A New Generalized Step-up Multilevel Inverter Topology Based on Combined T-type and Cross Capacitor Modules

Document Type : Original Article

Authors

Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

Abstract

This paper presents a new symmetrical switched-capacitor (SC) multilevel inverter topology which can convert the input DC voltage to a step-up multilevel AC waveform on the load. This proposed multilevel inverter consists of one T-type and several cross-capacitor modules. The structure of the generalized multilevel inverter is such that the peak inverse voltage (PIV) remains constant as the number of cross-capacitor modules increases which leads to reduce the total standing voltage (TSV) of the switches and cost function compared to other traditional topologies. The introduced structure can inherently generate the positive, negative, and zero voltage levels on the output without the back-end H-bridge section. The capacitor’s voltages in the T-type and cross modules are inherently balanced, simplifying the control system under the nearest level control (NLC) switching strategy. To verify the performance of the proposed topology, several simulations and experimental results for a type 13-level inverter are provided by MATLAB and TMS320F28379D DSP, respectively.

Keywords

Main Subjects


  1. Fang, J., Blaabjerg, F., Liu, S. and Goetz, S.M., "A review of multilevel converters with parallel connectivity", IEEE Transactions on Power Electronics, Vol. 36, No. 11, (2021), 12468-12489. doi: 10.1109/TPEL.2021.3075211.
  2. Gupta, K.K., Ranjan, A., Bhatnagar, P., Sahu, L.K. and Jain, S., "Multilevel inverter topologies with reduced device count: A review", IEEE Transactions on Power Electronics, Vol. 31, No. 1, (2015), 135-151. doi: 10.1109/TPEL.2015.2405012.
  3. Arif, M.S.B., Mustafa, U., Siddique, M.D., Ahmad, S., Iqbal, A., Ashique, R.H. and Ayob, S.b., "An improved asymmetrical multi‐level inverter topology with boosted output voltage and reduced components count", IET Power Electronics, Vol. 14, No. 12, (2021), 2052-2066. https://doi.org/10.1049/pel2.12119
  4. Wang, L., Wu, Q. and Tang, W., "Novel cascaded switched-diode multilevel inverter for renewable energy integration", IEEE Transactions on Energy Conversion, Vol. 32, No. 4, (2017), 1574-1582. doi: 10.1109/TEC.2017.2710352.
  5. Salehi, S.J., Shmasi-Nejad, M. and Najafi, H.R., "A new multilevel inverter based on harvest of unused energies for photovoltaic applications", International Journal of Engineering, Transaction C: Aspects, Vol. 35, No. 12, (2022), 2377-2385. doi: 10.5829/IJE.2022.35.12C.14.
  6. Kopacz, R., Harasimczuk, M., Trochimiuk, P., Wrona, G. and Rąbkowski, J., "Medium voltage flying capacitor dc–dc converter with high-frequency tcm-q2l control", IEEE Transactions on Power Electronics, Vol. 37, No. 4, (2021), 4233-4248. doi: 10.1109/TPEL.2021.3122329.
  7. Abdelhamid, E., Corradini, L., Mattavelli, P., Bonanno, G. and Agostinelli, M., "Sensorless stabilization technique for peak current mode controlled three-level flying-capacitor converters", IEEE Transactions on Power Electronics, Vol. 35, No. 3, (2019), 3208-3220. doi: 10.1109/TPEL.2019.2930011.
  8. Nandhini, G.M. and Ganimozhi, T., "New hybrid cascaded multilevel inverter", International Journal of Engineering Transactions B: Applications, Vol. 26, No. 1, (2013). doi: 10.5829/idosi.ije.2013.26.11b.13.
  9. Rahimi Mirazizi, H. and Agha Shafiyi, M., "Evaluating technical requirements to achieve maximum power point in photovoltaic powered z-source inverter", International Journal of Engineering Transactions C: Aspects, Vol. 31, No. 6, (2018), 921-931. doi: 10.5829/IJE.2018.31.06C.09.
  10. Alemi-Rostami, M. and Rezazadeh, G., "Selective harmonic elimination of a multilevel voltage source inverter using whale optimization algorithm", International Journal of Engineering, Transactions B: Applications, Vol. 34, No. 8, (2021), 1898-1904. doi: 10.5829/IJE.2021.34.08B.11.
  11. Tousi, B. and Ghanbari, T., "Transformer-based single-source multilevel inverter with reduction in number of transformers", International Journal of Engineering, Transactions B: Applications, Vol. 29, No. 5, (2016), 621-629. https://doi.org/10.1049/iet-pel.2018.5420
  12. Lopez-Santos, O., Jacanamejoy-Jamioy, C.A., Salazar-D’Antonio, D.F., Corredor-Ramírez, J.R., Garcia, G. and Martinez-Salamero, L., "A single-phase transformer-based cascaded asymmetric multilevel inverter with balanced power distribution", IEEE Access, Vol. 7, (2019), 98182-98196. https://doi.org/10.22214/ijraset.2021.38989
  13. Arthy, G. and Marimuthu, C., "A novel center-tapped transformer based multilevel inverter with common dc source", Journal of Vibroengineering, Vol. 20, No. 8, (2018), 3040-3053. https://doi.org/10.21595/jve.2018.20029
  14. Salem, A., Van Khang, H., Jiya, I.N. and Robbersmyr, K.G., "Hybrid three-phase transformer-based multilevel inverter with reduced component count", IEEE Access, Vol. 10, (2022), 47754-47763. doi: 10.1109/ACCESS.2022.3171849.
  15. Taghvaie, A., Adabi, J. and Rezanejad, M., "A self-balanced step-up multilevel inverter based on switched-capacitor structure", IEEE Transactions on Power Electronics, Vol. 33, No. 1, (2017), 199-209. doi: 10.1109/TPEL.2017.2669377.
  16. Lakshmipriya, N. and Anathamoorthy, N., "Using fpga real time model for novel 33-level switched-capacitor multilevel inverter for pmsm drive", Microprocessors and Microsystems, Vol. 76, No., (2020), 103078. doi: 10.3390/mi13020179.
  17. Hussan, M.R., Sarwar, A., Siddique, M.D., Mekhilef, S., Ahmad, S., Sharaf, M., Zaindin, M. and Firdausi, M., "A novel switched-capacitor multilevel inverter topology for energy storage and smart grid applications", Electronics, Vol. 9, No. 10, (2020), 1703. https://doi.org/10.3390/electronics9101703
  18. Taheri, A., Rasulkhani, A. and Ren, H.P., "A multilevel inverter using switched capacitors with reduced components", IET Power Electronics, Vol. 13, No. 17, (2020), 3954-3962. https://doi.org/10.1049/iet-pel.2020.0473
  19. Zamiri, E., Vosoughi, N., Hosseini, S.H., Barzegarkhoo, R. and Sabahi, M., "A new cascaded switched-capacitor multilevel inverter based on improved series–parallel conversion with less number of components", IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, (2016), 3582-3594. doi: 10.1109/TIE.2016.2529563.
  20. Hinago, Y. and Koizumi, H., "A switched-capacitor inverter using series/parallel conversion with inductive load", IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, (2011), 878-887. doi: 10.1109/TIE.2011.2158768.
  21. Mak, O.-C. and Ioinovici, A., "Switched-capacitor inverter with high power density and enhanced regulation capability", IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 45, No. 4, (1998), 336-347. doi: 10.1109/81.669056
  22. Ye, Y., Cheng, K.W.E., Liu, J. and Ding, K., "A step-up switched-capacitor multilevel inverter with self-voltage balancing", IEEE Transactions on Industrial Electronics, Vol. 61, No. 12, (2014), 6672-6680. doi: 10.1109/TIE.2014.2314052.
  23. Barzegarkhoo, R., Kojabadi, H.M., Zamiry, E., Vosoughi, N. and Chang, L., "Generalized structure for a single phase switched-capacitor multilevel inverter using a new multiple dc link producer with reduced number of switches", IEEE Transactions on Power Electronics, Vol. 31, No. 8, (2015), 5604-5617. doi: 10.1109/TPEL.2015.2492555.
  24. Khenar, M., Taghvaie, A., Adabi, J. and Rezanejad, M., "Multi‐level inverter with combined t‐type and cross‐connected modules", IET Power Electronics, Vol. 11, No. 8, (2018), 1407-1415. https://doi.org/10.1049/iet-pel.2017.0378
  25. Tashiwa, I.E., Dung, G.D. and Adole, B.S., "Review of multilevel inverters and their control techniques", European Journal of Engineering and Technology Research, Vol. 5, No. 6, (2020), 659-664. https://doi.org/10.24018/ejeng.2020.5.6.1707
  26. Yu, H., Chen, B., Yao, W. and Lu, Z., "Hybrid seven-level converter based on t-type converter and h-bridge cascaded under spwm and svm", IEEE Transactions on Power Electronics, Vol. 33, No. 1, (2017), 689-702. doi: 10.1109/TPEL.2017.2664068.
  27. Yang, K., Lan, X., Zhang, Q. and Tang, X., "Unified selective harmonic elimination for cascaded h-bridge asymmetric multilevel inverter", IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 6, No. 4, (2018), 2138-2146. doi: 10.1109/JESTPE.2018.2808539.
  28. Yadav, S.K., Mishra, N. and Singh, B., "Three-phase single pv array fed scott-ternary multilevel converter with nearest level control", in 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), IEEE. (2020), 1-5.
  29. Thakre, M.P., Jadhav, T.K., Patil, S.S. and Butale, V.R., "Modular multilevel converter with simplified nearest level control (NLC) strategy for voltage balancing perspective", in 2021 Innovations in Energy Management and Renewable Resources (52042), IEEE. (2021), 1-8.
  30. Siddique, M.D., Mekhilef, S., Shah, N.M., Sarwar, A., Iqbal, A., Tayyab, M. and Ansari, M.K., "Low switching frequency based asymmetrical multilevel inverter topology with reduced switch count", IEEE Access, Vol. 7, (2019), 86374-86383. doi: 10.1109/ACCESS.2019.2925277.
  31. Hasari, S.A.S., Salemnia, A. and Hamzeh, M., "Applicable method for average switching loss calculation in power electronic converters", Journal of Power Electronics, Vol. 17, No. 4, (2017), 1097-1108. https://doi.org/10.6113/JPE.2017.17.4.1097
  32. Lin, W., Zeng, J., Liu, J., Yan, Z. and Hu, R., "Generalized symmetrical step-up multilevel inverter using crisscross capacitor units", IEEE Transactions on Industrial Electronics, Vol. 67, No. 9, (2019), 7439-7450. doi: 10.1109/TIE.2019.2942554.