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A B S T R A C T  
 

 

The seismic performance of non-structural components (NSCs) has been the focus of intensive study 

during the last few decades. Modern building codes define design forces on components using too simple 
relationships. The component accelerates faster than the floor acceleration to which it is connected. 

Therefore, component dynamic amplification factors (CDAFs) are calculated in this work to quantify 
the amplification in the acceleration of NSCs for the various damping ratios and tuning ratios of the 

NSC, and the primary structural periods. From the analysis results, it was observed that CDAF peaks are 

either underestimated or overestimated by the code-based formulae. A prediction model to ascertain the 
CDAFs was also developed using artificial neural networks (ANNs). Following that, the suggested 

model is contrasted with the established relationships from the past research. The ANN model's 

coefficient of correlation (𝑅) was 0.97. Hence, using an ANN algorithm reduces the necessity of 

laborious and complex analysis. 

doi: 10.5829/ije.2023.36.07a.02 
 

 
1. INTRODUCTION1 
 

Non-structural components (NSCs) cannot withstand 

loads [1]. Non-structural components damage may 

cause both immediate and long-term financial losses. The 

damage of components, especially expensive and 

important equipment in important structures may impair 

the functionality of buildings [2-5]. These results show 

that NSC seismic performances are just as significant as 

structural component seismic performances. The current 

Standards and Guidelines were mostly produced using 

empirical methodologies built from earlier experiences 

and engineering skills [6]. To keep NSCs secure and 

guarantee that the building can remain operating after an 

earthquake, non-structural components must be 

constructed for earthquakes. To do this, it is necessary to 

calculate the floor response spectrum (FRS) at the 

location where the NSC is connected to the main system. 
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Using a decoupled analysis method, the floor 

response spectrum (FRS) approach, is used [7-15]. 

Without considering the impact of the secondary system, 

the fundamental structure is dynamically analyzed first. 

The time history of the acceleration response is supplied 

to a component at floor level where it is mounted to create 

the FRS. The resulting FRS may thus be used to 

determine the maximum force for the NSCs. According 

to research on dynamic behaviour of components 

subjected to ground motion, the likelihood of NSC 

damage would be enhanced if the primary structure's 

response was amplified [16]. Researchers began studying 

FRS generating methods in the 1970s. A method for 

producing the FRS using the ground response spectra was 

created by Yasui et al. [17]. For the purpose of accurately 

identifying floor acceleration spectra, a unique method is 

created and verified [18]. To study the seismic 

requirements on nuclear plants, Jiang et al. [19] created 
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floor response spectra. They found that the FRS from 

analysis showed significant fluctuations, especially in 

tuning circumstances. Investigations have been done on 

the floor response spectrum of complex structures [20-

24]. The most recent research [25] investigated how a 

stiffness irregularity affected the FRS and found that the 

floor response’s amplitude is larger at the soft story 

position. None of the FRS generating approaches that 

have been extensively discussed in the relevant literature 

[19, 23, 26, 27] can reliably measure the amplification in 

the acceleration of the non-structural components.  

Component dynamic amplification factors, which 

represent the amplification of NSCs, are significant in the 

production of FRS. Hence, using a component dynamic 

amplification factor, the current work investigates how to 

quantify such amplification. Hence, for primary 

structures subject to seismic loads, the aforementioned 

factors were examined. The amplification factors and 

those discovered from the code-based formulations were 

contrasted. An attempt has been made in this study to 

develop the prediction model for the CDAF. The existing 

models [28, 29] for the determination of CDAF have not 

been considered the effect of a damping ratio of the NSC. 

As a result, this study proposed a prediction model for the 

CDAF spectrum based on data-driven methods. Data-

driven methods like Machine learning (ML) techniques 

are superior in the establishment of relations between 

various input and output variables than conventional 

regression analysis [10, 30-32]. To be more specific, an 

ML model including Artificial Neural Network (ANN) 

was utilized to develop the CDAF spectra. By contrasting 

the amplification factors computed from the ML model 

with the factors acquired from the existing relations, the 

constructed prediction model based on the ML technique 

was verified. 

The following is how the paper is organized: In 

section 2, the mathematical model is described. The 

selection and scale of ground motions are shown in 

section 3. The CDAF is described in section 4. The ANN 

model's details are presented in section 5. The suggested 

ANN prediction model's validation is shown in section 6. 

The final part draws brief conclusions (i.e., section 7). 
 

 

2. DESCRIPTION OF MODEL 
 

The basic structure in the current investigation is an 

acceleration sensitive NSC linked to a SDOF, as shown 

in Figure 1. The primary structure’s (𝜉𝑝) viscous damping 

ratio is taken as 5%. It is possible to calculate the primary 

structure's reaction for a given set of ground movements 

using Equation (1). 

𝑚𝑝�̈� + 𝑐𝑝�̇� + 𝑘𝑝𝑥 =  −𝑚𝑝�̈�𝑔  (1) 

where 𝑚𝑝, 𝑐𝑝, and 𝑘𝑝 are the mass, damping and stiffness 

for the primary structure: 𝑐𝑝 = 2𝑚𝑝𝜉𝑝𝜔𝑝; 𝜔𝑝 is the 
 

 
Figure 1. Primary structure connected with non-structural 

component 
 

 

primary structure’s frequency; �̇� and �̈� are the relative 

velocity and acceleration; �̈�𝑔 is the ground acceleration; 

(�̈� + �̈�𝑔): primary structure’s absolute acceleration. The 

resulting absolute acceleration response may be 

transformed into pseudo-acceleration response spectra in 

accordance with Equation (2) produce the FRS. 

𝑚𝑠�̈�𝑠 + 𝑐𝑠�̇�𝑠 + 𝑘𝑠𝑥𝑠 =  −𝑚𝑝(�̈� + �̈�𝑔)  (2) 

where 𝑚𝑠, 𝑐𝑠, and 𝑘𝑠 are the mass, damping, and stiffness 

for the NSC: 𝑐𝑠 = 2𝑚𝑠𝜉𝑠𝜔𝑠; 𝜔𝑠 and 𝜉𝑠 are the NSC’s 

frequency and damping ratio;  𝑥𝑠, �̇�𝑠, and �̈�𝑠, are the 

relative displacement, velocity, and acceleration, 

respectively. Equations (1) and (2) are differential 

equations, which are then solved numerically using the 

Runge-Kutta technique. 

 
 
3. GROUND MOTIONS  
 

Realistic responses are produced by the seismic response 

evaluation process using actual ground motion 

recordings [33-38]. Such records are easily accessible 

through the NGA-West 2 Database of the Pacific 

Earthquake Engineering Research Centre (PEER) [39]. 

Hence, 11 horizontal ground motion excitations have 

been taken into account in the current research for the 

hard soil type in accordance with ASCE 7-16 [28]. Based 

on shear wave velocity (VS30), ground motions are chosen 

to depict hard soil in accordance with National 

Earthquake Hazard Reduction Program (NEHRP) [40] 

criteria. Table 1 displays the specifics of the excitation. 

Since they can greatly reduce the computational time 

compared to many ground motions, spectrum compatible 

ground motions are used in this investigation [41]. To 

create spectrum-compatible seismic excitations, the time-

domain spectral matching method [42] is applied.  The IS 

1893:2016 target spectra and average spectra of ground 

motions are shown in Figure 2. The average spectrum 

must remain above 90% of the target spectrum in 

accordance with ASCE 7-16. This figure shows that 

mean spectra are much more than 90% of the target 

spectra. 
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TABLE 1. Ground motions information 

Earthquake  Year Station Mw 
Rjb 

(km) 

Helena_ 

Montana-01 
1935 Carroll College 6 2.07 

Helena_ 

Montana-02 
1935 Helena Fed Bldg 6 2.09 

Kern County 1952 
Pasadena - CIT 

Athenaeum 
7.36 122.65 

Kern County 1952 
Santa Barbara 

Courthouse 
7.36 81.3 

Kern County 1952 Taft Lincoln School 7.36 38.42 

Southern Calif 1952 San Luis Obispo 6 73.35 

Parkfield 1966 
Cholame - Shandon 

Array #12 
6.19 17.64 

Parkfield 1966 San Luis Obispo 6.19 63.34 

Parkfield 1966 Temblor pre-1969 6.19 15.96 

Borrego Mtn 1968 
Pasadena - CIT 

Athenaeum 
6.63 207.14 

Borrego Mtn 1968 
San Onofre - So Cal 

Edison 
6.63 129.11 

 

 

 
Figure 2. Mean and target spectra 

 

 

4. COMPONENT DYNAMIC AMPLIFICATION 
FACTOR  
 
The component's acceleration in relation to the floor 

acceleration is examined in this section. Elastic SDOF 

systems make up the NSCs examined in this study. In 

comparison to the main structure, the NSC's mass is 

thought to be quite low. Floor response spectra (FRS) is 

a decoupled approach that evaluates the primary system 

and non-structural component separately in a 

predetermined sequence. The linear time history 

analysis's input is scaled ground motions. From the 

model at the floor, absolute acceleration responses are 

collected and fed into the NSC to produce the relevant 

FRS. With a 5% damping ratio, the FRS was attained. 

The FRS is performed, and its results are normalized by 

the appropriate peak floor acceleration (PFA). The 

component dynamic amplification factor is represented 

by the ratio FRS/PFA (CDAF). Understanding the 

seismic behaviour of non-structural components requires 

knowledge of the CDAF [12, 13]. Figure 3 shows the 

CDAF spectra for different primary structural periods for 

a 5% damping ratio of the NSC. The vibration period (𝑇𝑝) 

of the primary structures shown in the Figure 3 represent 

the very stiff to flexible structures. The peak in the CDAF 

spectra was observed in the range of 0.7 ≤ 𝑇𝑠 𝑇𝑝⁄ ≤ 1 for 

the considered primary structures. The definitions of 

ASCE 7-16 [28] are contrasted with the CDAF in the 

present study. According to ASCE 7-16, for flexible 

NSCs with vibration periods greater than 0.06 seconds, 

the components amplification factor (𝑎𝑝) is 2.5. The 

value of the amplification factor for stiff NSCs (𝑇𝑠 < 0.06 

sec) is 1. It is clear from Figure 3 that the CDAF peaks 

are either underestimated or overestimated by the ASCE 

7 standards. 

Since NSCs come in a variety of periods and damping 

ratios (𝜉𝑠), it is necessary to evaluate the impact of these 

characteristics on the seismic behaviour of non-structural 

components [43]. Determining component dynamic 

amplification factors for various 𝜉𝑠 (0.1%, 0.2%, 0.5%, 

1%, 2%, 5%, and 10%) is the purpose of this work. The 

CDAF spectrum for various damping ratios (0.1%, 2%, 

and 10%) is shown in Figure 4. As predicted, lower 𝜉𝑠 

values led to greater amplification factor values. The 

damping ratio of NSC is discovered to have a greater 

impact on the main structure's vibration periods. It is 

important to note that the impact of 𝜉𝑠 is negligible for 

both extremely short and very long NSC periods. To do 

so, this work tried to create a prediction model for the 

CDAF utilizing machine learning methods such as 

artificial neural networks (ANNs). Amplification factors 

were determined for various 𝜉𝑠 (0.1%, 0.2%, 0.5%, 1%, 

2%, 5%, and 10%), tuning ratios, 𝑇𝑠 𝑇𝑝⁄  (0 to 40 with 0.5 

increment), and primary structural periods, 𝑇𝑝 (0.1 to 1 s, 

with 0.1 increment, and 1.25, 1.5, 2, 2.5, 3, 3.5, and 4 s). 
 

 

 
Figure 3. Component dynamic amplification factors for 

different primary structural periods  
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Figure 4. Component dynamic amplification factors at different NSC damping ratios 

 

 

5. ARTIFICIAL NEURAL NETWORK (ANN) MODEL  
 

Biological neural networks are simplified models that are 

used to express ANNs analytically. Massive data sets, 

difficult problems, and muddled circumstances may all 

be handled by neural networks. Because of this, neural 

networks are frequently a more accurate instrument for 

forecasting than traditional computational methods [44]. 

The current study employs a two layered feed-forward 

neural network to precisely forecast the CDAF. One of 

two levels, the other being the output layer, is the hidden 

layer. With only one hidden layer, neural networks can 

accurately estimate any function [45]. The tuning ratio 

(𝑇𝑠 𝑇𝑝⁄ ), damping ratio (𝜉𝑠) of the NSC, and primary 

structural period (𝑇𝑝) are all considered as model inputs. 

The predicted output of the model is represented by the 

CDAF values. The performance of the model is more 

strongly influenced by the architecture of the networks. 

Insufficient hidden neurons will make learning harder for 

the network. Yet, the likelihood of the network 

overfitting the training set increases with the number of 

hidden neurons. By experimenting with the number of 

hidden neurons, we were able to fix the set with the 

lowest mean squared error (MSE). The optimal number 

was determined to be 35 hidden nodes, which 

corresponds to that number. Consequently, the 35 

neurons in the hidden layer were considered while 

creating the ANN 3-35-1 model (Figure 5). The hidden 

neurons must be trained using an appropriate learning  
 

 
Figure 5. ANN 3-35-1 model 

 

 

method. The network is trained using the Bayesian 

Regularization (BR) back propagation (BP) method. 

Moreover, the output and hidden layers both employ the 

Tan-sigmoid transfer function. Using the MATLAB 

R2019b environment, the neural network model for this 

investigation was developed. In all, 9639 CDAF values 

representing 17 primary structural periods, 81 NSC 

tuning ratios, and 7 NSC damping ratios were generated 

by simulation in this work. A training set, which makes 

up 70% of the whole dataset, and a testing set, which 

makes up 30% of the total dataset, are further separated 

into each dataset. The complete dataset must be pre-

processed before training. The dataset must be 

normalized between -1.0 and 1.0 to give the variables an 
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equal weight. Using Equation (3), this normalization may 

be carried out.  

𝑥𝑛 =
2(𝑥−𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
− 1  (3) 

where 𝑥𝑛 is the normalized value. 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , are the 

minimum and maximum values of the variable 𝑥, 

respectively. By specifying the performance assessment 

functions, the ANN model's predictive power is assessed. 

In this study, performance was measured using the mean 

square error (𝑀𝑆𝐸), and coefficient of correlation (𝑅). 

The performance functions (Equations (4) and (5)) are 

defined as follows: 

𝑀𝑆𝐸 =  
∑(𝑦𝑠−𝑦𝑝)

2

𝑁
  (4) 

𝑅 = √
∑ 𝑦𝑠

2−∑(𝑦𝑠−𝑦𝑝)2

∑ 𝑦𝑠
2   (5) 

where, 𝑁 is the number of data points, and 𝑦𝑠 and 𝑦𝑝  are 

the simulated and predicted outputs. Table 2 displays the 

model's performance results. The error (𝑀𝑆𝐸) should be 

as low as feasible, and the 𝑅 value ought to be high. The 

connection between the predicted CDAF and the 

simulated CDAF is shown in Figure 6. The component 

dynamic amplification factor values are accurately 

predicted by the model, as seen by the correlation 

coefficient's proximity to unity. 
 

 

6. VALIDATION OF THE ANN PREDICTION MODEL  
 

This section looked at how well the ANN model 

predicted the dynamic amplification factors of non-

structural parts that were connected to the main structure. 

For this validation, the damping ratios of NSC (0.6% and 

3%) were used to construct the CDAF spectra of the 

primary structure under consideration. The ANN 

prediction model is not developed using the damping 

ratio values that were taken into consideration for 

validation. The predicted and simulated CDAF spectra 

are displayed in Figure 7. The predicted and simulated 

spectra for each of the instances under consideration have 

a comparably high level of agreement. Table 3 displays 

the maximum and lowest parameters used in creating the 
 
 

TABLE 2. Results of the ANN model’s performance 

Dataset 𝑹 𝑴𝑺𝑬 

Training 0.974 0.0019 

Testing 0.966 0.0022 
 

 
 

 
Figure 6. CDAF predicted by ANN and simulations   
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Figure 7. Comparison of simulated and ANN’s predicted CDAF spectra 

 

 

TABLE 3. Limits of various variables 

 
Input variables Output 

𝑻𝒑 (sec) 𝑻𝒔 𝑻𝒑⁄  𝝃𝒔 (%) CDAF 

Max 4.0 40.0 10.0 19.598 

Min 0.1 0.00 0.1 0.000 

 

 

ANN model. Thus, neural networks may be used to 

analyze the seismic behaviour of non-structural 

components. The ANN analysis approach reduces 

computational time by skipping the typical complicated 

analysis. 
 
 
7. CONCLUSIONS 
 
Component dynamic amplification factors are crucial 

because they represent the amplification of NSCs in the 

floor response spectrum. Hence, the present study 

explores the quantification of such amplification by 

means of a component dynamic amplification factor. The 

primary structure is therefore examined for the 

aforementioned factors. The amplification factors are 

compared to those found in the code-based formulae. The 

study allows for the following conclusions to be drawn: 

• The component dynamic amplification factors show 

significant peak values in the range of 0.7 ≤
𝑇𝑠 𝑇𝑝⁄ ≤ 1 for the considered primary structures. 

• The damping ratio (𝜉𝑠) of NSC has a greater impact 

on the dynamic amplification factors at vibration 

periods of the primary structure.  

• The influence of 𝜉𝑠  is negligible for both extremely 

short and very long NSC periods. 

• The ASCE 7’s definition under- or overestimates 

the amplification factors for periods closer to the 

vibration periods of the primary structure. So, the 

impacts of the dynamic properties of the NSC and 

primary structure should be included in the present 

code-based formulation.  

• Machine learning (ML) technique like ANN is 

utilized to develop the prediction model for CDAF 

spectra. ANN is proved to be more effective and 

powerful tool in this study for establishing the 

relation between the input and output variables.  
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 چکیده 
  ار یاجزا با استفاده از روابط بس یرا بر رو  یطراح یروهای، ننوین  یساختمان نیبوده است. قوان محققینمورد توجه  ریدر طول چند دهه اخ یسازه ا ریغ یاجزا یعملکرد لرزه ا

  اجزا  یک ینامید تشدید بیضرا ن،یا. بنابردنر یگ یم هستندکه به آن متصل  یطبقه ا ی بیشتر ازشتاب معمولا اجزای غیرسازه ای متصل به یک کف سازه ایکنند.  یم فیساده تعر

پریودهای ارتعاشی  ، و  غیر سازه ایاجزای    شده  میتنظ  یهاو نسبت   ییرای مختلف م  یهانسبت   یبرا  اجزای غیر سازه ای در شتاب    میزان تشدید  ی ساز  یکم  ی کار برا  ن یدر ا

پایین   دست مقادیر را  آییین نامه های فعلیبر  یمبتن یهاتوسط فرمول CDAF نقاط پیکمشاهده شد که  ،به دست آمده لیو تحل هیتجز جی. از نتاشوندیمحاسبه م اصلی سازه

ه ( توسعه داده شدANN)  یمصنوع  یعصب  یهابا استفاده از شبکه  CDAFs  نییتع   یبرا   ینیبشیپمدل    کبرای رفع این مشکل، ی.  نمایندیاز حد برآورد م  شیب  ایگرفته    در نظر

 . دهد یکاهش متا حد قابل توجهی را  دهیچیپ  لیو تحل هیضرورت تجز ANN تمیالگور ک یاز  ادهرو، استف نی بود. از ا 0.97مدل  یهمبستگ  بی. ضراست
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