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A B S T R A C T  
 

 

Automatic waveform recognition has become an important task in radar systems and spread spectrum 

communications. Identifying the modulation of received signals helps to recognize different invader 
transmitters. In this paper, a noise aware model is proposed to recognize the modulation type based on 

time-frequency characteristics. To this end, Choi-Williams representation is used to obtain spatial 2D 

pattern of received signal. After that, a deep model is constructed to make signal clear from noise and 
extract robust and discriminative features from time-frequency pattern, based on auto-encoder and 

Convolutional Neural Networks (CNN). In order to reduce the effect of noise and adversarial disorders, 

a new database of different modulation patterns with different AWGN noises and fading Rayleigh 
channel is created which helps model to avoid the effects of noise on modulation recognition. Our 

database contains radar modulations such as Barker, LFM, Costas and Frank code which are known as 
frequently used modulations on wireless communication. Infact, the main novelty of this work is 

designing this database and proposing noise-aware model. Experimental results demonstrate that the 

proposed model achieves superior performance for automatic classification recognition with 99.24% of 
accuracy in noisy medium with minimum SNR of -5dB while the accuracy is 97.90% in SNR of -5dB 

and f=15 Hz of Doppler frequency. Our model outperforms 5.54% in negative and 0.4% in positive 

SNRs (even though with less SNR). 

doi: 10.5829/ije.2023.36.08b.06 
 

 
1. INTRODUCTION1 
 
Nowadays, digital communication plays a critical role in 

human life. By growing the number of transmitters in 

industrial mediums, i.e., Internet of Things (IoT), and 

with the limitation in telecommunication channels, using 

Cognitive Radio (CR) communications has been grown 

up. One of the necessary tasks for receivers is to identify 

the parameters of receiving unknown signals, such as 

kind of modulation. Therefore, Automatic Modulation 

Classification (AMC) can play a significant role in 

cognitive radio and Electronic Intelligence (ElInt).  AMC 

is important for communication monitoring, spectrum 

awareness and adaptive communication [1] . AMC is 

necessary for both civilian and military services. One of 

the important applications of AMC can be sensed in 

Electronic Warfare (EW) in which receiver should be 

able to detect the modulation of unknown and adversarial 
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signals. Beside cognitive radio, AMC is critical for radar 

radar receivers since waveform of modern signals can be 

changed in every pulses [2]. 

Researches in AMC have denoted two main 

categories, using Likelihood for blind classification and 

using feature extraction for detecting the kind of 

modulation. Since likelihood-based methods are time 

consuming with high computational complexity, feature 

based methods are more popular. In this way, blind 

modulation detection is done by extracting features from 

received signals and based on them, determine which 

modulation is used. Although there are different methods 

for feature extraction such as extracting hand-crafted 

features and extracting features based on machine 

learning, there still are some important challenges for 

AMC  such as noisy mediums, adversarial attacks, 

multipath fading, and time varying and frequency 
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selective channels which lead us to implement more 

robust and reliable systems. 

In this paper, a noise-aware model is defined based on 

Choi-Williams transform and hybrid deep learning 

networks. To this end, received signal is converted to 2-

D image which illustrates frequency features versus time 

and hybrid deep models learn to remove noises and 

extract robust features and classify the type of 

modulation. Also, a database of some important 

modulation with different amounts of noise is created to 

help models overcoming on noise effect. Block diagram 

of AMC by converting signal to images is illustrated in 

Figure 1. The novelty of the proposed method is 

designing arbitrary database in order for train and 

evaluate AMC systems. Also, a new combined noise-

aware medoel is designed by combining auto-encoders 

and CNN which is able to overcome noise challenges.  

The rest of this paper is constructed as follows. Literature 

review of recent works on AMC is on section 2. In 

section 3, a brief introduction of Choi-Williams method 

and Convolutional Neural Networks (CNNs) are denoted 

following by detailed of the proposed method. 

Experimental results and implementation setups are 

shown in section 4 in which, and section 5 concludes the 

paper. 

 

 

2. RELATED WORKS 
 
As mentioned before, because of complexity of 

likelihood-based methods, feature-based models are 

more popular. Classical approached of feature extraction 

have used hand-crafted methods. Aslam et al. [2] used a 

combination of KNN and genetic algorithms for 

modulation detection of four different types of digital 

modulations. They have used comulants hand-crafted 

features in order to classify by KNN. Abdelmutalab et al. 

[3] used high order comulants features of received signal 

in order to determine the modulation by defining 

hierarchical polynomial classifier. Their system has 

achieved accurate results on two types of modulations, 

M-PSK and M-QAM. Saharia et al. [4] used different 

strong features from time, frequency and statistics 

domain of received signals to determine the kind of 

modulation. After extracting features, a Random Forest 

(RF) classifier was trained to identifying the modulation.  

Most of recent researches on AMC have used 

machine learning methods especially deep learning. 

Several researches have used deep CNNs for extracting 

features from radio signals and classified them [5-9]. 

Since we want to use 2D inputs as images for CNNs, 

some resent works which converts received signals into 

2D inputs are presented. Yar et al [10] used Short Time 

Fourier Transform (STFT) to convert raw signals to 

images. Before using CNN to classify input images, 

Hough transform was used to illustrate pulses as a single 

line in each image. Choi-Williams transform has been 

used in [11] to obtain 2D time-frequency images of 

modulated signals. After that, Zhang et al. [11] used CNN 

to classify time-frequency images and determine the kind 

of modulation. Although reviewed works and some other 

researches have achieved good results, they are limited 

on few number of modulations and in normal noisy 

channels [12]. Therefore, we need model to work in 

different arbitrary noise and attacks more reliable.  
 

 

3. METHODOLOGY 
 
Since we are using Choi-Williams 2D transform to obtain 

time-frequency images, it is needed to briefly review it 

and find find more about it. Also, CNNs as a powerful 

tool of deep learning models should be introduced. So, 

before going on to the proposed method, 2D transform 

and CNN are briefly introduced.  

 

3. 1. Time-frequency Distribution            In order to 

obtain 2D images from raw signal, plotting time-

frequency distribution can be useful. Although there exist 

some transforms which produce time-frequency analysis, 

Choi-Williams transform is preferred because of its 

advantages in removing cross-term interference. Giving 

raw signal as 𝑢(𝑡), Choi-Williams distribution can be 

obtained as follows [11, 13]:  

𝐶𝑊(𝑓, 𝑡) = ∭ 𝑢(𝑠 + 𝜏
2⁄ ). 𝑢∗(𝑠 −

+∞

−∞
𝜏
2⁄ )𝑘(𝜆, 𝜏)𝑒𝑗2𝜋𝜆(𝑠−𝑡)𝑒−𝑗2𝜋𝑓𝑑𝜆𝑑𝑠𝑑𝜏  

(1) 

𝑘(𝜆, 𝜏) = exp (
(𝜋𝜆𝜏)2

2𝜎
⁄ )  (2) 

In which, 𝐶𝑊(𝑓, 𝑡) denotes the time-frequency 

distribution and 𝑘(𝜆, 𝜏) is a low-pass filter which helps to 

refuse cross-term interference and 𝜎 controls the 

bandwidth of the filter. By plotting 𝐶𝑊(𝑓, 𝑡), image can 

be obtained and can be processed.  
 

 

 
Figure 1. Block diagram of AMC using 2D transforms 
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3. 2. Deep Learning               Deep learning is a new 

machine learning approach in which high-level features 

are extracted from input data using hierarchical layers 

[14]. Deep learning has demonstrated excellent data 

processing performance by achieving excellent accuracy 

in image [15-18], video[19], natural language processing 

[20], time series [21] and audio processing [22]. 

Convolutional Neural Networks (CNNs) are among the 

deep learning algorithms that are suitable for image 

processing [23, 24]. Guo et al. [14] have specifically 

designed CNNs for two-dimensional (2D) data such as 

image and video, and they also have superior image 

processing accuracy. 
Deep learning differs from previous processing 

methods in that data is fed directly to the system in order 

to extract features, whereas in traditional processing, 

hand-crafted features were fed to algorithms for 

processing or classifying, such as artificial neural 

networks and other classifiers. In CNN, data is fed to the 

network which consists of some convolutional, pooling 

and fully-connected layers. During the training process, 

weights of convolutional kernels learn to extract 

meaningful features and fully-connected layers learn to 

classify  these features to related category. Thus, the input 

image goes throw these hierarchical layers to extract 

feature and determine in which class the input belongs.   

 

3. 3. Auto-encoder            An auto-encoder is a multilayer 

neural network that employs encoder and decoder layers 

to reconstruct input [25]. In the encoder, an input image 

(or signal) is sent to a network where features are 

extracted and a tiny vector is created by downsampling. 

The decoder then uses supervised learning to attempt to 

rebuild the input by feeding it the encoded feature vector. 

Auto-encoders have been utilized for a variety of 

applications, including feature extraction and denoising 

in image processing [26-28]. 
 

3. 4. Implemented Method          As any supervised 

learning model, the implemented method consists of train 

and test phase. To create the database, four different 

kinds of modulation, Barker, LFM, Costas and Frank 

code, are randomly created. Then, arbitrary AWGN 

noises with different SNRs are added to them in order to 

create input signal, 𝑥(𝑡) by:  

𝑥(𝑡) = 𝑟(𝑡)𝑚𝑖(𝑡) + 𝑛(𝑡, 𝑠) (3) 

where mi(t) denotes the modulated signal and 𝑖 ∈ 

(Barker, LFM, Costas and Frank code), 𝑟(𝑡) indicates 

Rayleigh fading channel described in Equation (4) and 

𝑛(𝑡, 𝑠) refers to AWGN noise and 𝑠 is parameters to 

control SNR. 

𝑟(𝑡) = 𝐾𝑒𝑗(2𝜋𝑓+𝜃) (4) 

where 𝐾is the gain of Rayleigh fading channel, 𝑓 denotes 

Doppler frequency shift and 𝜃 is phase of path.  

In order to make system noise aware and be able to 

overcome noises and fading effects, Artificial Distributed 

Signals (ADS) are created. These signals are used then to 

train auto-encoder to create clear transforms of signals. 

By adding random noises in different amounts of Doppler 

frequency shifts, the ADS is created in the form of 

Equation (3). By using Equation (1), 2D transform of 

each input signal is created and stored as a RGB color 

image. If we show the decoder and encoder performances 

by D(. ) and E(. ) respectively, the loss function for 

training auto-encoder is defined as follows: 

𝐿 = ∑ ∑ √(𝐷(𝐸(𝑐𝑤′(𝑖, 𝑗)) − 𝑐𝑤(𝑖, 𝑗))2𝑗𝑖   (5) 

In which, 𝑐𝑤′(𝑖, 𝑗) is the 2D transformed of ADS and 

𝑐𝑤(𝑖, 𝑗) is the 2D transform of mi(t). the training concept 

of auto-encoder is illustrated in Figure 2. 

In training step, the train batch images are fed to CNN 

and during the training, until the loss function is 

minimum, kernel weights are updated in order to extract 

best features. Output of each convolution layer is 

calculated as follows: 

𝐶 = 𝑀𝑎𝑥(0, ∑ ∑ 𝑝(𝑖, 𝑗) × ℎ(𝑖, 𝑗)𝐾
𝑗=1

𝐾
𝑖=1 )   (6) 

 

 

 

 
Figure 2. Training concept of auto-encoder for reconstructing main signal from ADS 

m(t)  

n(t,s) 

 𝐶𝑊(𝑓, 𝑡) 
 

r(t) 

 
Encoder 

network 
Decoder 

network 

 

 

 

Same 

Different 



1462                               M. Aslinezhad et al. / IJE TRANSACTIONS B: Applications  Vol. 36, No. 08, (August 2023)   1459-1467 

 

 

In which, 𝑝is the value of pixel and ℎdenotes the weight 

of filter and in order to model nonlinearity, maximum of 

convolution and 0 is calculated (ReLU function) and 

kernel size of each filter is𝐾 × 𝐾. In the pooling layer, 

among 𝑁 × 𝑁pixels, the maximum value is selected and 

rests of them are ignored. After some convolution and 

pooling, the model is followed by some fully-connected 

layers in which, neurons calculate a linear combination 

of all data in feature vector and activation function also 

is used to model nonlinearity. Output of each neuron is 

as follows: 

𝑓 = 𝑀𝑎𝑥(0, ∑ 𝑤𝑖 × 𝑛𝑖
𝐾
𝑗=1 )   (7) 

where 𝑛𝑖  denotes a feature of is previous layer and 𝑤𝑖  is 

the relevant weight to it. After training, the model is 

learned to extract robust features and classify them in 

order to distinguish type of the modulation of input 

signal. The structure of the implemented method is 

illustrated in Figure 3 and the algorithm of the proposed 

method is demonstrated in Algorithm 1.  

 

 
Algorithm 1: proposed noise-aware deep model for 

modulation classification 

Train 

for 𝑖 in {Barker, Frank, Costas and LFM} do: 

 

Create random 𝑚𝑖(𝑡) 
Compute 𝐶𝑊 using Eq.2 and Eq.3 

Initialize 𝐾, 𝑓 , 𝜃 and 𝑠 

r(t) = Kej(2πf+θ) 
𝑥(𝑡)⃪𝑟(𝑡)𝑚𝑖(𝑡) + 𝑛(𝑡, 𝑠) 
Compute 𝐶𝑊′ using Eq.2 and Eq.3 

Train auto-encoder 

Initialize 𝑤𝑖 for layers and 𝐿 

While 𝐿 < ℰ: 

 

 

 

 

𝐿𝑡+1⃪∑ ∑ √(𝐷𝑡(𝐸𝑡(𝑐𝑤′(𝑖, 𝑗)) − 𝑐𝑤(𝑖, 𝑗))2𝑗𝑖   

𝐷𝑡+1⃪𝐷𝑡 

𝐸𝑡+1⃪𝐸𝑡 

 

Train CNN 

Initialize 𝑤𝑖  

While max_itteration is not reached: 

 For all filters and neurons in all layers do: 

 𝐶𝑡 = 𝑀𝑎𝑥(0, ∑ ∑ 𝑝𝑡(𝑖, 𝑗) × ℎ𝑡(𝑖, 𝑗)𝐾
𝑗=1

𝐾
𝑖=1 )  

𝑓𝑡 = 𝑀𝑎𝑥(0, ∑ 𝑤𝑖
𝑡 × 𝑛𝑖

𝑡𝐾
𝑗=1 )  

𝑡 ← 𝑡 + 1 

End 

End 

Test 

Compute 𝐶𝑊 of input signal using Eq.2 and Eq.3 

Compute (𝐷(𝐸(𝐶𝑊))) 

Feed to trained  CNN 

Find argmax(labels) 

 

 

4. RESULTS  

 

In this section, before going to details of implementation 

and results, the dataset which is created for this paper is 

illustrated in subsection 4.1. 

 

4. 1. Dataset            In order to prepare data for training 

CNN, four different kinds of modulation are considered, 

Barker, Costas, Frank code and LFM. For each kind of 

modulation, 120 random and different signals are created 

for training, with different amounts of AWGN noises 

with different SNR from -5dB to 5dB and 36 signals for 

test. Thus, we create totally 624 random noisy signals and 

transferred them to 624 RGB images. Some samples of 

created images for LFM modulation are shown in Figure 

4.  

 

 

 
Figure 3. Diagram of the proposed method in train and test steps 

            
   … 

m(t) 
 

n(t,s) 

 𝐶𝑊(𝑓, 𝑡) 

x(t)  𝐶𝑊(𝑓, 𝑡) 
         

  
 … 

[train] 

[test] 

Detected 

modulation 

Trained 

weights 

Tuned 

parameters 

 Encoder  Decoder   

 



M. Aslinezhad et al. / IJE TRANSACTIONS B: Applications  Vol. 36, No. 08, (August 2023)   1459-1467                            1463 

 

 
Figure 4. Samples of created images for a random LFM signal with different SNR 

 

 

4. 2. Simulation Details            To go to the details of 

implementation, it is noticed that codes are written using 

python language using necessary libraries such as 

Tensorflow and Keras1. For computing 2D images, 

Matlab is also used. The simulation was done on 8 GB of 

RAM and core i-5 Intel CPU.  For training auto-encoder 

and CNN, best hyper-parameters are obtained by tuning 

different amounts. The loss functions for auto-encoder 

and CNN was Binary and Categorical Cross-entropy, 

respectively; minimizing by Adam optimizer with 

Learning-rate of 0.005. For training, data is randomly 

divided to training (80%) and validation (20%) set. 

Because the model performs the same in training and 

validation data, it is understood that it can be used 

generally for new data with high performance. Also, by 

looking loss function curves of auto-encoder, it is found 

that the auto-encoder is trained well and is able to 

reconstruct input image clearly.  
 

4. 3. Numerical Results          In order to show the 

performance of auto-encoder, some input noisy signals 

and output examples of the trained auto-encoder is 

illustrated in Figure 5 in which, four different samples of 

created ADS are shown. The first one is Barker signal 

with SNR=-4db in Rayleigh fading channel with Doppler 

frequency of 5 Hz. After using the auto-encoder, the 

pattern is clearly reconstructed and most parts of noises 

are removed as well as in other samples. It can be seen 

from this figure than Costas signal even with -5dB of 

SNR and 10 Hz of Doppler frequency is reconstructed 

well and clear. Results of implementing the proposed 

method with different SNR from 1 dB to -5 dB are 

illustrated under the Rayleigh fading channel with four 

different Doppler frequencies, 0, 5, 10 and 15 Hz. For 

each Doppler frequency, one diagram is considered 

 
1 Https://keras.Io/ 

which compares the accuracies of detection under 

different SNRs of white Gaussian noises.  
From Figure 6, it can be found that in f=0HZ, 

accuracies for LFM code are upper than other and 

decreases from 100% to 98.6% in SNR -5dB. It can be 

understood that reducing 5 dB  of SNR decreases just 

1.4% of performance and it means that noise-aware part 

of model prevent noises to lack performance very much. 

Also, by increasing frequency to 15 Hz (which means the 

worthy of fading channel), accuracy of LFM falls to 

98.41%. Therefore, it can be understood that the 

proposed model performs well even with an increase in 

the effect of fading Rayleigh channel. The lowest 

accuracy belongs to Costas modulation which is 97% in 

-5 dB and f=0 Hz and decreases to 96.94 in -5dB and f=15 

Hz. As an ablation study, separate performance with 

different amount of noises and Doppler frequencies of 

fading channel for the proposed method, the proposed 

without auto-encoder and two other famous deep CNNs, 

are illustrated in Table 1. Based on Table 1, it can be 

found that although by using well-known CNNs such as 

VGGNet [29] and ResNet50 [24] and transfer learning, 

good performance can be achieved, but it will decease 

meaningful by decreasing SNR and increasing Doppler 

frequency in Rayleigh fading channel. Using the 

proposed method, the performance is more stable against 

different sittuations. In order to compare the results with 

the related works of AMC, accuracy of the proposed 

method and some related and new researches are shown 

in Table 2. To compare, the performance is computed in 

AWGN channel without fading.   

As can be seen in Table 2, model proposed by Zhang 

et al. [11] achieved 93.7% of accuracy by combining 

CNN and image processing technique such as denoising 

and binarization on 8 different kinds of modulation.  

SNR=-5dB 

SNR=-3dB 

SNR=+1dB 

https://keras.io/
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Figure 5. Samples of different ADS (first row) and their relative cleared pattern after the proposed auto-encoder (second row) 

 

 

 
           (a)                                                                      (b) 

 
         (c)                                                                       (d) 

Figure 6. Comparison the accuracies of detection different modulations under different SNRs of white Gaussian noises with four 

Doppler frequencies, 0, 5, 10 and 15 Hz shown in part (a), (b), (c) and (d), respectively 
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TABLE 1. Numerical results and ablation for different methods under AWGN noises with SNR=0dB and -5 dB and Doppler 

frequencies of Rayleigh fading channel with f=5Hz, 10Hz and 15Hz 
 Doppler f=5 Hz Doppler f=10 Hz Doppler f=15 Hz 

Model modulation SNR=0dB SNR=-5dB SNR=0dB SNR=-5dB SNR=0dB SNR=-5dB 

VGGNet 

Barker 98.15% 90.91% 93.20% 89.80% 90.13% 81.70% 

Costas 96.73% 88.23% 91.99% 84.20% 86.07% 78.16% 

LFM 99.03% 97.03% 97.70% 88.37% 89.43% 82.84% 

Frank 98.08% 94.05% 93.86% 85.92% 88.03% 79.01% 

ResNet50 

Barker 99.01% 92.70% 94.56% 91.17% 92.47% 89.21% 

Costas 95.03% 90.42% 92.51% 88.49% 88.82% 81.40% 

LFM 98.99% 96.86% 97.51% 93.13% 92.24% 89.42% 

Frank 97.04% 92.17% 94.46% 89.18% 90.11% 84.51% 

CNN (without 

transfer 

learning) 

Barker 98.30% 91.48% 94.32% 90.06% 91.82% 87.63% 

Costas 96.23% 89.70% 91.09% 86.41% 87.19% 82.96% 

LFM 99.30% 97.72% 98.03% 94.93% 95.14% 93.02% 

Frank 98.21% 95.42% 96.06% 91.73% 93.51% 89.86% 

CNN+AE (the 

proposed) 

Barker 100% 98.27% 100% 98.25% 99.86% 98.22% 

Costas 100% 96.91% 99.94% 96.92% 99.95% 96.94% 

LFM 100% 98.56% 99.97% 98.49% 99.93% 98.41% 

Frank 99.93% 98.16% 99.91%% 98.25% 99.90% 98.04% 

 

 

TABLE 2. Comparison between the proposed method and 

some state-of-the-art models for AMC in AWGN noises 

Method SNR Description Accuracy 

CNNBD 

[11] 
-2dB 

CNN+binarization

+denoising 
93.7% 

SCNN [10] -10dB, 10dB STFT+CNN  68.27%, 93.7% 

SVMCNN 

[32] 
2dB, +20dB SVM+CNN 82.27%-98.52% 

FCNN [33] -10dB, +20dB Fusuion CNN 0.09%-99.96% 

3DCNN [5] 8dB, 25dB 3D CNN 98.1%, 99.6% 

The 

proposed 
-5dB, 0dB 

CNN+nosie-

aware training 
99.24%, 100% 

 
 

Combining CNN with different feature representation 

such as Short Term Fourier Transform (SIFT) and 

Support Vector Machine (SVM) leads to maximum 

accuracy of 93.73% and 98.52% in +10dB and +20 dB 

noises [10, 30]. However, between state-of-the-art 

models, fusion CNN [31] has achieved 99.96% of 

accuracy in +20dB noise and variation between 

accuracies are 98.1% and 99.6% in 3DCNN [5]. The 

proposed model achieves 100% accuracy when the SNR 

is 0 dB and 99.24% in the noisy environment with SNR= 

-5 dB which means that our method can be used generally 

and reliably in noisy medium.   

5. CONCLUSION  
 

Since Automatic waveform recognition is an important 

and challengeable task in radar systems and spread 

spectrum communications, this paper aims to implement 

a robust system for modulation classification in noisy 

medium. To this end, an arbitrary noisy database is 

created in which, different kinds of Barker, LFM, Costas 

and Frank code modulation in different  AWGN noises 

are demonstrated under different Doppler frequencies of 

fading Rayleigh channel. Therefore, a system is 

implemented using Choi-Williams distribution to 

achieve and plot 2D features and by combining 

convolutional neural network and auto-encoder for 

training on the crated database. Experimental results 

showed that the proposed model outperforms new 

models by achieving 99.24% accuracy in minimum SNR 

of -5dB while the accuracy is 97.90% in SNR of -5dB 

and f=15 Hz of Doppler frequency. Numerical results 

proof that the model can be used generally on automatic 

modulation classification since the performance is stable 

in different noisy environments   
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Persian Abstract 

 چکیده 
 یی به شناسا  یافتیدر  یها  گنالیس  ونیمدولاس  ییشده است. شناسا  لیگسترده تبد  فیو ارتباطات ط  یرادار  یها  ستمیمهم در س  فهیوظ  کیبه    مدولاسیونخودکار    صیتشخ  امروزه

  ن ی ا یاست. براشده شنهادیفرکانس پ-مانز یهای ژگیبر اساس و ونینوع مدولاس صیتشخ  یبرا زیمدل آگاه از نو کیمقاله،  نیکند. در ا ی مهاجم مختلف کمک م یفرستنده ها

 حذف نویز از سیگنال   یبرا  قیمدل عم  ک یشود. پس از آن،    یاستفاده م  یافتیدر  گنالیس  ییفضا  یدو بعد  یبه دست آوردن الگو  یبرا Choi-Williams شیمنظور، نما

و    زینو  ری. به منظور کاهش تأثشودیساخته م (CNN) ی کانولوشن  یعصب  یهاشبکه  خودرمزگزار وبر اساس    ،یفرکانس زمان  یاز الگو   زیو متما  یقو  یهایژگیاستخراج و

کند تا  یشده است که به مدل کمک م جاد یا شوندهمحو یلیو کانال ر AWGN مختلف یزهایمختلف با نو ونیمدولاس یاز الگوها  دیداده جد گاه یپا کیاختلالات متخاصم، 

  ون یاست که به عنوان مدولاس Frank و   Barker  ،LFM،Costas مانند کد  یرادار  یها  ونیداده ما شامل مدولاس  گاه یکند. پا  یر یجلوگ  ونیمدولاس  صیبر تشخ  ز یاز اثرات نو

  ی تجرب  جینتا  به نویز است.    داده جدید و ثانیا طراحی مدل آگاهدرواقع، نوآوری روش پیشنهادی، اولا ایجاد این پایگاه شوند.  یشناخته م   میس  ی پرکاربرد در ارتباطات ب  یها

که   یدر حال آوردی به دست م SNR 5-dB با حداقل زینوی ط یدرصد دقت در مح 99.24خودکار با  یبندطبقه  صیتشخ یعملکرد برتر را برا یشنهادیکه مدل پ دهدی نشان م

های   SNRئر  %0/4های منفی و   SNRدر   %5/54روش پیشنهادی باعث پیشرفت دقت به اندازه  .درصد است 97.90هرتز فرکانس داپلر  f=15 و SNR 5-dB دقت در

 .مثبت شده است
 


