l

F W H S S WH S

WH      s t    W H

= −

+  =




 

The optimization of this cost function is based on the 

generalized Kullback-Leibler divergence method. 

However, solving this problem with other cost functions 

yields different versions of the NMF algorithm.  

As stated, the SNMF algorithm will obtain a sparser 

representation to consider a specified constraint than the 

NMF algorithm [11-13]. The generalized Kullback-

Leibler divergence algorithm is then used to determine 

the approximation error in the analysis of non-negative 

coefficients, which results in the following optimization 

problem : 

(4) 
( )  

  ( )

, , ,,
,

, :,,
,

min , (S log(S )

)  . . , 0, W 1

i j i j i ji j
i j

k j li j
k j l

F W H WH S

WH α h    s t    W H  

= −

+ +  =



 
 

The α parameter determines the weight coefficient of 

the sparsity part. The update of atoms in the W dictionary 

matrix is as follows: 

(5) 

*
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The NMF algorithm is obtained when the α parameter 

is omitted in Equation (5) [11]. Then, the dimensionality 

of the data matrix is reduced by the SSPCA algorithm to 

learn comprehensive models for the representation of the 

input data structure. The principal component analysis 

algorithm (PCA) is a commonly used statistical method 

to reduce data dimension and is used to convert the input 

data sets into a new set of the independent variables that 

include the maximum changes in the original data [13]. 

This algorithm presented to develop the SSPCA method 

which is used to estimate the basic components by 

applying a sparsity constraint [14]. The benefits of using 

this method include reducing computation time, 

extracting the components with more variance, and 

obtaining appropriate values for important variables of 

each problem. Further, by generalizing this algorithm, the 

SSPCA algorithm is obtained, which can extract the data 

with more variance using the sparsity and some structural 

constraints [15]. The non-convex form of the SSPCA 

algorithm is presented by Jenatton et al. [16] to solve the 

problem of structured sparse dictionary learning. The 

SSPCA is a robust algorithm to solve the occlusion 

problem using the block-coordinate descent algorithm for 

better data analysis. 

 

 

 
Figure 1. Block diagram of the cortical model of the speech signal 
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The block diagram of the proposed method to determine 

the labels of input speech frames using spectro-temporal 

properties is shown in Figure 2. 

 
 

4. DETAILS OF SIMULATION 
 

In this paper, the TIMIT dataset is used to determine the 

efficiency of the proposed method. This comprehensive 

speech dataset contains a large number of speakers and 

expressions that is suitable to consider the performance 

of a VAD algorithm [17]. The sampling rate of speech 

signals is set to 16kHz. The train and test scenarios 

contain 200 and 100 spoken expressions, respectively. In 

the training step, the phrases are uttered by 10 female and 

10 male speakers. In the test step, the phrases uttered by 

3 male and 3 female speakers were employed in the 

speaker-independent test. The data frame length is equal 

to 20 ms and the frame overlap is 50%. The parameter 

settings in the learning procedure are the same for all 

spoken data sources in the train and test scenarios.  

 

4. 1. Simulation Results         In the proposed method, 

the model learning procedure using the SNMF algorithm 

was used to identify silence/speech speech frames. The 

sparsity rate for the dictionary and the coefficients 

matrices in the SNMF algorithm are set to 0.9 and 0.7, 

respectively. These parameter values are achieved based 

on the experimental simulations to result in a lower 

approximation error. Also, the number of iterations and 

the sparsity parameter in the SSPCA as employed in 

dimension reduction are 250 and 0.6, which leads to 

stability in the solving procedure. The performance 

evaluation of the algorithms is determined by the 

classification accuracy rate, which is calculated by the 

percentage of voice and silence frames that have the 

correct labels for the entire test data. In the first step of 

the proposed algorithm, 100 speech signals with 

silence/speech labels selected from the TIMIT dataset are 

used to learn the model of scale, rate, and frequency 

features extracted from the auditory cortex model. The 

auditory model of these signals is computed and then 

applied to the model learning after employing the SSPCA 

dimension reduction algorithm. Finally, the the learned 

models that represent the structural features of the 

silence/speech segments are considered in the 

representation of the test input signal. The sparsity 

parameter in this algorithm means that each input data 

frame can only be represented by a linear combination of 

a small number of learned atoms. This parameter value is 

determined by the cardinality rate. Input data 

classification in this paper is not performed by the usual 

classifiers such as neural networks, support vector 

machine or decision trees, but it is suggested to design 

and use a model-based classifier based on the calculated 

energy of the extracted features from the sparse 

coefficients matrix. In the proposed detection procedure, 

the input signal is sparsely represented by the SNMF 

algorithm on the combinational dictionary D= [Ds Dr 

Df]. This composite model D consists of the learning 

models related to the scale, rate, and frequency features 

with the same parameter values in the training step. Then, 

the energy of the sparse representation coefficients 

obtained on each dictionary is computed as: 

 ( )F s r f

* * *

S R
H ,H ,H SNMF ,  D  D  DY=   (6) 

* * *

l l l

L L L

s r f
E E E

L
,

L
,  

L
H H H

2 2 2

1 1 1

1 1 1
= = =

= = =  s,l r,l f,l
           (7) 

where L represents the length of the frame and s
E , r

E , 

and f
E  are  the energy of the sparse representing related 

to scale, rate, and frequency features. Y  is the 

observation matrix. Also,
*

S
H , 

*

R
H  and 

*

F
H  are sparse 

coefficient matrices related to scale, rate and frequency 

features of the speech signal. The sum of energies is 

calculated and if this energy is more than half the energy 

of the input frame then it can result that the input frame 

contains the voice structure. If the difference between the 

calculated energy in the sparse coding procedure over the 

speech model and the energy of the input frame is less 

than a specified value of ε1=0.04, then the average energy 

of the SNMF coding coefficients for one frame before 

and one frame after the input frame is calculated as the 

short-term energy. The value ε1 has been obtained 

experimentally in various simulations. If the short-term 

energy is higher than half the energy of the input frame, 

the input frame has a speech label otherwise it will have 

a silence label.  
 

 

 
Figure 2. Block diagram of the proposed method to determine silence/speech speech frames using spectro-temporal properties 
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The time-frequency energy plot of the learned atoms 

based on the proposed SNMF-based VAD algorithm 

using the elliptical plots presented by Jafari and Plumbley 

[18] which is shown in Figure 3. This procedure 

determines how much of the time-frequency energy of 

frames is sparsely represented by the learned atoms. 

These plots show that the learned atoms according to the 

proposed method have been able to cover the entire time-

frequency space of the considered speech signals. The 

elliptical plot of the proposed method based on the 

frequency features is concentrated in the center of the 

time axis and it does not include the entire frequency 

content at different times. The proposed method consists 

of a wide time-frequency range caused by a proper 

matching with the content of observation signal and the 

dictionary atoms. 

The spectrogram plots of the atoms learned by the 

proposed method, the frequency features and the spectro-

temporal features are shown in Figure 4. These plots 

show that the learned atoms according to the proposed 

method have the highest energy coverage in the time-

frequency space and can precisely display the structure 

of the speech and silence frames.The parameters setting 

procedure was done according to the experimental 

simulations to have a proper decision on the input frame 

label. Since the input data frame with voice content has 

more energy in the sparse representation on the related 

dictionary so the energy criterion of the resulting sparse 

coefficients is used to determine the appropriate label. As 

a result, there is no need to use other classifiers, and the 

labeling procedure of the input frame can only be 

estimated using the SNMF algorithm. The results of the 

proposed method to detect the silence/speech frames are 

reported in Tables 1 and 2 for the speaker-independent 

and speaker-dependent detection scenarios, respectively. 

It is noteworthy that this paper has tried to evaluate the 

performance of the proposed VAD algorithm with the 

methods presented in the field of sparse representation 

technique. The results show that the proposed method has 

the ability to correctly identify the input area by applying 

the comprehensive learning models based on the 

structural content of the input frames. These results are 

slightly higher in the speaker-dependent scenario than in 

the speaker-independent scenario, which may be due to 

the overlap between the train and test data speakers. 

The results of the proposed algorithm were compared 

with the other voice activity detection methods 

introduced in this processing field. These methods 

include the algorithm presented by Sharma1 and Rajpoot 

[19] that utilizes a zero-crossing rate and clustering 

procedure and also the VAD method which uses a 

clustering method based on the Gaussian mixture model. 

Mavaddaty et al. [6] presented a VAD algorithm based 

on the energy of the sparse coefficient matrices extracted 

from the wavelet packet transform features of speech and 

noise signals. 

 
(a) 

 
(b) 

Figure 3. The elliptical plots of the time-frequency energy 

of the atoms learned by: a) the SMF-based VAD algorithm 

based on frequency features. b) the proposed method based 

on spectro-temporal features 
 

 

 
(a) 

 
(b) 

Figure 4. The spectrogram plot of the atoms learned by: a) 

the SMF-based VAD algorithm based on frequency features. 

b) the proposed method based on the spectro-temporal 

features 

https://www.sciencedirect.com/topics/engineering/coefficient-matrix
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TABLE 1. The average accuracy of the proposed VAD 

algorithm in a speaker-independent scenario 
Average accuracy Silent Voice #Sentences Speaker 

97.84 98.25 97.43 25 Woman 

97.86 98.11 97.62 25 Man 
 

 
TABLE 2. The average accuracy of the proposed VAD 

algorithm in a speaker-dependent scenario 

Average accuracy Silent Voice #Sentences Speaker 

98.28 98.36 98.21 25 Woman 

98.19 98.49 97.89 25 Man 
 

 

The sparse coding procedure was based on a 

combination of orthogonal matching pursuit algorithm 

(OMP) and coherence criterion. 

A VAD algorithm with a combination of 

convolutional recurrent neural network and a recurrent 

neural network was proposed by Wang and Zhang [20]. 

Also, a speech enhancement module was designed to 

improve the performance of VAD system in low signal-

noise ratio conditions. Jordán et al. [21] introduced a 

VAD system to identify correctly the speech frames 

based on recurrent neural networks. The model defined 

in this paper was learned using bidirectional long short-

term memory. 

A comparison is also made with the method presented 

by Ahmadi and Joneidi [2], which is based on a sparse 

representation using the orthogonal matching pursuit 

(OMP) algorithm and K-SVD dictionary learning 

algorithm. As mentioned before the presented VAD 

algorithm employed SNMF learning method with a 

sparse-based statistical structure as a model learning 

method that has been widely used in signal processing in 

recent [22, 23].  

These results are presented in Tables 3 and 4. The 

results show that the proposed method correctly 

identifies the voice and silent regions of the input speech 

signal. This success and superiority over other methods 

can be due to the use of appropriate learned models and 

the dimension reduction algorithm to eliminate the 

outlier data during the training step. In these simulations, 

the results of the speaker-dependent scenario are better 

than the speaker-independent test, which can be due to 

the similarity between the speakers in the train and test 

steps. The results show that employing spectro-temporal 

features and speech signal processing through the 

auditory model is a desirable approach to identify the 

speech frames. The combination of these two techniques 

has many applications as a pre-processing step in speech 

signal analysis. The first two rows in Tables 3 and 4 are 

the same since the methods proposed by Sharma1 and 

Rajpoot [19], they did not employ the learning-based 

technique and the detection procedure for them occurs in 

one step, not in the different scenarios. 

To investigate more the performance of the proposed 

method, the ROC curve obtained from the results of the 

proposed method and other comparable methods in the 

speaker-independent and speaker-dependent scenarios 

are shown in Figures 5 and 6, respectively, which 

emphasize the capability of the proposed method to 

achieve high accuracy in detection procedure . 
 

4. 2. Simulation Results in The Presence of 
Different Noise Signals           The quality of the speech 

signal can be significantly reduced in the presence of 

environmental noise signals and lead to the malfunction 

of hearing aids, automatic speech recognition systems, 

cell phones, etc. In this paper, a single-channel speech 
 

 

TABLE 3. The average accuracy percentage of the proposed 

algorithm and the compared methods to detect the 

silence/speech sections of the speech signal in the speaker-

independent scenario 

Average 

accuracy Silent Voice #Sentences  

96.11 96.67 95.56 50 Zero crossing-based 

method [19] 

97.59 97.78 97.41 50 GMM-based method  

97.56 97.89 97.23 50 
Sparse representation-

based method [2] 

97.94 97.97 97.92 50 
sparse dictionary learning-

based method [6] 

97.81 97.91 97.72 50 NN-based method [20] 

97.88 97.90 97.86 50 CRNN-based method [21] 

98.12 98.19 98.05 50 Proposed method 

 

 

TABLE 4. The average accuracy percentage of the proposed 

algorithm and the compared methods to detect the 

silence/speech areas of the speech signal in the speaker-

dependent scenario 

Average 

accuracy Silent Voice #Sentences  

96.11 96.67 95.56 50 Zero crossing-based 

method [19] 

97.59 97.78 97.41 50 GMM-based method  

97.81 97.93 97.69 50 
Sparse representation-

based method [2] 

97.99 98.01 97.98 50 
sparse dictionary learning-

based method [6] 

97.90 97.99 97.81 50 NN-based method [20] 

98.01 98.09 97.93 50 CRNN-based method [22] 

98.19 98.24 98.14 50 Proposed method 
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Figure 5. The ROC curve obtained from the results of the 

proposed method and other compared methods in the 

speaker-independent scenario 

 

 

 
Figure 6. The ROC curve obtained from the results of the 

proposed method and other compared methods in the 

speaker-dependent scenario 
 

 

processing corrupted by additive noise is considered. 

When the speech signal is exposed to non-stationary 

noise signals, the performance of the VAD algorithm 

decreases. This is especially for speech-like noise 

signals, that have fundamental overlap between the 

components in the spectro-temporal domain. Although 

the evaluation of the VAD algorithm is usually not 

performed in the presence of noise signals, in this paper, 

the performance of the proposed VAD algorithm in 

different noise conditions is investigated.  In none of the 

references in which the proposed method has been 

compared with them, such as [2, 19-23], the performance 

evaluation in the presence of noise has not been done, so 

the results of this method have not been reviewed in the 

noise conditions and only the proposed method has been 

evaluated. 

In this paper, a variety of noise signals consisting of 

white and babble noises from Noisex92 [24] car and train 

noises from Aurora2 [25] as well as piano noise from the 

piano society website1 have been considered to have a 

proper investigation about the performance of the 

proposed method. 

The block diagram of the proposed VAD algorithm to 

determine the labels of the input frames in the presence 

of the mentioned noise signals is shown in Figure 7. The 

learning procedures for speech and different noise signals 

were carried out with the same parameters in the SNMF 

coding algorithm and the dimension reduction technique. 

In recent years, the use of sparse representation 

techniques for voice activity detector algorithms in a 

noisy condition has increased. An ideal VAD is used to 

acquire the data frames needed to learn the noise signal 

dictionary as reported by Sigg et al. [26]. The data frames 

obtained by the non-speech frames of the noisy signal are 

not usually enough to learn a dictionary with low 

approximation error. The noise dictionary learning 

algorithm in this approach is performed in the speech 

enhancement step and leads to a significant increase in 

the computation time. Also, Sigg et al. [27] presented a 

generative coherence-based dictionary learning method 

using the pure noise data to train noise dictionary models. 

The offline learning process was performed with enough 

noise signals. In this paper, the advantages of the SNMF 

technique were utilized to learn the dictionaries for scale, 

rate, and frequency features. The model learning 

procedure for the noise signals is done without any 

problems since adequate noise data is available. This 

learning process for speech  and noise signals  is carried 

 

 
Figure 7. Block diagram of the proposed VAD based on spectro-temporal properties in the presence of noise signals 

 
1 http://pianosociety.com 
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out precisely in the same way. The sparse representation 

in the presence of noise is carried out over a composite 

dictionary that includes speech and noise models as: 
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where sn
E , rn

E , and fn
E  are the energy of the sparse 

representation corresponding to scale, rate, and 

frequency features of each noise signal. Also,
*

Sn
H

, 
*

Rn
H

and 
*

Fn
H

 are sparse coefficient matrices related to scale, 

rate, and frequency features of each noise data class. 

This procedure in the train and test steps should be 

carried out for each noise signal. The learning and 

dimension reduction procedures for all kinds of noise 

signals are done the same as a speech signal. According 

to Equation (8), the input noisy frame is sparsely coded 

over the composite dictionary 
 s r f sn rn fn
D  D  D  D  D D

. In 

this test step, the sum of the energies calculated from the 

sparse coefficient matrices for speech and noise signals 

is considered. The total energy calculated based on 

speech and noise model determines the label of the input 

noisy frames. If this calculated energy over the speech 

signal model is greater then the calculated energy over 

the noise model, the input frame is detected as speech 

frame, otherwise, a noise label is assigned to this frame. 

Also, if the energy difference calculated on the speech 

and noise models is less than a certain limit of ε2=0.08, 

then the total energy of the sparse coding coefficients for 

one frame before and one frame after the input frame is 

calculated over the speech and noise models to obtain the 

short-term energy of this representation. If the average of 

these calculated energies on the speech model is higher 

than the noise model, the speech label is assigned to the 

input frame, otherwise the noise label. 

The average results of the proposed method to assign 

the proper labels in a speaker-independent scenario in the 

presence of various noise signals with 10dB SNR are 

shown in Table 5. Also, these results in a speaker-

dependent scenario are reported in Table 6. For more 

evaluation of the performance of the proposed VAD  in 

different conditions, the average results of the proposed 

VAD in the speaker-independent and speaker-dependent 

scenarios in the presence of various noise signals with 

5dB SNR are shown in Tables 7 and 8, respectively. 

From the reported values in Tables 5-8, it can be 

concluded that the accuracy of the proposed method 

decreases as the SNR value decreases. Also, the accuracy 

of labeling to silence/speech in the presence of noise 

signals with stationary content such as white noise is 

higher than other noise signals. The accuracy in the 

presence of periodic piano noise signal with harmonic 

structure is more accurate than in other conditions. In 

 

 
TABLE 5. The average accuracy percentage of the proposed 

algorithm to detect the silence/speech frames in a speaker-

independent scenario and the presence of noise signals with 

SNR=10dB 

Average 

accuracy Silent Voice #Sentences  

98.12 98.19 98.05 100 Without noise 

97.10 97.01 97.20 100 White noise 

95.22 95.47 94.98 100 Car noise 

97.11 97.21 97.02 100 Piano noise  

94.21 94.22 94.20 100 Babble noise 

94.91 95.23 94.59 100 Train noise 

 

 
TABLE 6. The average accuracy percentage of the proposed 

algorithm to detect the silence/speech frames in a speaker-

dependent scenario and the presence of noise signals with 

SNR=10dB 

Average 

accuracy Silent Voice #Sentences  

98.19 98.24 98.14 100 Without noise 
97.34 97.18 97.51 100 White noise 
95.49 95.76 95.23 100 Car noise 

97.27 97.33 97.21 100 Piano noise 

94.32 94.36 94.28 100 Babble noise 

95.04 95.32 94.76 100 Train noise 

 

 

TABLE 7. The average accuracy percentage of the proposed 

algorithm to detect the silence/speech frames in a speaker-

independent scenario and the presence of noise signals with 

input SNR=5dB 

Average 

accuracy Silent Voice #Sentences  

98.12 98.19 98.05 100 Without noise 

94.18 94.26 94.11 100 White noise 

92.76 93.31 92.22 100 Car noise 

94.55 94.63 94.47 100 Piano noise  

92.30 92.47 92.13 100 Babble noise 

92.85 93.06 92.65 100 Train noise 
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TABLE 8. The average accuracy percentage of the proposed 

algorithm to detect the silence/speech frames in a speaker-

dependent scenario and the presence of noise signals with 

SNR=5dB 

Average 

accuracy Silent Voice #Sentences  

98.19 98.24 98.14 100 Without noise 

94.57 94.41 94.73 100 White noise 

93.00 93.49 92.51 100 Car noise 

94.79 94.88 94.70 100 Piano noise 

92.59 92.66 92.53 100 Babble noise 

93.07 93.30 92.84 100 Train noise 

 
 

addition, the results of the proposed VAD algorithm has 

been considered in the presence of the car noise signal 

that has a stationary structure. But in the presence of 

babble noise, which is very similar to the speech signal, 

accuracy is greatly reduced. It should be noted that in the 

speaker-dependent scenario, the results are slightly 

higher than in the speaker-independent scenario in 

different situations because there is an overlap between 

the speakers in the train and test steps. Therefore, it can 

be concluded that the best results are obtained in the high 

SNR value, in the presence of white and piano noise 

signals, and the speaker-dependent scenario. Also, the 

performance of labeling in the case of speech frames that 

consist of consonant letters such as fricatives that have a 

similar structure to the noise signal may be decreased. 

The average accuracy values in the speaker-dependent 

and independent scenarios evaluated at two SNR values 

of 10dB and 5dB are represented in Figure 8. These 

results are obtained for a clean speech signal case and 

five stationary, non-stationary and periodic noises: white, 

car, train, babble, and piano signals. In general, it can be 

 

 

 
Figure 8. Performance comparison of the proposed method 

in terms of average accuracy in speaker-dependent and 

independent cases in 10dB and 5dB SNRs 

concluded that the reported results emphasize that the 

proposed VAD has an appropriate performance in 

different noisy conditions.  

 
 
5. CONCLUSION 
 
Voice activity detection methods are very effective in the 

various fields of signal analysis and speech processing as 

a pre-processing block. In this paper, this detection 

procedure is performed in the space of spectro-temporal 

features. The features extracted from this space are used 

to learn comprehensive models of the input data 

structure. The dimension of these feature matrices is 

reduced by the SSPCA algorithm. Then the resulted data 

are used to learn models using the SNMF method which 

has a sparse-based statistical structure. In the following, 

by computing the energy derived from the representation 

of the input frame features on the composite model, the 

label of the input frame is identified. Also, these results 

have been examined for an extensive range of noise types 

including the stationary, non-stationary, and periodic 

noise signals in two SNR values of 5dB and 10dB. The 

simulation results in both speaker-independent and 

speaker-dependent scenarios indicate the superior 

performance of the proposed method compared to the 

other methods presented in this processing field. 
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Persian Abstract 

 چکیده 
آشکارساز  اند. در این مقاله یک  زمینه ارائه شدههای مختلف نویز پس های سکوت/صوت سیگنال گفتار برای حذف سیگنال آشکارسازهای فعالیت صوتی برای استخراج بخش

های مقیاس، نرخ و فرکانس زمانی استخراج شده از مدل شنیداری سیگنال گفتار پیشنهاد شده است. پس از استخراج ویژگی -های طیفیفعالیت صوتی جدید با استفاده از ویژگی 

های یادگیری استفاده ها و کاهش ابعاد دادهفتن اجزای اصلی این ویژگی های اساسی ساختارمند تُنُک برای در نظر گراز این فضای ویژگی، از یک الگوریتم تجزیه و تحلیل مولفه 

شوند. روش یادگیری مدل برای نشان دادن هر بردار شود. سپس این بردارهای ویژگی برای یادگیری مدل توسط الگوریتم فاکتورسازی ماتریس تُنُک غیرمنفی استفاده میمی

های ورودی با محاسبه انرژی نمایش تُنُک برای هر فریم ورودی بر روی گیرد. تشخیص فعالیت صوتی فریمانتخاب شده انجام می هایویژگی با نرخ تُنُک مناسب براساس اتم 

و نتیجه گیری  های مدل آموخته شده دارد  دهد که قاب ورودی ساختاری مشابه اتمشود. اگر انرژی محاسبه شده از یک آستانه مشخص فراتر رود، نشان میمدل ترکیبی انجام می 

های پایه در این زمینه از پردازش سیگنال گفتار مقایسه  کنندهبندیها و طبقهشود که قاب مشاهده شده دارای محتوای صوتی است. نتایج آشکارساز پیشنهادی با سایر روشمی

تواند زمانی می -های طیفید که روش پیشنهادی مبتنی بر یادگیری مدل با ویژگیشوشود. این نتایج در حضور نویزهای ایستا، غیرایستا و متناوب بررسی شده و نشان داده میمی

 های سکوت/گفتار را تشخیص دهد. به درستی فعالیت 

 
 
 
 


