Growth Media Optimization for Production of Alkaline Protease from Industrial Wastewater using Bacillus subtilis PTCC 1254

Document Type : Original Article

Authors

1 Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran

2 Department of Chemical Engineering, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran

Abstract

Alkaline proteases are widely used in industrial processes due to their high pH tolerance and thermal stability. In present work, the protease producing ability of Bacillus strains (Bacillus subtilis PTCC 1254, B. subtilis PTCC 1156 and B. subtilis PTCC 1715) was studied. B. subtilis PTCC 1254 showed the highest proteolytic activity and therefore, the strain was selected as the biological agent in the submerged fermentation. Cell growth kinetic model was investigated using Malthus and Logistic equations, which were relatively well fitted to the experimental data. The maximum specific growth rate for Malthus and Logistic models were 0.187 and 0.377 h-1, respectively. The optimum culture conditions were defined as follows: pH 9, temperature 37°C, fermentation time 72 h, agitation speed 150 rpm and 4% inoculum with medium contained 1 g/l CaCl2, 0.6 g/l K2HPO4, 1 g/l KH2PO4, 0.2 g/l MgSO4.7H2O, 2 g/l sugarcane bagasse and 4 g/l corn bran as carbon and nitrogen sources. A 25% v/v industrial wastewater containing starchy waste was used as main substrate. Under optimum conditions, maximum alkaline protease activity of 117.43 U/ml was achieved. Also, the obtained protease was able to remove blood stain from cotton fabric and hydrolyze gelatin of X-ray film. Thus, this protease showed potential applications in detergent and photographic industries.

Keywords


  1. Meghwanshi, G.K., Kaur, N., Verma, S., Dabi, N.K., Vashishtha, A., Charan, P., Purohit, P., Bhandari, H., Bhojak, N. and Kumar, R., "Enzymes for pharmaceutical and therapeutic applications", Biotechnology and Applied Biochemistry, Vol. 67, No. 4, (2020), 586-601. doi: 10.1016/j.desal.2011.06.034
  2. Naveed, M., Nadeem, F., Mehmood, T., Bilal, M., Anwar, Z. and Amjad, F., "Protease-a versatile and ecofriendly biocatalyst with multi-industrial applications: An updated review", Catalysis Letters, Vol. 151, No. 2, (2021), 307-323. doi: 10.1007/s10562-020-03316-7
  3. Pouryafar, F., Najafpour, G., Noshadi, N. and Jahanshahi, M., "Thermostable alkaline protease production via solid state fermentation in a tray bioreactor using bacillus licheniformis ATCC 21424", International Journal of Environmental Research, Vol. 9, No. 4, (2015), 1127-1134. doi: 10.22059/IJER.2015.1001
  4. Quanten, T., Savić, N.D. and Parac‐Vogt, T.N., "Hydrolysis of peptide bonds in protein micelles promoted by a zirconium (iv)‐substituted polyoxometalate as an artificial protease", Chemistry–A European Journal, Vol. 26, No. 49, (2020), 11170-11179. doi: 10.1002/chem.202001920
  5. Vinoth, J., Murugan, S. and Stalin, C., "Optimization of alkaline protease production and its fibrinolytic activity from the bacterium Pseudomonas fluorescens isolated from fish waste discharged soil", African Journal of Biotechnology, Vol. 13, No. 30, (2014), 3052-3060. doi: 10.5897/AJB2014.13863
  6. Matkawala, F., Nighojkar, S., Kumar, A. and Nighojkar, A., "Microbial alkaline serine proteases: Production, properties and applications", World Journal of Microbiology and Biotechnology, Vol. 37, No. 4, (2021), 1-12. doi: 10.1007/s11274-021-03036-z
  7. Gemechu, G., Masi, C., Tafesse, M. and Kebede, G., "A review on the bacterial alkaline proteases", Journal of Xidian University, Vol. 14, No. 11, (2020), 632-634. doi: 10.37896/jxu14.11/022
  8. Hashmi, S., Iqbal, S., Ahmed, I. and Janjua, H.A., "Production, optimization, and partial purification of alkali-thermotolerant proteases from newly isolated Bacillus subtilis S1 and Bacillus amyloliquefaciens KSM12", Processes, Vol. 10, No. 6, (2022), 1050. doi: 10.3390/pr10061050
  9. Arya, P., Jani, S.A., Rajput, K.N. and Raval, V., "Thermostable alkaline proteases from bacteria: A review", National Conference on Innovations in Biological Sciences, 2020. doi: 10.2139/ssrn.3562387
  10. Noshadi, N., Mohammadi, M., Najafpour, G. and Pouryafar, F., "Thermostable α-amylase from lignocellulosic residues using bacillus amyloliquefaciens", International Journal of Engineering, Transactions B: Applications, Vol. 30, No. 8, (2017), 1110-1117. doi: 10.5829/ije.2017.30.08b.01
  11. Varia, A.D., Shukla, V.Y. and Tipre, D.R., "Alkaline protease-a versatile enzyme", International Journal of Research and Analytical Reviews, Vol. 6, No. 2, (2019), 208-219. doi: http://doi.one/10.1729/Journal.20854
  12. Haddar, A., Fakhfakh-Zouari, N., Hmidet, N., Frikha, F., Nasri, M. and Kamoun, A.S., "Low-cost fermentation medium for alkaline protease production by Bacillus mojavensis A21 using hulled grain of wheat and sardinella peptone", Journal of Bioscience and Bioengineering, Vol. 110, No. 3, (2010), 288-294. doi: 10.1016/j.jbiosc.2010.03.015
  13. Elgammal, E.W., El-Khonezy, M.I., Ahmed, E.F. and Abd-Elaziz, A.M., "Enhanced production, partial purification, and characterization of alkaline thermophilic protease from the endophytic fungus Aspergillus ochraceus BT21", Egyptian Pharmaceutical Journal, Vol. 19, No. 4, (2020), 338-349. doi: 10.4103/epj.epj_31_20
  14. dos Santos Aguilar, J.G. and Sato, H.H., "Microbial proteases: Production and application in obtaining protein hydrolysates", Food Research International, Vol. 103, No., (2018), 253-262. doi: 10.1016/j.foodres.2017.10.044
  15. Gaddad, S.M., "Enhanced production of extracellular alkaline protease by Bacillus cereus GVK21 by optimized formulations", International Journal of Pharmacy and Biological Sciences, Transactions B: Applications, Vol. 9, No. 1, (2019), 1103-1113. doi: 10.21276/ijpbs.2019.9.1.141
  16. Vaseghi, Z. and Najafpour, G., "A comparison on lipase production from soybean meal and sugarcane bagasse in solid state fermentation using rhizopus oryzae", International Journal of Engineering, Transactions B: Applications, Vol. 27, No. 2, (2014), 171-176. doi: 10.5829/idosi.ije.2014.27.02b.01
  17. Hosseinpour, M., Najafpour, G., Younesi, H., Khorrami, M. and Vaseghi, Z., "Lipase production in solid state fermentation using aspergillus niger: Response surface methodology", International Journal of Engineering, Transactions B: Applications, Vol. 25, No. 3, (2012), 151-159. doi: 10.5829/idosi.ije.2012.25.03b.01.
  18. Krishnaveni, K., DJ M, B.M., Ramesh, S. and Kalaichelvan, P., "Production and optimization of extracellular alkaline protease from Bacillus subtilis isolated from dairy effluent", Der Pharmacia Lettre, Vol. 4, No. 1, (2012), 98-109.
  19. López-Gómez, J.P. and Venus, J., "Potential role of sequential solid-state and submerged-liquid fermentations in a circular bioeconomy", Fermentation, Vol. 7, No. 2, (2021), 76. doi: 10.3390/fermentation7020076
  20. Alarid‐García, C., Hernández‐Calderón, O.M., Rios‐Iribe, E.Y., González‐Llanes, M.D. and Escamilla‐Silva, E.M., "Production of β‐glucosidase by Aspergillus niger CDBB‐H‐175 on submerged fermentation", The Canadian Journal of Chemical Engineering, Vol. 100, No. 7, (2022), 1489-1501. doi: 10.1002/cjce.24236
  21. Zhu, X., Qi, J., Cheng, L., Zhen, G., Lu, X. and Zhang, X., "Depolymerization and conversion of waste-activated sludge to value-added bioproducts by fungi", Fuel, Vol. 320, No., (2022), 123890. doi: 10.1016/j.fuel.2022.123890
  22. Tropea, A., "Food waste valorization", Fermentation, Vol. 8, No. 4, (2022), 168. doi: 10.3390/fermentation8040168
  23. Singh, R.S., Chauhan, K. and Jindal, A., "Response surface optimization of solid state fermentation for inulinase production from Penicillium oxalicum using corn bran", Journal of Food Science and Technology, Vol. 55, No. 7, (2018), 2533-2540. doi: 10.1007/s13197-018-3173-3
  24. Espoui, A.H., Larimi, S.G. and Najafpour, G.D., "Optimization of protease production process using bran waste using Bacillus licheniformis", Korean Journal of Chemical Engineering, Vol. 39, No. 3, (2022), 674-683. doi: 10.1007/s11814-021-0965-3
  25. Li, S., He, B., Bai, Z. and Ouyang, P., "A novel organic solvent-stable alkaline protease from organic solvent–tolerant bacillus licheniformis yp1a", Journal of Molecular Catalysis B: Enzymatic, Vol. 56, No. 2-3, (2009), 85-88. doi: 10.1016/j.molcatb.2008.08.001
  26. Horikoshi, K., "Alkaliphiles: Some applications of their products for biotechnology", Microbiology and Molecular Biology Reviews, Vol. 63, No. 4, (1999), 735-750. doi: 10.1128/MMBR.63.4.735-750.1999
  27. Najafpour, G., Younesi, H. and Ismail, K.S.K., "Ethanol fermentation in an immobilized cell reactor using saccharomyces cerevisiae", Bioresource Technology, Vol. 92, No. 3, (2004), 251-260. doi: 10.1016/j.biortech.2003.09.009
  28. Najafpour, G., "Biochemical Engineering and Biotechnology, Elsevier, (2015). doi: 10.1016/C2013-0-09819-2
  29. Abou-Elela, G.M., Ibrahim, H.A., Hassan, S.W., Abd-Elnaby, H. and El-Toukhy, N.M., "Alkaline protease production by alkaliphilic marine bacteria isolated from marsa-matrouh (egypt) with special emphasis on Bacillus cereus purified protease", African Journal of Biotechnology, Vol. 10, No. 22, (2013), 4631-4642. doi: 10.5897/AJB10.2111
  30. Bajaj, B.K., Sharma, N. and Singh, S., "Enhanced production of fibrinolytic protease from Bacillus cereus NS-2 using cotton seed cake as nitrogen source", Biocatalysis and Agricultural Biotechnology, Vol. 2, No. 3, (2013), 204-209. doi: 10.1016/j.bcab.2013.04.003
  31. Zamani, M. and Khayati, G., "Batch kinetics and modeling of alkaline protease production by isolated bacillus sp.(research note)", International Journal of Engineering; Transactions C: Aspects, Vol. 28, No. 6, (2015), 841-847. doi: 10.5829/idosi.ije.2015.28.06c.03
  32. Aehle, W., "Enzymes in Industry: Products and Applications, John Wiley & Sons, (2006).
  33. Blieva, R., Mustafin, K., Akhmetsadykov, N., Suleimenova, Z., Saduyeva, Z., Zhakipbekova, A., Tapenbayeva, I., Kalieva, A. and Narmuratova, Z., "Optimization of culture medium for enhanced protease biosynthesis in Streptomyces globisporus", Rasayan Journal of Chemistry, Vol. 14, No. 1, (2021), 270-275. doi: 10.31788/ RJC.2021.1416123
  34. Gnanadoss, J.J. and Devi, S.K., "Optimization of nutritional and culture conditions for improved protease production by Aspergillus nidulans and Aspergillus flavus", Journal of Microbiology, Biotechnology and Food Sciences, Vol. 4, No. 6, (2015), 518-523. doi: 10.15414/jmbfs.2015.4.6.518-523
  35. Murthy, P.S. and Naidu, M.M., "Protease production by Aspergillus oryzae in solid-state fermentation utilizing coffee by-products", World Applied Sciences Journal, Vol. 8, No. 2, (2010), 199-205.
  36. Degering, C., Eggert, T., Puls, M., Bongaerts, J., Evers, S., Maurer, K.-H. and Jaeger, K.-E., "Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides", Applied and Environmental Microbiology, Vol. 76, No. 19, (2010), 6370-6376. doi: 10.1128/AEM.01146-10
  37. Al-Harbi, N.A., "Production and physical characterization of thermo-stable and organic solvents-tolerant protease from mesophilic Bacillus sp. NASK P6", Biosciences Biotechnology Research Asia, Vol. 9, No. 1, (2016), 157-164.
  38. Reddy, L., Wee, Y.-J., Yun, J.-S. and Ryu, H.-W., "Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through plackett–burman and response surface methodological approaches", Bioresource Technology, Vol. 99, No. 7, (2008), 2242-2249. doi: 10.1016/j.biortech.2007.05.006
  39. Zare, H., Meiguni, F. and D Najafpour, G., "Production of alkaline protease using industrial waste effluent as low-cost fermentation substrate", Iranian Journal of Energy and Environment, Vol. 12, No. 3, (2021), 264-272. doi: 10.5829/ijee.2021.12.03.11
  40. George-Okafor, U. and Mike-Anosike, E., "Screening and optimal protease production by Bacillus sp. SW-2 using low cost substrate medium", Research Journal of Microbiology, Vol. 7, No. 7, (2012), 327-336. doi: 10.17311/jm.2012.327.336
  41. Balaji, N., Rajasekaran, K., Kanipandian, N., Vignesh, V. and Thirumurugan, R., "Isolation and screening of proteolytic bacteria from freshwater fish cyprinus carpio", International Multidisciplinary Research Journal, Vol. 2, No. 6, (2012), 56-59.
  42. Genckal, H. and Tari, C., "Alkaline protease production from alkalophilic Bacillus sp. Isolated from natural habitats", Enzyme and Microbial Technology, Vol. 39, No. 4, (2006), 703-710. doi: 10.1016/j.enzmictec.2005.12.004
  43. Nascimento, W.C.A.d. and Martins, M.L.L., "Production and properties of an extracellular protease from thermophilic Bacillus sp", Brazilian Journal of Microbiology, Vol. 35, No. 1-2, (2004), 91-96. doi: 10.1590/S1517-83822004000100015
  44. Sandhya, C., Sumantha, A., Szakacs, G. and Pandey, A., "Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation", Process Biochemistry, Vol. 40, No. 8, (2005), 2689-2694. doi: 10.1016/j.procbio.2004.12.001
  45. Sanchez-Porro, C., Mellado, E., Bertoldo, C., Antranikian, G. and Ventosa, A., "Screening and characterization of the protease cp1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. Strain CP76", Extremophiles, Vol. 7, No. 3, (2003), 221-228. doi: 10.1007/s00792-003-0316-9