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A B S T R A C T  
 

 

Many problems do not have one or more variables that determine quality characteristics. In these 
situations, as a solution method, a profile is descibed by linking independent variables to the response 

variable. One of the common assumptions in most monitoring schemes is the assumption of independent 

residuals. Contravention of this assumption can lead to misleading results of the control chart. On the 
other hand, when the data are contaminated, the classical methods of estimating the parameters do not 

perform well. Such situations require robust estimation methods. Hence, this paper proposes a robust 

method to estimate the process parameters for Phase I monitoring autocorrelated multiple linear profiles. 
The developed control chart is appraised in the absence and presence of contaminated data through 

comprehensive simulation studies. The results showed that the robust estimator decreases the impact of 

contaminated data on the performance of the proposed control chart for all outlier percentages and shift 
magnitudes. Generally, in all three scenarios, including outliers in the model parameters and error 

variance, the robust approach performs better than the comparative method. 

doi: 10.5829/ije.2023.36.08b.03 
 

 
1. INTRODUCTION1 
 
Control charts are an essential tool for quality 

practitioners to improve industrial and service processes. 

For example, Sogandi and Vakilian [1] used control chart 

to estimate a step change in Gamma regression profiles. 

Sometimes, the quality characteristic of a product or 

process can be described by a relationship between 

response and predictor variable(s) typically known as a 

profile. Profiles can be categorized based on their 

functional forms into polynomial profiles, simple linear 

profiles, multiple linear profiles, generalized linear 

model profiles and so on. As the first review papers on 

profile monitoring, Woodall et al. [2] and Woodall [3] 

provided a comprehensive introduction and research gaps 

on profile monitoring. In this respect, Saghaei et al. [4] 

surveyed different types of profiles, and introduced the 

definition and applications of profile monitoring. In real 

applications, John and Vaibha [5] also demonstrated the 

application of the control chart for monitoring the quality 
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characteristics exhibiting a nonlinear profile during time. 

Sogandi and Vakilian [1] and Khedmati et al. [6] 

surveyed AR(1) autocorrelated structure to estimate a 

change point in simple linear and polynomial profile, 

respectively. Niaki et al. [7] also provided a control chart 

based on the generalized linear test to monitor 

coefficients of the simple linear profiles. More recently, 

Abbasi et al. [8] presented a new monitoring scheme for 

non-parametric profiles using an adaptive Exponentially 

Weighted Moving Average (EWMA) control chart. This 

control chart, EWMA is developed under a type II 

censoring life test by mohammadipour et al. [9]. For the 

sake of brevity, other related research about profile 

monitoring is referred to Maleki et al. [10], in which an 

overview is performed on research published during the 

period 2008–2018.  

In the aforementioned studies, the profile parameters 

are often estimated by methods, which perform 

appropriately without outliers. However, in many real 

cases, there may exist some contamination on the 
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samples due to many reasons, such as the worker's fault. 

Applying the classical methods of parameter estimation 

in the presence of outliers would lead to inaccurate 

estimations and as a result, the erroneous performance of 

the monitoring scheme. To deal with these challenges, 

robust estimations are better properties than classical 

estimations. As one of the pioneering robust works, Khoo 

[11] suggested two time-weighted robust monitoring 

schemes for the process variance that the interquartile 

sample range for the control limits. In the profile 

monitoring field, Xuemin et al. [12] suggested a robust 

distribution-free approach to monitor linear profiles 

using rank-based regression to monitor nonparametric 

profiles. For simple linear profiles, Ebadi and Shahriari 

[13] used two robust methods, including the M-estimator 

and Huber estimator, in Phase I data with contamination. 

Similarly, Shahriari et al. [14] applied two methods for 

robust estimation of complex profiles using a 

nonparametric method for Phase I monitoring. After that, 

Shahriari and Ahmadi [15] proposed a robust estimation 

of complicated profiles. Also, Hakimi et al. [16] 

employed robust approaches using the M-estimator and 

the redescending M-estimator for Phase I monitoring of 

the logistic regression profile to reduce the impact of 

contaminated data. Furthermore, Ahmadi et al. [17] 

proposed a robust wavelet-based profile monitoring in 

Phase II in a two-stage process. For a simple linear 

profile, Hassanvand et al. [18] used two robust M‐

estimators for the parameter estimation to eliminate the 

detrimental impact of outliers in Phase I monitoring. 

After that, Kordestani et al. [19] suggested a monitoring 

scheme for monitoring multivariate simple linear profiles 

based on a robust estimation method. Moheghi et al. [20] 

considered robust estimation to monitor model 

parameters in GLM-based profiles with contaminated 

data. In recent years, Khedmati and Niaki [21] considered 

simple linear profiles based on robust parameter 

estimation in multistage processes in Phase-I. They 

proposed two robust methods, namely the MM-estimator 

and Huber’s M-estimator with outliers in historical data. 

Despite of the many studies in profile monitoring, there 

are few works for robust profile monitoring with 

autocorrelation within profile data.  

The critical assumption in many profile monitoring 

procedures is that the observations within or between 

profiles are independent. However, there are many cases 

in the real world where this assumption is violated. So 

far, some work has shown correlations within or between 

profiles. In Phase I monitoring, Jensen et al. [22] 

suggested a mixed model to describe the autocorrelation 

structure within each profile. Moreover, Jensen and Birch 

[23] used nonlinear hybrid models to extend a monitoring 

scheme for autocorrelated nonlinear profiles. Afterward, 

Soleimani et al. [24] suggested a transformation to 

remove the autocorrelation structure between 

observations within simple linear profiles. In a similar 

method, Soleimani and Noorossana [25] studied the 

impact of autocorrelation in Phase II monitoring in 

multivariate simple linear profiles. Another research in 

this scope is Narvand et al. [26] in which they extended 

a Phase II monitoring scheme for auto-correlated linear 

profiles. In this paper, they used Hotelling’s T2, 

multivariate cumulative sum, and multivariate EWMA 

control charts to monitor the process. In Phase II 

monitoring, Soleimani and Noorossana [27] developed a 

control chart for the multivariate simple linear profiles 

considering autocorrelation between observations for 

each profile. In the same type of autocorrelation, Yang et 

al. [28] suggested two Shewhart multivariate control 

charts to monitor a linear profile as well. To eliminate the 

effects of autocorrelation, Soleimani et al. [29] proposed 

three methods based on time series models for 

monitoring multivariate simple linear profiles with 

autocorrelation between profiles. Also, they 

demonstrated that the presence of outliers has a 

deleterious effect on the control chart performance. 

Among a few works concentrating on robust methods 

for profile monitoring, only Kamranrad and Amiri [30] 

developed a robust control chart for auto-correlated 

simple linear profiles. Ahmadi et al. [31] suggested a 

control chart for Phase II monitoring of multiple linear 

profiles in which two robust estimate methods, the M-

estimator, and fast-τ-estimator, were used. They showed 

their robust control chart based on M-estimator performs 

better than the fast-τ-estimator under high contamination 

data. To the best of the authors' knowledge, there is no 

more research on robust estimation for autocorrelated 

profiles monitoring. Hence, in this research, we 

considereed the robust monitoring of autocorrelated 

multiple linear profiles in Phase I. On this subject, the 

robust estimation approach will be appraised using the 

control signal probabilities. Besides, we survey the 

benefits of using the proposed approach against the 

classical estimation method with and without outliers. 

The structure of this paper is as follows: The second 

section provides the statistical model and corresponding 

assumptions of the considered process. Then, the 

classical and robust estimators were reviewed for the 

model parameters of autocorrelated multiple linear 

profiles. Section 3 proposed robust control chart for 

monitoring autocorrelated multiple linear profiles. 

Section 4 related to the performance evaluation by some 

simulation results to validate the proposed robust control 

chart. Finally, our concluding remarks and future studies 

provided in section 5. 

 

 

2. STATISTICAL MODEL AND ASSUMPTION 
 

In this section, we model the problem and describe the 

corresponding assumptions. Let m samples of 

observations be available, and n fixed values of the 
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predictor variable in each sample. We define the 

autocorrelated multiple linear profile model for the jth 

sample profile in which (xi, yij) is the observation vector

1,2( ).j m= ,...,  Assume that the process is in a state of 

statistical control, the autocorrelation within the profile 

can be modeled using Equation (1): 

0 1 1 2 2

( )

... ,

,

= + + + + +

= +

ij i i p pi ij

ij i-1 j ija

y β β x β x β x ε

ε φε
 (1) 

where 
ijy  is ith observation in jth sample profile

1,2( ).i n= ,...,  Let 
ipx  the pth value of the independent 

variable for ith observation which is fixed from sample to 

sample. Also, 1,2( 0 )k pβ k = , ,...,  are the parameters of 

the regression model in the autocorrelated multiple linear 

profile. 
ij ’s are the autocorrelated error terms and

ija

’s are independent identically normal distributed with 

mean zero and variance 2. We assume that there is 

autocorrelation within a multiple linear profile and the 

autocorrelation structure is a first-order autoregressive 

(AR(1)) model. In the following subsection, we will 

show how to eliminate the autocorrelation structure 

between observations within multiple linear profile. 

 

2. 1. Autocorrelation Elimination Method       The 

autocorrelation structure among error terms leads to 

autocorrelation between data in each profile. Hence, a 

transformation method should be used to remove the 

impact of autocorrelation. In this regard, each 

observation is transformed using Equation (2): 

'

1= −ij ij (i- )jy y φy  (2) 

According to Equations (1) and (2) can be easily written 

for (i-1)th observation in the jth profile.  

( 1`) 0 1 ( 1`)1 2 ( 1`)2 ( 1`) ( 1)... ,= + + + + +i- j i- i- p i- p i- jβ β β βy x x x ε  (3) 

By replacing Equations (1) and (3) into Equation (2), and 

simplification it, for each observation, we will obtain 

Equation (4):  

'

0 1 1 1( 1`)(1 ) ) ...= − + − +ij i i-β βy φ (x φx

( 1`) ( 1)) ( ),+ − + −p pi p i- ij i- jβ (x φx ε φε  
(4) 

leading to Equation (5):  

' ' ' ' ' ' ' '

0 1 1 1 2 ... ,= + + + + +ij i i p pi ijy β β x β x β x a  (5) 

In which '

0 0 (1 )= −ββ φ , and 
ija ’s are independent 

random variables with mean zero and variance 2.  

Moreover, ' =k kβ β , 
'

( 1`)= −ki ki k i-x x φx , for each 

explanatory variable 1,2( ),k = ..., p . As it is clear 

Equation (5) is a multiple linear profile with independent 

error terms. In the next section, the proposed methods of 

parameter estimation are given. 

 

2. 2. Robust Estimation of Model Parameters    
Usually, for uncontaminated cases, the ordinary least-

square estimation (LSE) method is utilized to estimate 

the model parameters. For each sample, the least-square 

estimator for 
0 1( , ,..., )=β pβ β β  is achieved using 

minimizing the sum of squared errors ( ) ( ) ,− −
T

y xβ y xβ

and it is given by Equation (6). 

( )
1

ˆ .
−

= T T
β x x x y  (6) 

Equation (6) should be derived using all samples, even 

out-of-control profiles. This effect is known as the 

masking effect and leads to changing the value of 

statistics. The signicant outliers intensify this impact. To 

deal with this challenge, a robust estimation method 

should be used. If few contaminated data exist in a 

random sample, there are two methods to cope with this 

sample, including eliminating it and keeping it in which 

some information may be eliminated, or inaccurate 

estimates may be achieved. Hence, applying robust 

estimations is rational because they give unbiased 

estimations, under both contaminated data and outlier 

free. On this subject, researchers have applied robust 

regression with slighter sensitivity to outliers using 

appropriate weighting method. Many robust estimators 

have been suggested so far. Among these methods, M‐

estimator is the most introduced method introduced by 

Huber [32] because it has higher efficiency. On the other 

hand, Ahmadi et al. [32] showed the M-estimator is better 

than the fast-τ-estimator in high contamination for Phase 

II monitoring of multiple linear profiles. Hence, we 

estimate the parameters of autocorrelated multiple linear 

profile using the M-estimator, which are a generalization 

of maximum likelihood estimation.  

Usually, s is the median absolute deviation, a robust 

estimator, defined as follows by Abu-Shawiesh [33] 

according to Equation [7]: 

( )

0.6745
.

i i
med e - med e

s =  (7) 

Considering s as a robust scale estimate, M-estimator 

could be calculated using minimizing a function (.)ρ  of 

regression residuals according to Equation (8): 

1

min ,
=

 
 
 


n

i

i

e
ρ

s

 
(8) 

in which ρ is a function of Huber or bisquare weight 

function. The bisquare function, as one of the main 

weighting functions is used here. Theψ( )x  is the 

derivative of (.)ρ and the other functions, from a family 

of bisquare function given by Shahriari et al. [34]  
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according to Equations (9) and (10):  

( )

3
2

1 1    
,

  1                           

    − −     =    



x
x k

ρ x k

x > k

 

(9) 

( )

2
2

1         
,

  0                                

    −     =    




x
x k

w x k

x k

 

(10) 

where k value should be chosen so that the resultant 

estimate would have a suitable asymptotic 2σ .  Shahriari 

et al. [34] proved that these functions apply well with 

k=4.68. 

 

2. 3. Proposed Robust Monitoring Scheme for 
Autocorrelated Multiple Linear Profiles           We 

use 2

IT  which is based on intra-profile pooling and 

sample average in Phase I monitoring. Consider β̂ j
 can 

be shown by 
0 1 2

ˆ ˆ ˆ ˆ( , , ,..., )j j j pjβ β β β  vector for each profile. 

Note that estimation of ˆvar( )β j
 is equal to Equation (11). 

For more details see Yeh et al. [35]. 

( )
1

ˆˆvar( ) .
−

= T

jβ X WXj
 (11) 

Hence, an estimate of variance-covariance matrix could 

be obtained by taking the average of values of ˆˆvar( )β j
 

according to the 

1

1 ˆˆvar( )
=

= S β
m

I j

jm

. In a similar way, the 

estimation of average parameters is equal to the 1

ˆ

ˆ ==

i

β

β

m

j

m

 

across all m samples. Therefore, 2

IT control chart is 

obtained by Equation (12) to monitor the regression 

model parameters in autocorrelated multiple linear 

profiles. 

( ) ( )2 1ˆ ˆ ˆ ˆ .−= − −
T

β β S β βI, j j I jT  (12) 

The proposed 2

IT  control chart trigger a statistical alarm 

when 2

I, jT >UCL  in which Upper Control Limit (UCL) is 

obtained by 
11 .p+1,m(n- p- ),αUCL = (p+ )F  In this regard, 

Figure 1 depicts a general graphical scheme about the 

robust control chart for Phase I monitoring of 

autocorrelated multiple linear profiles. 
 

 

3. SIMULATION STUDY AND PERFORMANCE 
EVALUATION 
 

In this section, taking into account contaminated data, 

some simulation studies are provided to evaluate the 

performance of the proposed monitoring scheme in Phase 
 

 
Figure 1. Flowchart of proposed robust monitoring scheme 

 
 

I. The number of runs in Monte-Carlo simulation is 

10000 in R software. On this subject, to apply classical 

and robust estimators, a simulation example of an 

autocorrelated multiple linear regression model is 

utilized to generate the data by Equation (13): 

1 2

( )

3 1.2 1.3

0.8

,

,

= + + +

= +

ij i i ij

ij i-1 j ija

y x x ε

ε ε
 (13) 

In which 
ija  is the independent random variable, and 

follow a Normal distribution with mean 0 and 2 1.=σ  Let 

explanatory variables equal to 
0 1,1,...,1( ),=x

1 0.2,0.4,0.6,..., 4( )=x  and 
2 0.1,0.3,0.5,..., 2( ).=x  Consider 

that 10 observations are generated for each level of 

number=number+1 

j<m 
Ye

s 

Start 

Generate m data from the autocorrelated multiple linear 

profiles 

Generate outlier data by simulation and imposing the 

shift 

Converting to the multiple linear profile with independent 
error terms 

Estimate parameters by classic estimator and M-estimator 

 mfor  Use the control chart by computing the statistic 

No 

Ye

s 

No 

Power =number/ m 

Signal probability = Sum(Power)/N 

Repeat this process N 

times 

En
d 

https://www.powerthesaurus.org/for_more_details_see/synonyms
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explanatory variables. Hence, the total number of 

observations in each profile is 200. To appraise the 

estimation of the model parameters, 30 random samples 

are generated under different shifts and given 

contamination percentages. After that, a percentage of 

the simulated data is contaminated by shifting the model 

parameters of the autocorrelated multiple linear profile as

0 1 2,  ,+ + +β β βλ λ λ. 

In this regard, different contamination percentages 

are considered using global outliers to evaluate the robust 

and classical estimates. Then, the mean and standard 

deviation of estimates in autocorrelated multiple linear 

profile are calculated under global outlying conditions. In 

the global contamination, a given percent of observations 

in all profiles should be replaced with contaminated data. 

For this aim, (c) percent of the data  of each profile 

include outliers, and (100-c) percent of them are 

simulated by the pre-specified autocorrelated multiple 

linear profile. In other words, 10 levels were randomly 

selected from all the profiles, and in this regard, even 

levels are considered. According to the conducted 

simulation study, Table 1 shows the accuracy and 

standard deviation of both estimators in the presence of 

outliers in which λ  ( 0.3,0.6,0.9,1.2,1.5λ= ) is the shift 

magnitude in the intercept.  

Based on the simulation results provided in Table 1, 

in the absence of contamination, robust and classical 

estimators are almost identical. Also, it can be inferred 

that the proposed robust estimation method outperforms 

the classical estimation method in the presence of 

contamination. That is, the robust estimator gives more 

accurate estimates of 𝛽0 compared to the estimator 

obtained by the LSE method regardless of outlier 

percentages and shift magnitudes. The conventional 

criterion used in Phase I monitoring for performance 

comparison of control charts is the probability of signal. 

Hence, we calculate signal probability of T2 control chart 

after estimation of the regression coefficients. When 

there are no outliers in the process, the upper control limit 

of the T2 control chart is set equal to 10.83 considering 

α=0.005. In this regard, Table 2 gives simulation results 

for different shifts with contamination in the intercept 

parameter. 

 
 
TABLE 1. Performance evaluation of classical and robust 

estimations under contamination in 𝛽0 

Method Classic Robust 

c 
Shift 

(λ) 

Parameter 

estimation 

Standard 

deviation 

Parameter 

estimation 

Standard 

deviation 

5 

0 2.911 1.142 2.999 0.940 

0.3 3.104 1.147 3.007 0.941 

0.6 3.155 1.175 3.025 0.943 

0.9 3.221 1.189 3.031 0.944 

1.2 3.284 1.200 3.080 0.955 

1.5 3.419 1.208 3.137 0.966 

10 

0 3.006 1.164 2.974 0.939 

0.3 3.247 1.170 3.006 0.940 

0.6 3.303 1.178 3.038 0.945 

0.9 3.382 1.183 3.127 0.952 

1.2 3.558 1.193 3.206 0.972 

1.5 3.576 1.231 3.267 0.988 

15 

0 3.040 1.142 2.962 0.936 

0.3 3.255 1.156 3.054 0.946 

0.6 3.370 1.163 3.172 0.954 

0.9 3.414 1.181 3.231 0.982 

1.2 3.777 1.191 3.279 0.984 

1.5 3.945 1.284 3.428 1.002 

20 

0 3.054 1.181 2.976 0.949 

0.3 3.243 1.182 3.031 0.956 

0.6 3.472 1.191 3.193 0.960 

0.9 3.738 1.201 3.330 0.976 

1.2 3.834 1.206 3.578 0.981 

1.5 4.125 1.246 3.761 0.986 

25 

0 773.0  8121.  270.3  950.9  

0.3 4333.  2901.  1113.  660.9  

0.6 823.4  1131.  3273.  070.9  

0.9 3883.  3221.  063.3  680.9  

1.2 9353.  6331.  7773.  190.9  

 1.5 2044.  4631.  1853.  920.9  

 

 

TABLE 2. Performance of T2 control chart for shifts of various 

magnitudes in the presence of contamination in  𝛽0 

Method Classic Robust 

c Shift (λ) Signal probability Signal probability 

5 

0 0.005 0.005 

0.3 0.328 0.616 

0.6 0.461 0.679 

0.9 0.563 0.741 

1.2 0.667 0.771 

1.5 0.754 0.809 

10 

0 0.005 0.005 

0.3 0.444 0.733 

0.6 0.643 0.834 

0.9 0.820 0.916 

1.2 0.889 0.961 

1.5 0.960 0.987 
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15 

0 0.005 0.005 

0.3 0.566 0.787 

0.6 0.802 0.925 

0.9 0.931 0.981 

1.2 0.982 0.977 

1.5 0.992 0.998 

20 

0 0.005 0.005 

0.3 0.629 0.856 

0.6 0.871 0.957 

0.9 0.969 0.996 

1.2 0.985 0.999 

1.5 0.999 0.999 

25 

0 0.005 0.005 

0.3 6580.  6870.  

0.6 820.8  660.9  

0.9 730.9  80.99  

1.2 60.98  0.999 

1.5 0.999 0.999 

 
 

According to Table 2, when there is contamination in 

the intercept parameter, the robust control chart will 

show considerably better performance than classical 

control chart. Moreover, it shows that the presence of 

outliers in the clean observations causes to increase the 

signal probabilities. Also, whatever the magnitude of 

shifts increases, the signal probability values will be 

larger in both estimators. Similar to the previous tables, 

when there is contamination in 𝛽1, Tables 3 and 4 

summarize the estimators and signal probability of T2 

control chart, respectively. 
 

 

TABLE 3. Performance evaluation of classical and robust 

estimations under contamination in  𝛽1 

Method Classic Robust 

c 
Shift 

(λ) 

Parameter 

estimation 

Standard 

deviation 

Parameter 

estimation 

Standard 

deviation 

5 

0 1.055 1.124 1.154 0.923 

0.3 1.244 1.165 1.186 0.941 

0.6 1.487 1.171 1.234 0.950 

0.9 1.625 1.185 1.493 0.957 

1.2 1.989 1.158 1.711 0.929 

1.5 2.226 1.164 2.024 0.969 

10 

0 1.045 1.170 1.182 0.964 

0.3 1.300 1.208 1.259 0.967 

0.6 1.519 1.167 1.381 0.951 

0.9 1.736 1.180 1.464 0.952 

1.2 2.044 1.185 1.988 0.973 

1.5 2.299 1.197 2.074 0.988 

15 

0 1.002 1.148 1.173 0.948 

0.3 1.359 1.152 1.229 0.944 

0.6 1.617 1.159 1.267 0.957 

0.9 1.805 1.167 1.427 0.974 

1.2 2.010 1.160 1.551 0.979 

1.5 2.358 1.186 2.035 0.982 

20 

0 1.013 1.168 1.208 0.933 

0.3 1.367 1.204 1.276 0.935 

0.6 1.606 1.152 1.426 0.949 

0.9 1.853 1.156 1.848 0.950 

1.2 2.002 1.166 2.015 0.974 

1.5 2.393 1.226 2.054 0.991 

 
 

TABLE 4. Performance of T2 control chart for shifts of various 

magnitudes in the presence of contamination in  𝛽1 

Method Classic Robust 

c Shift (λ) Signal probability Signal probability 

5 

0 0.005 0.005 

0.3 0.262 0.569 

0.6 0.274 0.591 

0.9 0.292 0.638 

1.2 0.314 0.655 

1.5 0.349 0.752 

10 

0 0.005 0.005 

0.3 0.285 0.605 

0.6 0.382 0.668 

0.9 0.427 0.724 

1.2 0.508 0.764 

1.5 0.566 0.815 

15 

0 0.005 0.005 

0.3 0.336 0.634 

0.6 0.466 0.761 

0.9 0.577 0.837 

1.2 0.675 0.895 

1.5 0.799 0.943 

20 

0 0.005 0.005 

0.3 0.405 0.742 

0.6 0.593 0.833 

0.9 0.749 0.940 

1.2 0.837 0.966 

1.5 0.922 0.994 
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The obtained results from simulation runs show both 

classical and robust estimation methods are almost 

similar under the clean data. However, robust estimator 

decreases the effect of outliers on the mean of estimated 

parameters with outliers. In other words, robust estimator 

values are closer to the in-control 𝛽1 than the classical 

estimator under different shifts and outlier observations. 

Moreover, comparing the standard deviation of them 

demonstrates that the robust estimation method is better 

than the least-square estimation method in the presence 

of outliers. Note that the classical estimation method of 

standard deviation performs roughly better than the 

robust estimation method without contamination. 

Afterward, outliers are generated with shift in 𝛽2 and the 

corresponding mean and standard deviation values are 

given in Table 5. Also, simulation results of signal 

probability of the proposed control chart are given in 

Table 6. 

 

 
TABLE 5. Performance evaluation of classical and robust 

estimations under contamination in  𝛽2 

Method Classic Robust 

c 
Shift 

(λ) 

Parameter 

estimation 

Standard 

deviation 

Parameter 

estimation 

Standard 

deviation 

5 

0 1.024 1.147 1.301 0.936 

0.3 1.382 1.167 1.342 0.941 

0.6 1.482 1.170 1.404 0.953 

0.9 1.715 1.181 1.615 0.961 

1.2 2.001 1.185 1.935 0.979 

1.5 2.206 1.198 2.055 0.999 

10 

0 1.052 1.129 1.328 0.914 

0.3 1.452 1.114 1.378 0.933 

0.6 1.771 1.114 1.562 0.934 

0.9 1.839 1.117 1.781 0.937 

1.2 2.116 1.149 2.027 0.935 

1.5 2.220 1.157 2.129 0.936 

15 

0 1.041 1.140 1.306 0.916 

0.3 1.440 1.145 1.310 0.925 

0.6 1.592 1.147 1.415 0.932 

0.9 1.877 1.149 1.762 0.961 

1.2 1.994 1.163 1.896 0.968 

1.5 2.307 1.185 2.220 0.980 

20 

0 1.051 1.177 1.321 0.901 

0.3 1.176 1.197 1.354 0.913 

0.6 1.527 1.148 1.452 0.947 

0.9 1.740 1.176 1.671 0.955 

1.2 1.992 1.180 1.987 0.942 

1.5 2.136 1.197 2.096 0.960 

 

 

TABLE 6. Performance of T2 control chart for shifts of various 

magnitudes in the presence of contamination in  𝛽2 

Estimation method Classic Robust 

c Shift (λ) Signal probability Signal probability 

5 

0 0.005 0.005 

0.3 0.246 0.575 

0.6 0.252 0.576 

0.9 0.257 0.579 

1.2 0.273 0.586 

1.5 0.372 0.599 

10 

0 0.005 0.005 

0.3 0.286 0.608 

0.6 0.299 0.644 

0.9 0.342 0.666 

1.2 0.407 0.677 

1.5 0.443 0.743 

15 

0 0.005 0.005 

0.3 0.325 0.654 

0.6 0.428 0.731 

0.9 0.510 0.788 

1.2 0.593 0.828 

1.5 0.671 0.887 

20 

0 0.005 0.005 

0.3 0.371 0.686 

0.6 0.525 0.824 

0.9 0.623 0.906 

1.2 0.734 0.955 

1.5 0.844 0.988 

 
 

Similarly, Table 5 demonstrates satisfactory 

performance for robust estimator under global outliers, as 

the proposed robust estimator reduces their impact. The 

robust estimator with no outliers has 0.936 standard 

deviation, which is lower than the classical estimator 

(1.147). A close match between the robust estimator and 

the corresponding actual value is shown in Table 5. Also, 

Table 6 shows that the developed T2 chart by a robust 

estimator is a more efficient scheme than the T2 chart 

based on the classical estimator in Phase I monitoring. 

To take account into the impact of contminations on 

the variance of error terms, let (1-c) percent of εij‘s 
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independently follow a Normal distribution as with N(0, 

σ2). Besides, let c percent of the residuals generate an 

another Normal distribution. In other words, a model (say 

uncontaminated case) in which all observation are from 

N(0,1). A model for symmetric variance disturbances in 

which each observation has (1-c)% probability of being 

drawn from N(0,1) distribution and a c% probability of 

being drawn from N(0,9).The Mean Squared Error 

(MSE) criterion is applied to appraise the capability of 

error terms variance estimators. A smaller MSE value 

indicates a more accurate estimation of the parameter. 

Figure 2 shows the MSE of σ2 estimations if there is 

contamination in the variance of the error terms. 

Figure 2 illustrates when shift magnitudes and outlier 

percentages increase, robust approach performs better 

than classical approach. Furthermore, low contamination 

in variance of the εij‘s does not significantly affect 

classical estimation of parameters. While, by increasing 

the contaminated error terms variance, the classical 

estimator of εij‘s variance becomes significantly different 

from the actual value. Despite the satisfactory 

performance of the classical estimator for some low 

values of σ and c, with moderate and large contamination 

rates, it has worse performance than the robust estimation 

method. In these simulation studies, the maximum 

estimates for variance of the εij‘s  based on the classical 

estimator was 11.32. However, this value is 1.58 for the 

robust estimator. Moreover, as shown in Figure 3, the 

robust scheme increases the contamination percent. 

Besides, we taken into account other simulations with 

different σ and c values. For the brevity, these simulation 

studies, not given here, support the results shown in these 

figures.  

 

 

4. A REAL CASE 
 

To show the practicality and effectiveness of the 

proposed robust control chart, we present a real case 

derived from the automotive industry given by Amiri et 

al. [36]. Specifically, when evaluating an automobile 
 

 

 
Figure 2. The comparison of MSE of variance estimations 

for c% contamination in error terms distribution and 

different shifts 

 
Figure 3. Performance of T2 control chart for c% 

contamination in error terms distribution and different shifts 
 

 

engine's performance, a crucial quality characteristic is 

how torque production relates to engine speed stated in 

revolutions per minute. We have 26 engines available for 

the initial phase of analysis pertaining to the engine data. 

Within each engine, we establish a set of speed values, 

including 1500, 2000, 2500, 2660, 2800, 2940, 3500, 

4000, 4500, 5000, 5225, 5500, 5775, and 6000 RPM, and 

collect corresponding torque measurements. 

Consequently, we obtain a profile of interest consisting 

of 14 data points per engine. They showed for this data 

set that a quadratic polynomial works well according to 

Equation (14). In is worth mentioning that polynomial 

profiles is a special case of multiple linear profiles. 

2

0 1 2 ,j j j jy x x   = + + +  (14) 

In which 
jy denotes torque values, and 

jx  show RPM 

values in which .jx x=  The model parameters are 

estimated for each profile by high values of the adjusted 

coefficient of determination. Figure 4 depicts a 

scatterplot showcasing the data for one specific engine, 

identified as Engine number 1791. The figure serves as 

an example to demonstrate that the speed values have 

been adjusted for mean correction in order to mitigate the 

impact of multicollinearity. The variance inflation factors 

showed that there is no multi-collinearity between 

explanatory variables. They used a run chart to check 

independence of residuals over time assumption and 

showed that the clustering and trend hypothesis tests are 

significant and as a result it can be concluded that the 

residuals are correlated. In other words, the process of 

evaluating model adequacy revealed that we are dealing 

with a situation where there is a correlation between the 

residuals and therefore between the observations in each 

profile. Hence, the data set can be modeled by 

autocorrelated multiple linear profiles. 

Amiri et al. [36] showed an AR(1) error structure 

using Draftman’s display for the data set. Besides, the 

estimate of the mean vector and the covariance matrix 

under the classical and robust methods are reported in 

Table 7. 
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Figure 4. A second-order multiple linear profile fit for 

engine number 1791 
 

 
TABLE 7. The parameter estimates of the real case obtained by 

the classical and the robust estimator 

Estimates Sample mean 
Sample standard 

deviation 

Outlier 

percentages 
Classic Robust Classic Robust 

0
 

β0 111.2589 111.2586 1.5299 1.529876 

β1 −0.005985 −0.005775 0.000496 0.000489 

β2 −0.0000049 −0.0000051 0.0000031 0.00000309  

2
0
 

β0 114.577 111.4313 1.69988 1.52969 

β1 −0.007798 −0.005784 0.005096 0.000477 

β2 −0.0000041 −0.00000508 0.00004 0.0000032  

 

 

The classical and robust estimates indicate that the 

process mean as well as the process standard deviation 

are influenced by outliers. To examine the stability of the 

process and identify any unusual profiles among the 26, 

we can establish UCL equal to 0.7089 at 95% confidence 

level for Phase II of the control chart. Then, we can 

employ 2

I, jT  based on classic and robust approach. Hence, 

we use the T2 control chart to monitor the process mean. 

The control chart statistics are also determined for the 

sample data points using Equation (12) with the classic 

and robust estimators and plotted Figure 5. From Figure 

5, it is clear that robust control charts gave a quick out of 

control signal by last two data points whereas classical 

estimator-based control chart did not signal any alarm. 

 

 
5. CONCLUSION AND FURTHER STUDIES 

 

An assumption commonly used in profile monitoring 

schemes is that residuals will be independent. The control 

chart can be misled if this assumption is violated. From 

another standpoint, when the data are contaminated, the 

 
Figure 5. Plots of sample data for T2 control chart with 

classical (A), and robust (B), estimators 
 

 

classical estimation methods do not perform well. 

Hence,this paper proposed a robust approach for Phase I 

monitoring of autocorrelated multiple linear profiles.  

The proposed control chart was appraised in the 

absence and presence of contaminated data through 

extensive simulation studies. The simulation results 

showed that without outliers, the classical and robust 

method performed partly the same in parameter 

estimation of the model. Considering these results, when 

the outlier magnitude increased, the estimations achieved 

by the classical estimator deviated considerably from 

their actual values. While, the estimates computed based 

on the robust estimator were close to the reference values. 

We showed the LSE method was affected by the outlier 

data, however, the M-estimator decreased their effect. 

Generally, in all scenarios including contaminations in 

the model coefficients and error variance, the robust 

approach performed better than the classical method. 

Besides, the performance of the T2 control chart with the 

classical and the robust estimates was appraised by 

extensive comparison under different shift magnitudes 

with and without outliers. When the regression 

parameters were estimated using the robust method, the 

capability of the proposed T2 control chart enhanced 

under different shifts in the parameters of regression 

model.  

Considering the proposed robust approaches for 

multistage processes can be a fruitful subject for future 

research. Also, investigating the performance of the 

proposed robust estimator under autocorrelation between 

profiles and contamination data can be considered as a 

further research. 

y = -5E-06x2 - 0.0071x + 111.97

R² = 0.9872
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Persian Abstract 

 چکیده 
  یرهایدادن متغ  یوندبا پ یلپروفا به عنوان یک راه حل، یک، در این مواقعکنند.  یینرا تع  یفیتک یمشخصه هابتوانند که  یستندن یرچند متغ یا یک یدارا سائل صرفاًاز م یاریبس

گمراه    یجنتا  هتواند منجر ب  یفرض م  یناست. نقض ا  هایماندهباقبودن  فرض مستقل    رویه های کنترلی،در اکثر    یجاز مفروضات را  یکی.  شودمعرفی میپاسخ    یرمستقل به متغ 

  ی روش ها  یازمندن   یطیشرا  ینندارند. چن  یعملکرد خوب یپارامترها  ینتخم  یککلاس  یکه داده ها آلوده هستند، روش ها  یزمان  یگر،د  ی کننده در نمودار کنترل شود. از سو

. کند یم  یشنهادپ I فاز  برایهمبسته  خود  چندگانه    یخط  هایروفایل پنظارت بر نم  یبرا   یندفرآ  یپارامترها  ینتخم  یبرا  یروش قو  یکمقاله    ینرو، ا  یناست. از ا  یبرآورد قو

  یر تأث ینشان داد که برآوردگر قو های گسترده،یج شبیه سازی. نتاشودی م  یابیجامع ارز سازییه مطالعات شب یقآلوده از طر یهاو حضور داده یاب در غ  یافتهنمودار کنترل توسعه

از جمله نقاط پرت    یو،هر سه سنار  در  ی،. به طور کل دهدی کاهش م  ییرات تغ   مقادیر مختلف دورافتاده و    صدهایهمه در  یبرا  یشنهادیآلوده را بر عملکرد نمودار کنترل پ  یهاداده

 .کند یعمل م کلاسیکبهتر از روش  یقو  یکردخطا، رو یانسمدل و وار یدر پارامترها
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