Performance Analysis and Optimization of Asymmetric Front and Back Pi Gates with Dual Material in Gallium Nitride High Electron Mobility Transistor for Nano Electronics Application

Document Type : Original Article

Authors

Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, India

Abstract

The impact of aluminium nitride (AlN) Spacer, Gallium Nitride (GaN) Cap Layer, Front Pi Gate (FG) and Back Pi Gate(BG), Dual Floating material  High K dielectric material such as Hafnium dioxide (HfO2), Aluminium Oxide (Al2O3), Silicon nitride  (Si3N4) on Aluminium  Galium Nitride/ Gallium Nitride (AlGaN/GaN), Heterojunction High Electron Mobility Transistor (HEMT) of 6nm technology is simulated and extracted the results using the Silvaco Atlas Technology Computer-Aided Design (TCAD) tool.The importance of High K dielectric materials like Al2O3 and Si3N4 were studied for the proposal of GaN HEMT. AlN, GaN Cap Layers, and High K Dielectric material are layered one on another to overcome the conventional transistor draw backs  like surface defects, scattering of the electron, and less mobility of electron. Hot electron effect is overcome by Pi type gate.Triple tooth floating material is placed in the buffer layer to improve breakdown voltage. Therefore, by optimizing the HEMT structure the inabilities for certain devices are converted to abilities. The dependency on DC characteristics and RF characteristics due to GaN Cap Layers, Multi gate (FG &BG), and High K Dielectric material, Dual triple tooth material in buffer layer  with recessd gate  is established. Further Compared Single Gate (SG)  Passivated HEMT, Double Gate (DG) Passivated HEMT, Double Gate Triple (DGT) Tooth Passivated HEMT, High K Dielectric Front Pi Gate (FG) and Back Pi Gate  (BG), Asymmetric High K Dielectric Front Pi Gate (FG) and Back Pi Gate (BG) with recessed gate Nanowire HEMT. It was observed that the proposed resulted with increased Drain Current (Ion) of 7.5 (A/mm), low Leakage current (Ioff) 3E-15 (A), Transconductance (Gm) of 4.8 (S/mm), Drain Conductance (Gd) of 2.5 (S/mm), Maximum Oscillation frequency (Fmax) 745 GHz, Minimum Threshold Voltage (Vth) of -4.5V, On Resistance (Ron) of 0.12(Ohms) at Vgs =0V.

Keywords

Main Subjects


  1. Sehra, K., Kumari, V., Gupta, M., Mishra, M., Rawal, D. and Saxena, M., "Optimization of π–gate algan/aln/gan hemts for low noise and high gain applications", Silicon, (2020), 1-12. https://doi.org/10.1007/s12633-020-00805-7
  2. Augustine Fletcher, A. and Nirmal, D., "A survey of gallium nitride hemt for rf and high power application", Superlattice Microst, Vol. 109, (2017), 519-537. https://doi.org/10.1016/j.spmi.2017.05.042
  3. Micovic, M., Brown, D., Kurdoghlian, A., Santos, D., Grabar, B., Magadia, J., Khalaf, I., Tai, H., Prophet, E. and Burnham, S., "Gan dhfets having 48% power added efficiency and 57% drain efficiency at $ v $-band", IEEE Electron Device Letters, Vol. 38, No. 12, (2017), 1708-1711. doi: 10.1109/LED.2017.2763940.
  4. Jazaeri, F., Shalchian, M. and Sallese, J.-M., "Transcapacitances in epfl hemt model", IEEE Transactions on Electron Devices, Vol. 67, No. 2, (2019), 758-762. doi: 10.1109/TED.2019.2958180.
  5. Rastogi, G., Kaneriya, R., Sinha, S. and Upadhyay, R., "Optimization of ohmic contact fabrication for al0. 3ga0. 7n/aln/gan hemts on 6h-sic using recess etching and surface plasma treatment processes", Journal of Nanomaterials & Molecular Nanotechnology, Vol. 8, (2019), 2. https://doi.org/10.4172/2324-8777.1000267
  6. Kaneriya, R., Rastogi, G., Basu, P., Upadhyay, R. and Bhattacharya, A., "Intersubband device modeling of gallium nitride high electron mobility transistor for terahertz applications", Radio Science, Vol. 54, No. 12, (2019), 1172-1180. https://doi.org/10.1029/ 2019RS006844
  7. Shur, M., Gaska, R., Khan, A. and Simin, G., "Wide band gap electronic devices", in Proceedings of the Fourth IEEE International Caracas Conference on Devices, Circuits and Systems (Cat. No. 02TH8611), IEEE. (2002), D051-D051.
  8. Yadav, R. and Dutta, A.K., "A new charge-based analytical model for the gate current in gan hemts", IEEE Transactions on Electron Devices, Vol. 69, No. 4, (2022), 2210-2213. doi: 10.1109/TED.2022.3149460.
  9. Van Hove, M., Boulay, S., Bahl, S.R., Stoffels, S., Kang, X., Wellekens, D., Geens, K., Delabie, A. and Decoutere, S., "Cmos process-compatible high-power low-leakage algan/gan mishemt on silicon", IEEE Electron Device Letters, Vol. 33, No. 5, (2012), 667-669. doi: 10.1109/LED.2012.2188016.
  10. Selvaraj, S.L., Suzue, T. and Egawa, T., "Breakdown enhancement of algan/gan hemts on 4-in silicon by improving the gan quality on thick buffer layers", IEEE Electron Device Letters, Vol. 30, No. 6, (2009), 587-589. doi: 10.1109/LED.2009.2018288.
  11. Shen, L., Heikman, S., Moran, B., Coffie, R., Zhang, N.-Q., Buttari, D., Smorchkova, I., Keller, S., DenBaars, S. and Mishra, U., "Algan/aln/gan high-power microwave hemt", IEEE Electron Device Letters, Vol. 22, No. 10, (2001), 457-459. doi: 10.1109/55.954910.
  12. Purnachandra Rao, G., Lenka, T.R., Singh, R., Boukortt, N.E.I., Sadaf, S.M. and Nguyen, H.P.T., "Comparative study of iii-nitride nano-hemts on different substrates for emerging high-power nanoelectronics and millimetre wave applications", Journal of Electronic Materials, Vol. 52, No. 3, (2023), 1948-1957. https://doi.org/10.1007/s11664-022-10145-4
  13. Wang, W., Yu, X., Zhou, J., Chen, D., Zhang, K., Kong, C., Kong, Y., Li, Z. and Chen, T., "Improvement of power performance of gan hemt by using quaternary inalgan barrier", IEEE Journal of the Electron Devices Society, Vol. 6, (2018), 360-364. doi: 10.1109/JEDS.2018.2807185.
  14. Palacios, T., Chini, A., Buttari, D., Heikman, S., Chakraborty, A., Keller, S., DenBaars, S.P. and Mishra, U.K., "Use of double-channel heterostructures to improve the access resistance and linearity in gan-based hemts", IEEE Transactions on Electron Devices, Vol. 53, No. 3, (2006), 562-565. doi: 10.1109/TED.2005.863767.
  15. Zhang, K., Kong, C., Zhou, J., Kong, Y. and Chen, T., "High-performance enhancement-mode Al2O3/inalgan/gan mos high-electron mobility transistors with a self-aligned gate recessing technology", Applied Physics Express, Vol. 10, No. 2, (2017), 024101. doi: 10.7567/APEX.10.024101.
  16. Hwang, I.H., Eom, S.K., Choi, G.H., Kang, M.J., Lee, J.G., Cha, H.Y. and Seo, K.S., "High‐performance e‐mode algan/gan mis‐hemt with dual gate insulator employing sion and hfon", Physica status solidi (a), Vol. 215, No. 10, (2018), 1700650. https://doi.org/10.1002/pssa.201700650
  17. Zhuge, J., Wang, R., Huang, R., Zhang, X. and Wang, Y., "Investigation of parasitic effects and design optimization in silicon nanowire mosfets for rf applications", IEEE Transactions on Electron Devices, Vol. 55, No. 8, (2008), 2142-2147. doi: 10.1109/TED.2008.92627.
  18. Sehra, K., Kumari, V., Nath, V., Gupta, M. and Saxena, M., "Optimization of asymmetric π gate hemt for improved reliability & frequency applications", in 2019 IEEE 9th International Nanoelectronics Conferences (INEC), IEEE. (2019), 1-4.
  19. Sun, W., Joh, J., Krishnan, S., Pendharkar, S., Jackson, C.M., Ringel, S.A. and Arehart, A.R., "Investigation of trap-induced threshold voltage instability in gan-on-si mishemts", IEEE Transactions on Electron Devices, Vol. 66, No. 2, (2019), 890-895. doi: 10.1109/TED.2018.2888840.
  20. Lee, J.-W., Kuliev, A., Kumar, V., Schwindt, R. and Adesida, I., "Microwave noise characteristics of algan/gan hemts on sic substrates for broad-band low-noise amplifiers", IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, (2004), 259-261. doi.
  21. Shinohara, K., Corrion, A., Regan, D., Milosavljevic, I., Brown, D., Burnham, S., Willadsen, P., Butler, C., Schmitz, A. and Wheeler, D., "220ghz f t and 400ghz f max in 40-nm gan dh-hemts with re-grown ohmic", in 2010 International Electron Devices Meeting, IEEE. (2010), 30.31. 31-30.31. 34.
  22. Lin, J., Antoniadis, D.A. and del Alamo, J.A., "Impact of intrinsic channel scaling on ingaas quantum-well mosfets", IEEE Transactions on Electron Devices, Vol. 62, No. 11, (2015), 3470-3476.
  23. Sharma, N., Mishra, S., Singh, K., Chaturvedi, N., Chauhan, A., Periasamy, C., Kharbanda, D.K., Parjapat, P., Khanna, P. and Chaturvedi, N., "High-resolution algan/gan hemt-based electrochemical sensor for biomedical applications", IEEE Transactions on Electron Devices, Vol. 67, No. 1, (2019), 289-295. doi: 10.1109/TED.2019.2949821.
  24. Balaji, B., Srinivasa Rao, K., Girija Sravani, K., Bindu Madhav, N., Chandrahas, K. and Jaswanth, B., "Improved drain current characteristics of hfo2/sio2 dual material dual gate extension on drain side-tfet", Silicon, (2022), 1-6. https://doi.org/10.1007/s12633-022-01955-6
  25. Gowthami, Y., Balaji, B. and Rao, K.S., "Design and performance evaluation of 6nm hemt with silicon sapphire substrate", Silicon, (2022), 1-8. https://doi.org/10.1007/s12633-022-01900-7
  26. Kumar, P.K., Balaji, B. and Rao, K.S., "Performance analysis of sub 10 nm regime source halo symmetric and asymmetric nanowire mosfet with underlap engineering", Silicon, Vol. 14, No. 16, (2022), 10423-10436. https://doi.org/10.1007/s12633-022-01747-y
  27. Balaji, B., Rao, K.S., Sravani, K.G. and Aditya, M., "Design, performance analysis of gaas/6h-sic/algan metal semiconductor fet in submicron technology", Silicon, (2022), 1-5. https://doi.org/10.1007/s12633-021-01545-y
  28. Balaji, B., Rao, K.S., Aditya, M. and Sravani, K.G., "Device design, simulation and qualitative analysis of gaasp/6h-sic/gan metal semiconductor field effect transistor", Silicon, Vol. 14, No. 14, (2022), 8449-8454. https://doi.org/10.1007/s12633-022-01665-z
  29. Chen, C.-H., Krishnamurthy, K., Keller, S., Parish, G., Rodwell, M., Mishra, U. and Wu, Y.-F., "Algan/gan dual-gate modulation-doped field-effect transistors", Electronics Letters, Vol. 35, No. 11, (1999), 933-935. doi: 10.1049/el:19990627.
  30. He, J., Cheng, W.C., Wang, Q., Cheng, K., Yu, H. and Chai, Y., "Recent advances in gan‐based power hemt devices", Advanced Electronic Materials, Vol. 7, No. 4, (2021), 2001045. doi: 10.1002/aelm.202001045.
  31. Latorre-Rey, A.D., Albrecht, J.D. and Saraniti, M., "Generation of hot electrons in gan hemts under rf class a and ab pas", in 2017 75th Annual Device Research Conference (DRC), IEEE. (2017), 1-2.
  32. Zhang, N.-Q., Moran, B., DenBaars, S., Mishra, U., Wang, X. and Ma, T., "Effects of surface traps on breakdown voltage and switching speed of gan power switching hemts", in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224), IEEE. (2001), 25.25. 21-25.25. 24.
  33. Ambacher, O., Smart, J., Shealy, J., Weimann, N., Chu, K., Murphy, M., Schaff, W., Eastman, L., Dimitrov, R. and Wittmer, L., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in n-and ga-face algan/gan heterostructures", Journal of Applied Physics, Vol. 85, No. 6, (1999), 3222-3233. https://doi.org/10.1063/1.369664
  34. Mishra, U.K., Shen, L., Kazior, T.E. and Wu, Y.-F., "Gan-based rf power devices and amplifiers", Proceedings of the IEEE, Vol. 96, No. 2, (2008), 287-305. doi: 10.1109/JPROC.2007.911060.
  35. Arulkumaran, S., Egawa, T., Selvaraj, L. and Ishikawa, H., "On the effects of gate-recess etching in current-collapse of different cap layers grown algan/gan high-electron-mobility transistors", Japanese Journal of Applied Physics, Vol. 45, No. 3L, (2006), L220. doi: 10.1143/JJAP.45.L220.