Equilibrium of Ammonia (NH3) and Ammonium (NH4+) during Microalgae Harvesting using Electrocoagulation

Document Type : Original Article


1 Doctoral Program of Environmental Sciences, School of Postgraduate Studies, Diponegoro University, Semarang, Indonesia

2 Center of Biomass and Renewable Energy (CBIORE), Chemical Engineering Department, Diponegoro University, Semarang, Indonesia

3 Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia


Harvesting microalgae is an important process in gaining biomass while the remaining water is still rich in nutrients. These nutrients, mainly nitrogen and phosphorous, could cause eutrophication of water bodies (rivers, lakes, and oceans) and ecosystem degradation if discharged directly without proper treatment. Electrocoagulation (EC) is one of the harvesting methods and has several advantages: ease of operation, fast harvesting, adaptability, environmental friendliness, and low footprint. However, EC method for harvesting microalgae has the potential in producing ammonia, which is undesirable due to its threat to the environment. The purpose of this study is to establish the equilibrium of ammonium (NH4+)  and ammonia (NH3) during Dunaliella salina harvesting. The harvesting was conducted using EC with a variation of 20 volts, 30 min, and 400 rpm. The result shows that the harvesting efficiency can reach 93.72% after 5 min of processing, decreasing the concentration of inorganic nitrogen compounds in total ammonia nitrogen (TAN) to 98.80%.


Main Subjects

  1. Cvetković, S. M., Radoičić, T. K., Novaković, J. G., Kovačević, V., Lopičić, Z. R., Adamović, V., and Kijevčanin, M. L. “Renewable hydrogen production perspective in Serbia via biogas generated from food processing wastewaters.” Journal of Cleaner Production, Vol. 363, (2022), 132142. https://doi.org/10.1016/j.jclepro.2022.132142
  2. Hadiyanto, H., Widayat, W., Christwardana, M., and Pratiwi, M. E. “The flocculation process of Chlorella sp. using chitosan as a bio-flocculant: Optimization of operating conditions by response surface methodology.” Current Research in Green and Sustainable Chemistry, Vol. 5, (2022), 100291. https://doi.org/10.1016/j.crgsc.2022.100291
  3. Figueiredo, D., Ferreira, A., Quelhas, P., Schulze, P. S. C., and Gouveia, L. “Nannochloropsis oceanica harvested using electrocoagulation with alternative electrodes – An innovative approach on potential biomass applications.” Bioresource Technology, Vol. 344, (2022). https://doi.org/10.1016/j.biortech.2021.126222
  4. Xu, Z., Wang, H., Cheng, P., Chang, T., Chen, P., Zhou, C., and Ruan, R. “Development of integrated culture systems and harvesting methods for improved algal biomass productivity and wastewater resource recovery – A review.” Science of The Total Environment, Vol. 746, (2020), 141039. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.141039
  5. Khan, S., Anjum, R., Raza, S. T., Ahmed Bazai, N., and Ihtisham, M. “Technologies for municipal solid waste management: Current status, challenges, and future perspectives.” Chemosphere, Vol. 288, (2022), 132403. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.132403
  6. Wang, X., Li, J., Chen, J., Cui, L., Li, W., Gao, X., and Liu, Z. “Water quality criteria of total ammonia nitrogen (TAN) and un-ionized ammonia (NH3-N) and their ecological risk in the Liao River, China.” Chemosphere, Vol. 243, (2020). https://doi.org/10.1016/j.chemosphere.2019.125328
  7. Sounni, F., Elgnaoui, Y., El Bari, H., Merzouki, M., and Benlemlih, M. “Effect of mixture ratio and organic loading rate during anaerobic co-digestion of olive mill wastewater and agro-industrial wastes.” Biomass Conversion and Biorefinery, (2021). https://doi.org/10.1007/s13399-021-01463-4
  8. Ferreira, A., Figueiredo, D., Cardeiras, R., Nabais, R., Ferreira, F., Ribeiro, B., Cordovil, C. M. D. S., Acién, F. G., and Gouveia, L. “Exploring Different Pretreatment Methodologies for Allowing Microalgae Growth in Undiluted Piggery Wastewater.” Agronomy, Vol. 12, No. 3, (2022). https://doi.org/10.3390/agronomy12030580
  9. Nguyen, T. D. P., Le, T. V. A., Show, P. L., Nguyen, T. T., Tran, M. H., Tran, T. N. T., and Lee, S. Y. “Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent.” Bioresource Technology, Vol. 272, (2019), 34-39. https://doi.org/10.1016/j.biortech.2018.09.146
  10. Guldhe, A., Misra, R., Singh, P., Rawat, I., and Bux, F. “An innovative electrochemical process to alleviate the challenges for harvesting of small size microalgae by using non-sacrificial carbon electrodes.” Algal Research, Vol. 19, (2016), 292-298. https://doi.org/https://doi.org/10.1016/j.algal.2015.08.014
  11. Das, P. P., Sharma, M., and Purkait, M. K. “Recent progress on electrocoagulation process for wastewater treatment: A review.” Separation and Purification Technology, Vol. 292, (2022), 121058. https://doi.org/10.1016/j.seppur.2022.121058
  12. Fayad, N., Yehya, T., Audonnet, F., and Vial, C. “Harvesting of microalgae Chlorella vulgaris using electro-coagulation-flocculation in the batch mode.” Algal Research, Vol. 25, (2017), 1-11. https://doi.org/https://doi.org/10.1016/j.algal.2017.03.015
  13. Caicedo, J. R., Van Der Steen, N. P., Arce, O., and Gijzen, H. J. “Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrrhiza).” Water Research, Vol. 34, No. 15, (2000), 3829-3835. https://doi.org/10.1016/S0043-1354(00)00128-7
  14. Purwono, P., Hibbaan, M., Rezagama, A., and Budihardjo, M. A. “Ammonia-nitrogen (NH3¯N) and ammonium-nitrogen (NH4+¯N) equilibrium on the process of removing nitrogen by using tubular plastic media.” Journal of Materials and Environmental Sciences, Vol. 8, No. S, (2017), 4915-4922.
  15. Saavedra, M. D. M., Bissoto, F. P., de Souza, R. A., Concha, V. O. C., and Bastos, R. G. “Growth of desmodesmus subspicatus green microalgae and nutrient removal from sugarcane vinasse clarified by electrocoagulation using aluminum or iron electrodes.” DYNA (Colombia), Vol. 86, No. 211, (2019), 225-232. https://doi.org/10.15446/dyna.v86n211.72379
  16. Liu, Z., and Liu, Y. “Synergistic integration of electrocoagulation and algal cultivation to treat liquid anaerobic digestion effluent and accumulate algal biomass.” Process Biochemistry, Vol. 51, No. 1, (2016), 89-94. https://doi.org/https://doi.org/10.1016/j.procbio.2015.11.003
  17. Dong, Y., Qu, Y., Li, C., Han, X., Ambuchi, J. J., Liu, J., Yu, Y., and Feng, Y. “Simultaneous algae-polluted water treatment and electricity generation using a biocathode-coupled electrocoagulation cell (bio-ECC).” Journal of Hazardous Materials, Vol. 340, (2017), 104-112. https://doi.org/https://doi.org/10.1016/j.jhazmat.2017.06.055
  18. Meetiyagoda, T. A. O. K., and Fujino, T. “Optimization of electrocoagulation–flotation treatment with an aluminum anode to enhance Microcystis aeruginosa cell removal efficiency.” Journal of Water Process Engineering, Vol. 48, (2022), 102871. https://doi.org/10.1016/j.jwpe.2022.102871
  19. Indonesia, S. N. “Air dan Air Limbah-Bagian 59: Metode Pengambilan Contoh Air Limbah.” SNI, Vol. 6989, (2008), 2008.
  20. Lucakova, S., Branyikova, I., Kovacikova, S., Pivokonsky, M., Filipenska, M., Branyik, T., and Ruzicka, M. C. “Electrocoagulation reduces harvesting costs for microalgae.” Bioresource Technology, Vol. 323, (2021), 124606. https://doi.org/10.1016/j.biortech.2020.124606
  21. APHA. Standard Methods for the Examination of Water and Wastewater (23rd ed.). Washington.
  22. Anthonisen, A. C., Loehr, R. C., Prakasam, T. B. S., and Srinath, E. G. “Inhibition of nitrification by ammonia and nitrous acid.” Journal (Water Pollution Control Federation), (1976), 835-852.
  23. Lu, L., Yang, G., Zhu, B., and Pan, K. “A comparative study on three quantitating methods of microalgal biomass.” Indian Journal of Geo-Marine Sciences, Vol. 46, No. 11, (2017), 2265-2272.
  24. Wellburn, A. R. “The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution.” Journal of Plant Physiology, Vol. 144, No. 3, (1994), 307-313. https://doi.org/https://doi.org/10.1016/S0176-1617(11)81192-2
  25. Mussa, A., Hafiz, M. A., Das, P., and Hawari, A. H. “Harvesting of Chlorella sp. microalgae by dielectrophoretic force using titanium dioxide (TiO2) insulated electrodes.” Algal Research, Vol. 65, (2022). https://doi.org/10.1016/j.algal.2022.102730
  26. Bunce, J. T., Ndam, E., Ofiteru, I. D., Moore, A., and Graham, D. W. “A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems.” Frontiers in Environmental Science, Vol. 6, No. FEB, (2018), 1-15. https://doi.org/10.3389/fenvs.2018.00008
  27. Lucakova, S., Branyikova, I., Kovacikova, S., Masojidek, J., Ranglova, K., Branyik, T., and Ruzicka, M. C. “Continuous electrocoagulation of Chlorella vulgaris in a novel channel-flow reactor: A pilot-scale harvesting study.” Bioresource Technology, Vol. 351, (2022). https://doi.org/10.1016/j.biortech.2022.126996
  28. Parmentier, D., Manhaeghe, D., Baccini, L., Van Meirhaeghe, R., Rousseau, D. P. L., and Van Hulle, S. “A new reactor design for harvesting algae through electrocoagulation-flotation in a continuous mode.” Algal Research, Vol. 47, (2020). https://doi.org/10.1016/j.algal.2020.101828
  29. Mixson, S. M., Stikeleather, L. F., Simmons, O. D., Wilson, C. W., and Burkholder, J. A. M. “pH-induced flocculation, indirect electrocoagulation, and hollow fiber filtration techniques for harvesting the saltwater microalga Dunaliella.” Journal of Applied Phycology, Vol. 26, No. 4, (2014), 1701-1709. https://doi.org/10.1007/s10811-013-0232-z
  30. Ummalyma, S. B., Mathew, A. K., Pandey, A., and Sukumaran, R. K. “Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation.” Bioresource Technology, Vol. 213, (2016), 216-221. https://doi.org/https://doi.org/10.1016/j.biortech.2016.03.114
  31. Aljuboori, A. H. R., Uemura, Y., and Thanh, N. T. “Flocculation and mechanism of self-flocculating lipid producer microalga Scenedesmus quadricauda for biomass harvesting.” Biomass and Bioenergy, Vol. 93, (2016), 38-42. https://doi.org/https://doi.org/10.1016/j.biombioe.2016.06.013
  32. Garcia-Segura, S., Eiband, M. M. S. G., de Melo, J. V., and Martínez-Huitle, C. A. “Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies.” Journal of Electroanalytical Chemistry, Vol. 801, (2017), 267-299. https://doi.org/https://doi.org/10.1016/j.jelechem.2017.07.047
  33. Tahreen, A., Jami, M. S., and Ali, F. “Journal of Water Process Engineering Role of electrocoagulation in wastewater treatment : A developmental review.” Journal of Water Process Engineering, Vol. 37, (2020), 101440. https://doi.org/10.1016/j.jwpe.2020.101440
  34. Purwono, Rezagama, A., Hibbaan, M., and Arief Budihardjo, M. “Ammonia-Nitrogen (NH3¯N) and Ammonium-Nitrogen (NH4+¯N) equilibrium on the process of removing Nitrogen by using tubular plastic media.” Journal of Materials and Environmental Sciences, Vol. 8, No. S, (2017), 4915-4922.
  35. Tibebe, D., Negash, A., Mulugeta, M., Kassa, Y., Moges, Z., and Yenealem, D. “Investigation of selected physico-chemical quality parameters in industrial wastewater by electrocoagulation process, Ethiopia.” BMC Chemistry, Vol. 16, No. 1, (2022), 1-9. https://doi.org/10.1186/s13065-022-00865-3
  36. Haymanot, A., Heluf, G., and Molla, A. “Effects of municipal and industrial discharges on the quality of Beressa river water, Debre Berhan, Ethiopia.” Journal of Ecology and The Natural Environment, Vol. 7, (2015), 23-28. https://doi.org/10.5897/JENE2015.0495
  37. Al-Othman, A. A., Kaur, P., Imteaz, M. A., Hashem Ibrahim, M. E., Sillanpää, M., and Mohamed Kamal, M. A. “Modified bio-electrocoagulation system to treat the municipal wastewater for irrigation purposes.” Chemosphere, Vol. 307, (2022). https://doi.org/10.1016/j.chemosphere.2022.135746
  38. Mook, W. T., Chakrabarti, M. H., Aroua, M. K., Khan, G. M. A., Ali, B. S., Islam, M. S., and Abu Hassan, M. A. “Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review.” Desalination, Vol. 285, (2012), 1-13. https://doi.org/10.1016/j.desal.2011.09.029
  39. Othmani, A., Kadier, A., Singh, R., Igwegbe, C. A., Bouzid, M., Aquatar, M. O., Khanday, W. A., Bote, M. E., Damiri, F., Gökkuş, Ö., and Sher, F. “A comprehensive review on green perspectives of electrocoagulation integrated with advanced processes for effective pollutants removal from water environment.” Environmental Research, Vol. 215, (2022). https://doi.org/10.1016/j.envres.2022.114294
  40. Wang, L. K., Hung, Y.-T., and Shammas, N. K. Advanced Physicochemical Treatment Technologies. Advanced Physicochemical Treatment Technologies (Vol. 5). Springer. https://doi.org/10.1007/978-1-59745-173-4
  41. Reilly, M., Cooley, A. P., Richardson, B., Tito, D., and Theodorou, M. K. “Electrocoagulation of food waste digestate and the suitability of recovered solids for application to agricultural land.” Journal of Water Process Engineering, Vol. 42, (2021), 102121. https://doi.org/https://doi.org/10.1016/j.jwpe.2021.102121