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A B S T R A C T  
 

 

Nowadays, the notion of plug-in electric vehicle (PEV) as a valuable tool of energy management has 

been extensively employed in smart distribution grids. The main advantage of clean energy as well as 
elastic behaviour of operation in both electrical load/generation modes can sufficiently justify the 

utilization of such emerging technology. Moreover, the specific capability of renewable energy sources 

(RESs) in terms of contribution in PEV smart charging/discharging scheme would cause to remarkable 
techno-economic benefits in smart grids. However, the load demand, RES generation and also the 

electrical energy price encounter with uncertainty in practice required to be properly handled. Hence, a 

non-deterministic optimization model based on information gap decision theory (IGDT) is proposed in 
this paper to specify a robust PEV smart charging pattern. To solve the multi-objective proposed IGDT-

based PEV smart charging (IGDT-PSC) model, the multi-objective version of particle swarm 

optimization (MOPSO) is utilized to define a set of Pareto optimal solutions. Furthermore, the final 
solution among the Pareto solutions is selected by means of a linear fuzzy satisfaction rule. The 

simulation results for a test smart microgrid comprising a PEV, a set of RES units and a load demand 

verify the  effectiveness of the proposed IGDT-PSC model.   

doi: 10.5829/ije.2023.36.04a.10 
 

 

NOMENCLATURE 

TC  Cost of purchased electrical energy ($). /int finCS CS  Initial/final charging state of the plug-in electric 
vehicle battery (%). 

t
  Set of hours in a day (i.e. {0,1,..,24}). /ch dch   Charging/discharging efficiency of the plug-in 

electric vehicle battery (%). 

tUP  Upstream power supplied by the main grid at hour t (kW). , ,/PEV PEV
ch t dch tP P  

Charging/discharging power of the plug-in electric 

vehicle battery at hour t (kW). 

tEP  Electrical energy price at hour t (Cent/kWh). tCS  Charging state associated with the plug-in electric 
vehicle battery at hour t (%). 

tLD  Load demand at hour t (kW). /min maxCS CS  Lowest/highest charging state value (%). 

PV
tP  Output power of the photovoltaic system at hour t (kW). /t t   Binary variables showing the charging/discharging 

status of the plug-in electric vehicle battery at hour t. 

WT
tP  Output power of the wind turbine at hour t (kW). /max max

ch dchP P  
Maximum permissible charging/discharging power of 

the plug-in electric vehicle battery (kW). 

PEV
tP  output power of the plug-in electric vehicle at hour t (kW). /PEV PEV

min maxSE SE  Minimum/maximum value of the stored energy in the 
plug-in electric vehicle battery. (kWh). 

PEV
maxE  Rated capacity of the plug-in electric vehicle (kWh). RP  Robustness controlling parameter used in information 

gap decision theory. 

PEV
tE  Remained energy of the plug-in electric vehicle battery at 

hour t (kWh). 
(o)  Boundry value related to rz of the uncertain variable 

(o). 

(o)rz  Robust zone associated with the uncertain variable (o).   
A user-defined value between 0 and 1 controlling the 
selection pressure of the leader associated with each 

cell. 
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exp
tLD  Expected value of the load demand at hour t (kW).   A user-defined value between 0 and 1 controlling the 

selection pressure of the cell elimination. 

exp
tEP  Expected value of the electrical energy price at hour t 

(Cent/kWh). 
t  Time step (h). 

, ,
/

PV exp WT exp
t tP P  Expected value of the photovoltaic/wind turbine output 

power at hour t (kW). 
Subscripts 

/k kVE PS  Velocity/position of the particle k. t  Hour. 

iterGBT  The best position ever discovered among the population 

until itertion iter. k  
Number of candidate solution in particle swarm 

optimization. 

iter
kPBT  Best position arisen for the particle k until itertion iter. /ch dch  Related to the charging/decharging. 

1 2,c c  

Two predefined weighting factors regulating the moving 

step toward the particle's best position ever discovered and 

the best position ever discovered among the population, 

respectively. 

i  Related to the number of each objective function. 

1 2,r r  Two random values with uniform distribution lying in the 

range of (0,1). 
n  Related to the number of each Pareto optimal 

solution. 

Greek Symbols /ld pv  Related to the load demand/photovoltaic unit. 


 

Inertial coefficient representing the particle's tendency to 
move along the previous position. 

/wt pr  Related to the wind turbine/electrical energy price. 

 
1. INTRODUCTION 
 
Green-house gases emission and so human health 

concerns, shortage and low accessibility of fossil fuel as 

well as its increasing price in world markets, low 

operation costs and also using the potential of energy 

storage are of the main techno/economic/enviromental 

incentives of the PEV application. The essential 

flexibility of the PEVs in both performance modes of 

electrical source/load has recently absorbed the attention 

of academic and industrial individuals to more 

investigate and exploit the operational advantages of 

such technology in modern power systems [1, 2]. At the 

same context, the extensive potential of RESs such as 

photovoltaic (PV) units, wind turbine (WT) units, fuel 

cells, geothermal energy, battery energy storage system 

(BESS), etc., as supportive low-emission cost power 

sources has been growingly taken into consideration in 

smart distribution grids [3-5]. In this way, the helpful role 

of PV/WT units in charging a PEV battery specifically in 

off-peak electrical energy prices can potentially lead to 

reduction in operation costs. At the same context, the 

valuable feature of battery discharging throughout the 

peak load interval of the main grid, aiming to more 

reduction of the operation costs, can further highlight the 

beneficial aspects of the PEVs [6]. Hence, based on 

contributory partnership of the PV/WT units, this paper 

concentrates on presenting a reasonable cost-effective 

PEV charging/discharging framework (called hereafter 

PEV smart charging (PSC)) in order to achieve the 

techno/economical purposes of all participants. In 

general, the main participants of PEV-equipped smart 

grids are PEV user (driver), grid operator and charging 

station owner. Thus, the PEV charging/discharging 

optimization can be variously implemented based on 

each of participants' interest. Load balancing, peak load 

shaving, cost minimization are among the main 

expectation of the grid operator from the smart PEV 

charging approach [7, 8]. On the other hand, the owner 

of charging station essentially seeks to earn more revenue 

from injecting (selling) the PEVs' stored energy 

especially within the peak price period. Without loss of 

the generality, the grid operator and the charging station 

owner is assumed to be identical in this paper. At this 

condition, the main target of the formulated PSC model 

is to sufficiently supply the load demand by focusing on 

reduction in total cost as much as possible. Additionally, 

the PEV user's interest is an important issue less 

emphasized in the recent research works. Based on this 

issue, in this paper, a comprehensive PSC model is 

proposed wherein the whole participants' desire are 

simultaneously taken into account. To incorporate the 

key role of the PEV user, the presented PSC model 

permits the PEV user to previously announce his/her 

desired arrival and departure time to/from the charging 

station as well as the interested initial and final charging 

state (CS) pertaining to the PEV battery. The data 

transmission infrastructure is practically provided by 

wireless communication technology employing the 

specialized applications installed at smart phones, etc. In 

this regard, immediately after receiving the required data 

of  PEV user, the grid operator/charging station owner 

seeks to optimize the PEV terminal power (i.e. 

charging/discharging pattern) along a day considering all 

other relevant inputs including the load, PV/WT 

generation profiles as well as the economic data and 

constraints associated with both grid and PEV. 

Subsequently, the PEV user is informed from the 

optimization result (i.e. variation trend of the PEV 

terminal power) based on the technical specifications 

he/she announced before arrival to the charging station. 

On the other hand, the load demand, PV/WT 

generation and also the electrical energy price are 

intrinsically exposed to the uncertainty in real-world 

smart grids, which has not been considered in the 

literature. In this way, to ensure a reliable and robust 
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decicison outputs hedged against the uncertain 

characteristics of the mentioned parameters, an efficient 

uncertainty modeling approach should be utilized. 

Generally speaking, the well-known probabilistic [9-11] 

and possibilistic methods [12-14] are usually observed in 

recent research works to model the various uncertainty 

resources. In the former, the probability distribution 

function (PDF) of the uncertain variables is mandatory 

while the latter characterize the uncertain resources via 

their membership function. However, each of these two 

methods encounter with functional challenges somehow. 

Within the probabilistic methods, the PDF of some 

uncertain variables are not available or the uncertain 

variables do not follow any definite PDF. Moreover, in 

some cases, sufficient previously recorded data is not 

available to constitute an accurate PDF. On the other 

hand, the membership function is structurally formed 

according to the prior experience of the expert system, 

which is generally a non-trivial task in practice. 

Therefore, in this paper, the notion of IGDT is utilized to 

handle the uncertainty resources of the load, PV/WT 

generation and electrical energy price within the 

proposed PSC model. Two distinguished advantages of 

the IGDT versus the probabilistic/possibilistic methods 

can be enumerated. The first is the proficient 

performance of the IGDT under the least or no historical 

data about the past of uncertainty resources. Also, the 

second advantage is presenting a robust optimization 

outputs all protected against the worst fluctuation of the 

uncertain variables varying within their own robust zones 

[15-17]. Within the formulated IGDT-PSC model, the 

four uncertain variables including the load, PV/WT 

generation and electrical energy price competitively try 

to extend their relevant robust zones. Since these 

uncertain parameters are fundamentally heterogeneous, 

thus, the suggested non-deterministic IGDT-PSC model 

is in the form of a multi-objective optimization problem. 

To solve this problem, the multi-objective variant of PSO 

(i.e. MOPSO) is utilized to create a set of non-dominated 

Pareto solutions. Finally, to reach the best compromise 

solution among the Pareto solutions generated by the 

MOPSO, a well-known fuzzy-based satisfaction rule is 

employed.  

The main contributions of this paper are as follows: 

1) an IGDT-PSC model is proposed considering four 

uncertainty resources of load, PV/WT output and also 

electricity price; 2) the proposed model is comprehensive 

such that the techno-economic interests of all 

participants, i.e. the PEV user, grid operator and charging 

station owner, are concurrently met. To assess the 

effectiveness of the formulated IGDT-PSC model, it is 

implemented on a small-scale microgird including an 

electrical load, a set of PV/WT generation units and also 

a PEV. The simulation results including the daily profiles 

of the PEV terminal power (and so it's CS) is optimally 

calculated by simultaneous application of the proposed 

IGDT-PSC model, MOPSO and fuzzy-based satisfaction 

rule.  

The rest of the paper is categorized as follows. In 

section 2, the suggested mathematical representation of 

the proposed deterministic PSC (DPSC) model is 

presented. The IGDT definition, the mathematical 

formulation of the proposed IGDT-PSC model, the 

MOPSO performance in creation of the non-dominated 

solutions and ultimately the fuzzy decision-making 

strategy is presented in section 3. Section 4 includes the 

simulation results obtained by simultaneous application 

of the proposed IGDT-PSC model, MOPSO and fuzzy-

based rule aiming to specify the robust PEV 

charging/discharging scheme. Section 5 highlights the 

conclusion remarks. 
 

 

2. THE PROPOSED DPSC MODEL        
 

In this section, the mathematical formulation of the 
proposed DPSC model together with the associated 
technical constraints is presented.  

 

2. 1. The Objective Function of the Proposed DPSC 
Model       The DPSC framework presented in this 

research work aims to minimize the daily cost of the 

electrical power procured from the main grid. In this 

regard, the mathematical representation of the suggested 

DPSC model specifying the optimal daily trend of the 

PEV terminal power (and so the pertinent CS) can be 

depicted as follow: 
 
 

DOF min TC=  (1) 

( )
t

t t

t

TC UP EP

 

=   (2) 

where TC denotes the electrical energy purchase cost. As 

illustrated in Equation (1), the main goal of the proposed 

DPSC model is to adequately meet the load power based 

on the minim TC  imposed to the grid operator.  

 

2. 2. Constraints       The following equality/inequality 

constraints, realted to both PEV battery and the main 

grid, are incorporated into the proposed DSPC model: 

• Power balance should be satisfied all the day:  

 PV WT PEV t
t t t t tUP LD P P P t = − − −    (3) 

( ) ( )
PEV

PEV tmax
t t t t

E
P CS CS t

t
−= −   

  
(4) 

By Comparing CSt and CSt-Δt as well as assuming Δt=1h, 

three performance statuses for a PEV is defined as below: 

1

1

1

;

;

; ( )

t t
t

t t

t t

CS CS charged

CS CS discharged t

CS CS no operation idle



−

−

−




  
 =

 (5) 
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• The variation trend of CS for the PEV battery during the 

time period between entering/leaving the charging 

station is determined by Equations (6)-(8). Furthermore, 

the time-based remaining energy of the PEV battery is 

calculated via Equation (9): 

t AT intCS CS =  (6) 

t DT finCS CS =
 

(7) 

( ) ( 1)

PEV
tt

AT t DT t PEV
max

E
CS CS t

E
  −

 
= +   

 
 

 
(8) 

,
,

( 1 )PEV PEV
t t

PEV
dch tPEV t

ch ch t
dch

E P t hr

P
P t 



=   =

 
 =  −  
 
 

 
(9) 

• The functional restriction imposed to the 

charging/discharging rate, CS and stored energy of the 

PEV battery (affirmed by the manufacturer to prevent the 

loss of battery lifetime) is represented as follows: 

,
PEV max t

ch t t chP P t       (10) 

,
PEV max t

dch t t dchP P t      (11) 

 1 ; , 0,1t
t t t tt    +      (12) 

min max t
tCS CS CS t      (13) 

PEV PEV PEV t
min t maxSE E SE t      (14) 

PEV min PEV t
min maxSE CS E t =     (15) 

PEV max PEV t
max maxSE CS E t =     (16) 

 

 

3. THE PROPOSED IGDT-PSC MODEL 
 

In this section, the notion of IGDT as the uncertainty 

handling approach employed in this paper is firstly 

described in subsection 3.1. Afterwards, the 

mathematical formulation of the proposed IGDT-PSC 

model is presented in subsection 3.2. Since the IGDT-

PSC model is a multi-objective optimization problem, 

the evolution procedure of the multi-objective PSO 

(MOPSO), utilized for solving the suggested model, is 

presented in subsection 3.3. Eventually, the fuzzy 

satisfaction-based decision rule used to select the best 

solution between the Pareto optimal solutions, created by 

the MOPSO, is elucidated in subsection 3.4.  

 

3. 1. The Information Gap Decision Theory (IGDT)       
In real-world power systems, the planning/operation 

process encounter with several economic/technical 

uncertainties. To model such uncertainty resources, the 

familiar probability distribution function (PDF) [9-11] 

for probabilistic approaches and fuzzy membership 

function [12-14] for possibilistic techniques have been 

recurrently employed in recent studies. Nevertheless, the 

PDF of the uncertain variables is not reachable or not 

appropriate for precise uncertainty modeling in most 

practical cases. Furthermore, the altering behaviour 

pertaining to some other uncertain variables does not 

follow a definite PDF. On the other hand, a fuzzy 

membership function requires the preceding skills of the 

expert individuals that are not available in some 

circumstances. Accordingly, a worthwhile uncertainty 

characterizing approach like IGDT can be an 

advantageous tool to cope with such uncertainty 

resources.  
The main goal of the IGDT is to maximize the 

robustness of the decision outputs in a non-deterministic 

optimization problem. Within the IGDT, the permissible 

variation of the uncertain variables from their expected 

values is circumscribed to a boundary parameter namely 

robust zone. Based on this issue, IGDT attempts to 

maximize the toleration of the decision-making strategy 

versus any probable value realized for the uncertain 

variables throughout their own robust zones [15-17].  In 

other word, the robust solution achieved by the IGDT is 

secure against the worst-case deviation of the uncertainty 

resources all over their own robust zones. 

Mathematically speaking, not surpassing the 

objective function of the non-deterministic problem from 

a predefined value is defined as the robustness of the 

decision-making procedure. The predefined value is the 

numerical value of the objective function associated with 

the related deterministic problem where no uncertainty 

resource is incorporated. 

There are numerous methods to represent the 

variation behaviour of the uncertainty resources within 

the IGDT technique. The envelope bound is used in this 

paper for this purpose [18-20]. Let assume an 

optimization problem wherein X and Y denote the set of 

decision and uncertain variables, respectively. 

Considering the boundary value of µ, the envelope bound 

method characterizing the robust zones of the Y (i.e. rz) 

can be illustrated as follows: 
( , )expY rz Y   (17) 

( , )
exp

exp

exp

Y Y
rz Y

Y
 

−
=   (18) 

where Yexp is the expected (forecasted) value of the Y. 

According to Equation (18), the Y members can freely 

change within their own rz interval, confined by µ, as 

below: 

(1 ). (1 ).exp expY Y Y −   +  (19) 
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The chief role of the IGDT is to maximize the robust 

zone µ aiming to achieve a set of decision variables X 

immunized against any possible fluctuation of the Y 

members within their own robust zones representd in 

Equation (19). To better insight, consider f*(X,Y) as the 

numerical value of the non-deterministic objective 

function. Since more deviation of the Y members from 

their own expected values results in escalating the 

f*(X,Y), the highest value of f*(X,Y) to confirm the 

maximum robustness befalls when all Y members reach 

to their own upper bounds (i.e.Y=(1+µ).Yexp). Hence, the 

IGDT trying to attain the most extended rz for the set of 

Y can be mathematically formulated via Equations (20)-

(22): 

max ( , ( ))
X

X f X  
(20) 

( , )expY rz Y  (21) 

*( ,( (1 ). )) (1 ). ( )expf X Y Y UB f X= +  +  (22) 

where UB is a selective limiting value predefined by the 

decision-maker. The UB value is directly relies on the 

decision-maker prospect such that how much robustness, 

as shown in Equation (22), is desired to realize.  
 

3. 2. Mathematical Representation of the 
Suggested IGDT-PSC Model       The DPSC model 

developed in section 2 is exposed to the multifold 

uncertainties in practical environment. As explicated 

beforehand, the uncertainty resources of this paper 

comprise the load demand, PV/WT output power, and 

also the electrical energy price which should be 

incorporated into the DPSC model given in Equations 

(1)-(16).  
To mathematically formulate the IGDT-PSC model, 

the set of decision variables (X), uncertain variables (Y), 

robust zones (rz), and boundary enveloping values (µ) 

are considered as follow: 

 , , PEV
t t tX P =  (23) 

 , , ,PV WT
t t t tY LD P P EP=  (24) 

 , , ,ld pv wt prrz rz rz rz rz=  (25) 

 , , ,ld pv wt pr    =  (26) 

Based on Equation (18), the set of rz assoicted with 

the four uncertainty resources of the proposed IGDT-

PSC model can be illustrated as follows: 

exp
t t

ld ldexp
t

LD LD
rz

LD


−
= 

 
(27) 

,

,

PV expPV
t t

pv pvPV exp
t

P P
rz

P


−
=   

(28) 

,

,

WT expWT
t t

wt wtWT exp
t

P P
rz

P


−
=   (29) 

exp
t t

pr prexp
t

EP EP
rz

EP


−
=   (30) 

Considering Equations (27)-(30), the worst-case 

value of the uncertain variables are: (1 ).
exp

ld tLD+ for the 

load demand, , ,
(1 ). / (1 ).

PV exp WT exp
pv wtt tP P − −  for the 

PV/WT output power and (1 ).
exp

pr tEP+ for the 

electrical energy price. Therefore, the extended form of 

the IGDT-PSC model can be mathematically 

demonstrated by Equations (31)-(35): 

( , , , )ld pv wt prmax      

s.t. 
(31) 

( , , , , , , )

(1 ).

PV WT PEVROF TC UP CS LD P P EP P

RP DOF



 +

 
(32) 

( .(1 ). )t t pr tt
TC UP EP




 
= +  

(33) 

(1 ). (1 ).

(1 ).

PV t
t ld t pv t

WT PEV
wt t t

UP LD P t

P P

  



= + − − −  

− −

 (34) 

Equations (3) to (16) (35) 

It is evident that the proposed IGDT-PSC model 

presented in Equations (31)-(35) is characteristically a 

multi-objective optimization problem. The MOPSO 

algorithm is employed to solve this model and so 

generate a set of Pareto optimal solutions. In the 

following, the step-by-step performance of MOPSO is 

described.  

 

3. 3. Multi-objective Particle Swarm Optimization 
(MOPSO)        In the following, the original PSO is briefly 

reviewed in subsection 3.3.1. Then, the dominance 

theory raised in multi-objective optimization problems is 

mathematically elucidated in section 3.3.2. Finally, the 

step-by-step evolutionary performance of the MOPSO is 

described in section 3.3.3. 
 

3. 3. 1. Brief Description of the Original PSO        The 

original PSO inspires from group movement of the 

fishes/birds herd (population). This metaheuristic 

optimization algorithm and also its enhanced variants 

have been numerously utilized in recent power system 

problems [21-24]. In original PSO, each member of the 

population (i.e. each candidate solution) is generally 

known as a particle which can be iteratively evolved by 

means of adaptive movement toward two other positions 

in the feasible search space. The first is the best position 

arisen for each particle (PBT) and the second is the best 
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position ever discovered among the population (GBT). 

To mathematically represent the chronological 

movement of each PSO particle, consider an 

optimization problem with m decision variables.  The 

velocity and position of the particle k can be respectively 

indicated by Equations (36) and (37): 

1 2[ , ,..., ]m
k k k kVE ve ve ve=  (36) 

1 2[ , ,..., ]m
k k k kPS ps ps ps=  (37) 

Thus, the iterative update for both VEk and PSk is as 

follows:  

 

1

2 2

1
1. . .( )

. .( ) 1,2,...,

iter iter iter iter
k k k k

iter iter
k sol

VE VE c r PBT PS

c r GBT PS k N

+ = + − +

− 

 (38) 

1 1iter iter iter
k k kPS PS VE+ += +  (39) 

where Nsol and iter are respectively symbolized for the 

number of particles and counter of PSO iterations. 

Furthermore, c1 and c2 are two predefined weighting 

factor regulating the moving step toward the particle's 

PBT and population's GPT, respectively (classically 

c1+c2 =4 [21-24]). The inertial coefficient λ depicts the 

particle's tendency to move along the previous position. 

In general, this factor is initialized with a high value and 

gradually drops to the lower values along with the PSO 

iterations. Ultimately, r1 and r2 are two random values 

with uniform distribution lying in the range of (0,1).  

The update approach of Equations (38)-(39) is 

iteratively replicated up to the termination condition (i.e. 

reach to the maximum iteration number). The GBT in the 

last iteration (itermax)  is designated as the PSO best 

solution. 

 

3. 3. 2. Dominance Theory       A multi-objective 

optimization problem with u decision variable and nb 

objective functions can be mathematically demonstrated 

as follows (without loss of the generality, a maximization 

problem is taken into account):  

1 2( ) [ ( ), ( ),..., ( )]nbF X f X f X f X=  (40) 

1 2[ , ..., ]uX x x x=  (41) 

( ) 0 , ( ) 0EC X IC X
− −

=   (42) 

where EC(X) and IC(X)  are clique of the equality and 

inequality constraints, respectively. If X1 and X2 are two 

feasible candidate solutions, X2 is dominated by X1 when 

the following conditions are concurrently fulfilled: 

  1 21,2,..., ( ) ( )i ii nb f X f X     (43) 

  1 21,2,..., ( ) ( )i ii nb f X f X      (44) 

3. 3. 3. The MOPSO Step-By-Step Algorithm       

Compared with original  PSO, the GBT is replaced by the 

notion of "leader" selected among a set of non-dominated 

solutions (namely Pareto optimal solutions) in every 

iteration of the MOPSO. Moreover, the mentioned Pareto 

solutions are stockpiled in a specific archive known as 

"repository''. Accordingly, the step-by-step algorithm of 

MOPSO aiming to generation of non-dominated 

solutions (repository members) can be elucidated as 

follows [25, 26]: 

1. A predefined number of initial candidate solutions 

(population) are created with respect to allowable range 

of the decision variables as well as problem constraints. 

2. Compute the values of all the objective functions for 

every particle. The PBT for each particle is the same as 

generated in the previous step. 

3. Based on the dominance theory introduced in section 

3.3.2, a certain number of particles are specified as the 

non-dominated (Pareto) solutions and then keep them in 

the repository.  
4. A leader among the repository members is selected for 

every particle. For this purpose, the Pareto frontier made 

by MOPSO is divided to a number of adjoining cells 

using the grid constitution presented by Sepehrzad et al. 

[25]. In this case, assuming npb as the number of 

repository members located in cell b (i.e. size of cell b), 

the leader selection probability associated with the cell b 

can be calculated based on Boltzmann function, as 

follows: 

exp( . )

exp( . )

j

sl b
b

j

np

np
P

np





−
=

−
 

(45) 

where δ is a user-defined value between 0 and 1 

controlling the selection pressure of the leader associated 

with each cell. The less the cell size is, the more the 

probability of leader selection for that cell. Calculating 

the leader selection probability for all cells, one cell is 

accidentally selected for each particle based on Roulette 

Wheel method [27]. Subsequently, one member of the 

specified cell is randomly selected as the leader. The 

mentioned mechanism is repeated for all particles out of 

the repository. 

5. For each particle, the velocity and position are evolved 

analogous to the method presented in Equations (38)-

(39), respectively. The GBT in Equation (38) is 

substituted by the associated leader of the particle. The 

new PBT for each particle is dependent on the dominance 

condition between the previous PBT and the updated 

position of that particle. In this context, if the updated 

position dominates the previous PBT, the new PBT is 

switched to the updated position; otherwise, the PBT 

remains unchanged. If none of the updated position and 

previous PBT can dominate each other, the new PBT is 

randomly determined among them. 
6. Investigate the dominance status for the updated 

particles and then add the non-dominated particles to the 
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repository of the preceding iteration. The updated 

repository is checked and so the dominated members are 

eliminated. 

7. If the number of repository members surpasses a 

definite value, the excessive members should be 

discarded. Thus, the Boltzmann operator of Equation 

(45) is transformed to Equation (46) in this condition 

with the aim of calculating the elimination probability for 

cell b ( )ce
bP : 

exp( . )

exp( . )

j

ce b
b

j

np

np
P

np





−
=

−
 

(46) 

where τ (another real value in the interval (0,1)) controls 

the selection pressure of the cell elimination. Likewise 

the approach in step 4, one cell is stochastically selected 

and then, one of its members is randomly removed. 

However, opposed to the step 4, the more the size of a 

cell is, the more the probability of selection for removing 

the associated members. The removing procedure is 

continued till the repository size comes back to the pre-

allocated value.   

8. Check the stopping condition as realization of the 

itermax. If true, the last residual members of the repository 

are reported as the best found Pareto optimal solutions. 

Otherwise, return to the step 4. 

 

3. 4. Fuzzy-Based Satisfaction Rule         To select the 

final solution amongst the set of Pareto solutions created 

by the MOPSO, a linear fuzzy rule is utilized. This 

approach is commonly employed while no 

preference/priority between the objectives is considered 

[28]. Based on Equations (43)-(44) and also the lettering 

of section 3.3.2, the fuzzy value ( )i

n

f

X
 is computed for 

Pareto solution Xn as below: 

,

1 ( )

( )
( )

0 ( )

i

n

i n i,max

i n i minf
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(47) 

where  fi,min and  fi,max  are the lowest and highest value of 

the fi. Considering Npb as the number of Pareto solutions, 

the Xn having the maximum i

n

f

X
  is identified as the final 

solution using the following selective max-min function: 

1:1:

max min i

n

pb

f

X
i nbn N


==

 
(48) 

 

 

4. SIMULATION RESULTS        
 
In this section, the input data used for the simulation 

process are first presented in subsection 4.1. In the 

following, subsection 4.2 includes the numerical results 

obtained by application of the proposed IGDT-PSC, 

MOPSO and the fuzzy satisfaction method on a test 

micro smart grid. Finally, subsection 4.3 presents a kind 

of comparative results aiming to appraise the robustness 

of the suggested IGDT-PSC model based on different 

values of RP.  
 

4. 1. Data Used for the Simulation Study       To 

analyze the efficiacy of the suggested IGDT-PSC model 

in terms of specifying a robust techno-economic scheme 

for the PEV smart charging, a test microgrid shematically 

depicted in Figure 1 is considered. As demonstrated in 

Figure 1, the test microgrid comprises a load demand, a 

set of PV/WT units and a PEV. The variation trend of the 

load demand, PV/WT generation and electrical energy 

price are depicted in Figures 2 and 3, respectively. The 

descriptive data related to the PEV (with maximum  

power of 3.5 kW) and PV/WT units are presented in 

Table 1. It is assumed that the PEV arrives the charging 

staion at 4:00 by CSint=0.4 and leave there at 23:00 by 

CSfin=0.8. Moreover, CSmin and CSmax are supposed to be 

0.2 and 0.9, respectively. The tunable parameters of the 

MOPSO are depicted in Table 2. Moreover, the 

computational coding associated with the proposed 

IGDT-PSC model, the MOPSO and the fuzzy 

satisfaction approach are all implemented in  MATLAB 

7.5 software. Additionally, the hardware package utilized 

for the execuation of the simulations consists of a PC 

equipped by a  coreTM i5  2.3 GHz CPU and also a 4 GB 

RAM.   

 

4. 2. Numerical Results for the Test Microgrid         
In the proposed IGDT-PSC model solved through  

MOPSO, the profiles of Figures 2 and 3 including the 

load power, PV power, wind power and the electrical 
 
 

 
Figure 1. The shematic illustration of the test microgrid used 

for the simulation studies 
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Figure 2. The daily profile of load power, PV power, and 

WT power 

 

 

 
Figure 3. The daily profile of electrical energy price 

 

 
TABLE 1. The descriptive data of PEV and PV/WT units 

List of data Value 

PV
maxP  (rated power of PV unit)  7 kW 

WT
maxP (rated power of WT unit)  2 kW 

/max max
ch dchP P    -3.5/+3.5 kW 

PEV
maxE   24 kWh 

 

 

TABLE 2. Tunable parameters of the MOPSO 

List of tunable parametrs Asssigned values 

Number of population  80 

Maximum number of  repository members 20 

Itermax 100 

δ, τ  0.4 

C1,C2 2 

 

 

energy price should be taken into account for analyzing 

the numericals results pertaining to the test microgrid. 

This analysis encompasses the results associated with the 

optimal daily profiles of the grid power, PEV power, and 

the CS of PEV all demonstrated in Figures 4 and 5 for 

UB= 0.25 and UB= 0.75, respectively. It is seen from 

Figures 2 and 3 that within the interval of maximum 

PV/WT generation wherein the electrical energy price 

remains constant, the proposed IGDT-PSC enables the 

PEV to be persistently charged for both UB=0.25 and 

UB=0.75.  

However, comparing the obtained results of the PEV 

power for the cases of UB=0.25 and UB=0.75, it can be 

realized that the proposed robust optimization strategy 

can force the PEV to be more in charging mode in the 

case of UB=0.25. Nevertheless, during this operating 

status, the CS of PEV would possess its maximum values 

according to Figures 4(a) and 5(a). Within the interval of 

RESs' maximum generation, the moderate level of load 

consumption is also devoted in which the grid power is 

appointed to provide the load demand despite the RESs' 

generation for both UB=0.25 and 0.75.  

 

 

 
Figure 4. (a) PEV and grid power, (b) CS, all for UB=0.25 

 

 

 
Figure 5. PEV and grid power, (b) CS, all for UB=0.75 
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Since the electrical energy price is increased 

throughout the interval [19h, 22h] with its top value at 

t=20h, the proposed strategy causes optimal PEV 

discharging especially at t=20h for both UB=0.25 and 

0.75, as exhibited in Figures 4(a) and 5(a), respectively. 

It is worth mentioning that the PEV is kept in discharging 

mode for UB=0.25 more than UB=0.75. Within the 

interval [19h, 22h], the CS of PEV experiences a 

significant drop that must be compensated to attain its 

desired value at the departure time leading to the 

charging mode activation of the PEV, as seen from both 

Figures 4(b) and 5(b). In this condition, the grid power 

(with relatively high value) along with the WT unit are 

responsible for supplying the load demand and 

PEVcharging power. 

 
4. 3. Comparative Results       This section firstlty 

evaluates the variation trend of envelope bounds {μlp, μpv, 

μwt, μpr} while the UB value is increased accordingly. As 

it is expected, Figure 6 verifies that the higher value of 

UB causes a larger envelope bounds demonstrating a 

further robustness feature. In this way, the most 

 

 

 
Figure 6. The alteration trend of envelope bounds 

considering various UB 

 

 

 
Figure 7. The alteration trend of ROF and ROF-DOF 

considering various UB 

robustness feature for each envelope bound is belong to 

UB=1. Among the envelope bounds, the minimum and 

maximum increments are respectively achieved for μlp 

and μpr wherein the μpr has the most increment from zero 

to 0.25. Moreover, when the UB value is increased from 

0.5 to 0.75, three envelope bounds {μlp, μwt, μpr} 

encounter relatively high augmentation as depicted in 

Figure 6 validating a significant enhancement on the 

robustness of the proposed IGDT-PSC. However, it is  

worth noting that the least increment occurs for μpv while 

the UB is changed from 0.5 to 0.75. Figure 7 illustrates 

the results of the ROF and also ROF-DOF (as a 

robustness indice) obtained from the proposed IGDT-

PSC model for disparate UB values of {0, 0.25, 0.5 ,0.75, 

1}. When the UB is changed from 0 to 0.25, the ROF 

approaches approximately three times more than its 

initial value. Despite this noticeable ascent, there is only 

$50  difference between the ROF values associated to 

UB=0.25 and UB=0.5 as observed in Figure 7. 

 

 

5. CONCLUSION  
 

In this paper, a robust deicion-making framework for the 

PEV smart charging in a RES-oriented microgrid is 

suggested. The RESs including PV and WT units are 

utilized to collaboratively participate in the PEV 

charging strategy along a day.  On the other hand, the 

proposed model is exposed to intrinsic uncertainty in 

practice. The daily profiles of load demand, output power 

of the PV/WT units as well as the electrical energy price 

are of the essential uncertainty recourses which should be 

inevitably integrated with the proposed model. Since the 

mentioned uncertainty resources have low-frequency 

nature, the well-known IGDT technique is utilized to 

characterize their fluctuating/unpredictable behaviour. 

Regarding the hetergenous features of the uncertainty 

resources as well as the restricted ROF value (controlled 

by predefined UB), the formulated IGDT-PSC model is 

a muti-objective optimization problem. Hence, the 

MOPSO algorithm is utilized to solve this model. 

Subsequently, the final solution (i.e. optimal envelope 

bound of the robust zone associated to every uncertain 

variable) amongst the set of Pareto solutions is 

determined using a linear max-min fuzzy-based rule.  
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Persian Abstract 

 چکیده 
های توزیع هوشمند به کار گرفته شده است. مزیت عمده انرژی پاک و  امروزه مفهوم خودروهای برقی به عنوان یک ابزار ارزشمند مدیریت انرژی به طور وسیعی در شبکه 

های نوظهور را توجیه نماید. علاوه بر این، ویژگی  تواند به اندازه کافی استفاده از این فناوری دو حالت تولیدی/ مصرفی می پذیر خودروهای برقی در هر  همچنین عملکرد انعطاف 

گردد. اما،  های هوشمند  اقتصادی قابل توجهی در شبکه  -خاص منابع انرژی تجدیدپذیر در قالب مشارکت در برنامه شارژ/دشارژ هوشمند خودروهای برقی منجر به مزایای فنی

بایست به طور مناسبی به آن رسیدگی گردد. به همین  تقاضای بار الکتریکی، تولید منابع تجدیدپذیر و همچنین قیمت انرژی الکتریکی با مقوله عدم قطعیت مواجه بوده که می 

به منظور تعیین یک برنامه مقاوم برای شارژ هوشمند خودروی برقی  گیری بر اساس شکاف اطلاعات  سازی غیرقطعی بر پایه نظریه تصمیمجهت، در این مقاله یک مدل بهینه

های بهینه نامغلوب )پارتو(  سازی ذرات با هدف تولید یک گروه از پاسخ ارائه گردیده است. جهت حل مدل چندهدفه و مقاوم پیشنهادی، از نسخه چندهدفه الگوریتم بهینه

سازی برای یک ریزشبکه هوشمند متشکل  گردد. نتایج شبیههای بهینه پارتو به کمک یک روش فازی خطی تعیین می ن پاسخاستفاده گردیده است. همچنین، پاسخ نهایی از میا

 کند. یید می از یک خودروی برقی، یک گروه از منابع تجدیدپذیر و یک بار الکتریکی، اثربخشی مدل مقاوم پیشنهادی جهت شارژ هوشمند خودروی برقی را تا

 

 


