Visible Light Activated Fe-N-SiO2/TiO2 Photocatalyst: Providing an Opportunity for Enhanced Photocatalytic Degradation of Antibiotic Oxytetracycline in Aqueous Solution

Document Type : Original Article


1 Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran

2 Pharmacy Faculty, University of Babylon, Babylon, Iraq

3 Environmental and Pollution Engineering Group, Environmental Research Center (ERC), Razi University, Kermanshah, Iran

4 Department of Health Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran

5 Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran


To probe advantages in Fe-N-SiO2/TiO2 nanocomposite system, the visible photocatalytic degradation of the nonbiodegradable antibiotic oxytetracycline (OTC) by unsupported TiO2 and its modified composites by incorporating each of the Fe, N, and SiO2 dopants under a series of conditions were investigated. The structural and optical properties as well as the morphology of the prepared nanocomposites were also characterized applying Fourier transform infrared (FT-IR), X-ray diffraction, photoluminescence spectroscopy, UV-visible diffuse reflectance spectra and field emission scanning electron microscopy/Energy-dispersive X-ray spectroscopy (FESEM/EDX). In order to develop two models portraying appropriate functional relationships between two main responses (OTC removal efficiency and its specific removal rate (SRR)) and four numerical variables (OTC concentration, catalysis loading, initial pH and reaction time), two separate multivariate analysis pathways under response surface methodology (RSM) were taken. The results obtained all came down to the maximum SRR (220 OTC mg OTC removed/g cat. h) found at the maximum catalyst dosage of 1.5 g/l, and acidic pH of 3 after 0.5 h. Furthermore, the Fe-N-SiO2/TiO2 proved a stable photocatalytic activity during three subsequent reusability experiments, shedding light on its reliable potential for future application.


Main Subjects

  1. Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman Jr, C.U. and Mohan, D., "Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods", Chemical Reviews, Vol. 119, No. 6, (2019), 3510-3673. doi: 10.1021/acs.chemrev.8b00299.
  2. Wang, P. and Yuan, Q., "Photocatalytic degradation of tetracyclines in liquid digestate: Optimization, kinetics and correlation studies", Chemical Engineering Journal, Vol. 410, (2021), 128327. doi: 10.1016/j.cej.2020.128327.
  3. Wei, Z., Liu, J. and Shangguan, W., "A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production", Chinese Journal of Catalysis, Vol. 41, No. 10, (2020), 1440-1450. doi: 10.1016/S1872-2067(19)63448-0.
  4. Roy, N., Alex, S.A., Chandrasekaran, N., Mukherjee, A. and Kannabiran, K., "A comprehensive update on antibiotics as an emerging water pollutant and their removal using nano-structured photocatalysts", Journal of Environmental Chemical Engineering, Vol. 9, No. 2, (2021), 104796. doi: 10.1016/j.jece.2020.104796.
  5. Zhu, T.-t., Su, Z.-x., Lai, W.-x., Zhang, Y.-b. and Liu, Y.-w., "Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology", Science of the Total Environment, Vol. 776, (2021), 145906. doi: 10.1021/acs.est.9b01131.
  6. Phoon, B.L., Ong, C.C., Saheed, M.S.M., Show, P.-L., Chang, J.-S., Ling, T.C., Lam, S.S. and Juan, J.C., "Conventional and emerging technologies for removal of antibiotics from wastewater", Journal of Hazardous Materials, Vol. 400, (2020), 122961. doi: 10.1016/j.jhazmat.2020.122961 .
  7. Baaloudj, O., Assadi, I., Nasrallah, N., El Jery, A., Khezami, L. and Assadi, A.A., "Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis: A review", Journal of Water Process Engineering, Vol. 42, (2021), 102089. doi: 10.1016/j.jwpe.2021.102089.
  8. Zangeneh, H., Zinatizadeh, A., Habibi, M., Akia, M. and Isa, M.H., "Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review", Journal of Industrial and Engineering Chemistry, Vol. 26, (2015), 1-36. doi: 10.1016/j.jec.2014.10.043.
  9. Sharma, M., Yadav, A., Mandal, M. and Dubey, K., " TiO2 based photocatalysis: A valuable approach for the removal of pharmaceuticals from aquatic environment", International Journal of Environmental Science and Technology, Vol., No., (2022), 1-16. doi: 10.1016/j.ijhydene.2019.07.241.
  10. Pereira, J.H., Reis, A.C., Queirós, D., Nunes, O.C., Borges, M.T., Vilar, V.J. and Boaventura, R.A., "Insights into solar TiO2-assisted photocatalytic oxidation of two antibiotics employed in aquatic animal production, oxolinic acid and oxytetracycline", Science of the Total Environment, Vol. 463, (2013), 274-283. doi: 10.3390/catal11091039.
  11. Jia, L., Jin, Y., Li, J., Wei, Z., Chen, M. and Ma, J., "Study on high-efficiency photocatalytic degradation of oxytetracycline based on a spiral microchannel reactor", Industrial & Engineering Chemistry Research, Vol. 61, No. 1, (2021), 554-565. doi.
  12. Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P. and Zhang, R., "Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review", Journal of Cleaner Production, Vol. 268, (2020), 121725. doi: 10.1016/j.jclepro.2020.121725.
  13. Basavarajappa, P.S., Patil, S.B., Ganganagappa, N., Reddy, K.R., Raghu, A.V. and Reddy, C.V., "Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis", International Journal of Hydrogen Energy, Vol. 45, No. 13, (2020), 7764-7778. doi: 10.1016/j.ijhydene.2019.07.241.
  14. Jiang, D., Otitoju, T.A., Ouyang, Y., Shoparwe, N.F., Wang, S., Zhang, A. and Li, S., "A review on metal ions modified TiO2 for photocatalytic degradation of organic pollutants", Catalysts, Vol. 11, No. 9, (2021), 1039. doi: 10.3390/catal11091039.
  15. Akhter, P., Arshad, A., Saleem, A. and Hussain, M., "Recent development in non-metal-doped titanium dioxide photocatalysts for different dyes degradation and the study of their strategic factors: A review", Catalysts, Vol. 12, No. 11, (2022), 1331. doi: 10.3390/catal12111331.
  16. Del Angel, R., Durán-Álvarez, J.C. and Zanella, R., "Tio2-low band gap semiconductor heterostructures for water treatment using sunlight-driven photocatalysis", Titanium Dioxide: Material for a Sustainable Environment, Vol. 305, (2018). doi: 10.5772/intechopen.76501.
  17. Sood, S., Umar, A., Mehta, S.K. and Kansal, S.K., "Highly effective fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds", Journal of Colloid and Interface Science, Vol. 450, (2015), 213-223. doi: 10.1016/j.jcis.2015.03.018 .
  18. Wang, J., Li, X., Ren, Y., Xia, Z., Wang, H., Jiang, W., Liu, C., Zhang, S., Li, Z. and Wu, S., "The effects of additive on properties of fe doped TiO2 nanoparticles by modified sol-gel method", Journal of Alloys and Compounds, Vol. 858, (2021), 157726. doi: 10.1016/j.jallcom.2020.157726.
  19. Xia, Z., Xing, S., Wang, H., Zhao, D., Wu, S., Jiang, W., Wang, N., Liu, S., Liu, C. and Ding, W., "Weak-visible-light-driven fe doped TiO2 photocatalyst prepared by coprecipitation method and degradation of methyl orange", Optical Materials, Vol. 129, (2022), 112522. doi: 10.1016/j.optmat.2022.112522.
  20. Kerkez-Kuyumcu, Ö., Kibar, E., Dayıoğlu, K., Gedik, F., Akın, A.N. and Özkara-Aydınoğlu, Ş., "A comparative study for removal of different dyes over m/ TiO2 (M= Cu, Ni, Co, Fe, Mn and Cr) photocatalysts under visible light irradiation", Journal of Photochemistry and Photobiology A: Chemistry, Vol. 311, (2015), 176-185. doi: 10.1016/j.jphotochem.2015.05.037.
  21. Moradi, V., Jun, M.B., Blackburn, A. and Herring, R.A., "Significant improvement in visible light photocatalytic activity of fe doped TiO2 using an acid treatment process", Applied Surface Science, Vol. 427, (2018), 791-799. doi: 10.1177/2633366X20906164.
  22. Moradi, H., Eshaghi, A., Hosseini, S.R. and Ghani, K., "Fabrication of fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation", Ultrasonics Sonochemistry, Vol. 32, (2016), 314-319. doi: 10.1016/j.ultsonch.2016.03.025.
  23. Chung, K.-H., Kim, B.-J., Park, Y.-K., Kim, S.-C. and Jung, S.-C., "Photocatalytic properties of amorphous n-doped TiO2 photocatalyst under visible light irradiation", Catalysts, Vol. 11, No. 8, (2021), 1010. doi: 10.3390/catal11081010.
  24. Park, J.T., Kim, D.J. and Kim, J.H., "A facile graft polymerization approach to n-doped TiO2 heterostructures with enhanced visible-light photocatalytic activity", Materials Letters, Vol. 202, (2017), 66-69. doi: 10.1016/j.matlet.2017.05.070.
  25. Bergamonti, L., Predieri, G., Paz, Y., Fornasini, L., Lottici, P. and Bondioli, F., "Enhanced self-cleaning properties of n-doped TiO2 coating for cultural heritage", Microchemical Journal, Vol. 133, (2017), 1-12. doi: 10.1016/j.microc.2017.03.003.
  26. Joseph, C.G., Taufiq-Yap, Y.H., Musta, B., Sarjadi, M.S. and Elilarasi, L., "Application of plasmonic metal nanoparticles in TiO2- SiO2 composite as an efficient solar-activated photocatalyst: A review paper", Frontiers in Chemistry, Vol. 8, (2021), 568063. doi: 10.3389/fchem.2020.568063.
  27. Chun, H., Yizhong, W. and Hongxiao, T., "Influence of adsorption on the photodegradation of various dyes using surface bond-conjugated TiO2/ SiO2 photocatalyst", Applied Catalysis B: Environmental, Vol. 35, No. 2, (2001), 95-105. doi: 10.1016/S0926-3373(01)00236-3.
  28. Chun, H., Yizhong, W. and Hongxiao, T., "Preparation and characterization of surface bond-conjugated TiO2/ SiO2 and photocatalysis for azo dyes", Applied Catalysis B: Environmental, Vol. 30, No. 3-4, (2001), 277-285. doi: 10.1016/S0926-3373(00)00237-X.
  29. Chun, H., Yuchao, T. and Hongxiao, T., "Characterization and photocatalytic activity of transition-metal-supported surface bond-conjugated TiO2/SiO2", Catalysis Today, Vol. 90, No. 3-4, (2004), 325-330. doi.
  30. Zangeneh, H., Zinatizadeh, A.A., Zinadini, S., Feyzi, M., Rafiee, E. and Bahnemann, D.W., "A novel l-histidine (c, n) codoped- TiO2-CDS nanocomposite for efficient visible photo-degradation of recalcitrant compounds from wastewater", Journal of Hazardous Materials, Vol. 369, (2019), 384-397. doi: 10.1016/j.jhazmat.2019.02.049.
  31. Zulfiqar, M., Samsudin, M.F.R. and Sufian, S., "Modelling and optimization of photocatalytic degradation of phenol via TiO2 nanoparticles: An insight into response surface methodology and artificial neural network", Journal of Photochemistry and Photobiology A: Chemistry, Vol. 384, (2019), 112039. doi: 10.1016/j.jphotochem.2019.112039.
  32. Khuri, A.I. and Cornell, J.A., "Response surfaces: Designs and analyses: Revised and expanded, CRC press, (2018). doi: 10.1201/9780203740774
  33. Larumbe, S., Monge, M. and Gómez-Polo, C., "Comparative study of (n, fe) doped TiO2 photocatalysts", Applied Surface Science, Vol. 327, (2015), 490-497. doi: 10.1016/j.apsusc.2014.11.137.
  34. Moradi, V., Ahmed, F., Jun, M.B., Blackburn, A. and Herring, R.A., "Acid-treated fe-doped TiO2 as a high performance photocatalyst used for degradation of phenol under visible light irradiation", Journal of Environmental Sciences, Vol. 83, No., (2019), 183-194. doi: 10.1016/j.jes.2019.04.002.
  35. Ansari, S.A., Khan, M.M., Ansari, M.O. and Cho, M.H., "Nitrogen-doped titanium dioxide (n-doped TiO2) for visible light photocatalysis", New Journal of Chemistry, Vol. 40, No. 4, (2016), 3000-3009. doi: 10.1039/C5NJ03478G.
  36. Houmard, M., Riassetto, D., Roussel, F., Bourgeois, A., Berthome, G., Joud, J. and Langlet, M., "Morphology and natural wettability properties of sol–gel derived TiO2– SiO2 composite thin films", Applied Surface Science, Vol. 254, No. 5, (2007), 1405-1414. doi: 10.1016/j.apsusc.2007.06.072.
  37. Zangeneh, H., Zinatizadeh, A.A., Feyzi, M., Zinadini, S. and Bahnemann, D.W., "Photomineralization of recalcitrant wastewaters by a novel magnetically recyclable boron doped- TiO2- SiO2 cobalt ferrite nanocomposite as a visible-driven heterogeneous photocatalyst", Journal of Environmental Chemical Engineering, Vol. 6, No. 5, (2018), 6370-6381. doi: 10.1016/j.jece.2018.10.001.
  38. Namkhang, P., An, W.-J., Wang, W.-N., Rane, K.S., Kongkachuichay, P. and Biswas, P., "Low temperature synthesis of n-doped TiO2 nanocatalysts for photodegradation of methyl orange", Journal of Nanoscience and Nanotechnology, Vol. 13, No. 3, (2013), 2376-2381. doi: 10.1166/jnn.2013.7087 .
  39. Rosales, A., Ortiz-Frade, L., Medina-Ramirez, I.E., Godínez, L.A. and Esquivel, K., "Self-cleaning of SiO2- TiO2 coating: Effect of sonochemical synthetic parameters on the morphological, mechanical, and photocatalytic properties of the films", Ultrasonics Sonochemistry, Vol. 73, (2021), 105483. doi: 10.1016/j.ultsonch.2021.105483.
  40. Wan, H., Yao, W., Zhu, W., Tang, Y., Ge, H., Shi, X. and Duan, T., "Fe-n co-doped SiO2@ TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation", Applied Surface Science, Vol. 444, (2018), 355-363. doi: 10.1016/j.apsusc.2018.03.016.
  41. Bharti, B., Barman, P. and Kumar, R., "Xrd analysis of undoped and fe doped TiO2 nanoparticles by williamson hall method", in AIP Conference Proceedings, AIP Publishing LLC. Vol. 1675, (2015), 030025, doi: 10.1063/1.4929241.
  42. Habeeb, S.A., Hammadi, A.H., Abed, D. and Al-Jibouri, L.F., "Green synthesis of metronidazole or clindamycin-loaded hexagonal zinc oxide nanoparticles from ziziphus extracts and its antibacterial activity", Pharmacia, Vol. 69, No. 3, (2022), 855-864. doi: 10.3897/pharmacia.69.e91057.
  43. Wei, M., Song, N., Li, F., Qi, Z.-n. and Yao, M.-m., "Efficient photodegradation of organic pollutants with co–b codoped TiO2/ SiO2 composite films under visible light irradiation", Journal of Materials Science: Materials in Electronics, Vol. 28, No. 8, (2017), 6320-6327. doi: 10.1007/s10854-016-6315-2.
  44. Rasoulnezhad, H., Hosseinzadeh, G. and Yekrang, J., "Preparation and characterization of nanostructured s and fe co-doped TiO2 thin film by ultrasonic-assisted spray pyrolysis method", Journal of Nanostructures, Vol. 8, No. 3, (2018), 251-258. doi: 10.22052/JNS.2018.03.4.
  45. Hosseini, O., Zare-Shahabadi, V., Ghaedi, M. and Azqhandi, M.A., "Experimental design, rsm and ann modeling of tetracycline photocatalytic degradation using LDH@ CN", Journal of Environmental Chemical Engineering, Vol. 10, No. 5, (2022), 108345. doi: 10.1016/j.jece.2022.108345.
  46. Reza, K.M., Kurny, A. and Gulshan, F., "Parameters affecting the photocatalytic degradation of dyes using TiO2: A review", Applied Water Science, Vol. 7, No. 4, (2017), 1569-1578. doi: 10.1007/s13201-015-0367-y.
  47. Shaojun, J., Zheng, S., Daqiang, Y., Lianhong, W. and Liangyan, C., "Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process", Journal of Environmental Sciences, Vol. 20, No. 7, (2008), 806-813. doi: 10.1016/S1001-0742(08)62130-0.
  48. Balarak, D., Mengelizadeh, N., Rajiv, P. and Chandrika, K., "Photocatalytic degradation of amoxicillin from aqueous solutions by titanium dioxide nanoparticles loaded on graphene oxide", Environmental Science and Pollution Research, Vol. 28, No. 36, (2021), 49743-49754. doi: 10.1007/s11356-021-13525-1.