Fabrication of Aluminum 5083/SiC Surface Composite on Tungsten Inert Gas Weld Joint by Novel Direct Friction Stir Processing Technique

Document Type : Original Article

Authors

Sardar Vallabhbhai National Institute of Technology, Surat, India

Abstract

For the creation of surface reinforcement particles in the metal matrix, friction stir processing is frequently utilized. Formation of aluminum/SiC surface composite on Tungsten Inert Gas (TIG) butt weld of Al5083 by a novel technique of direct friction stir processing (DFSP) using a hollow tool is successfully demonstrated in this present work. Deposition of SiC in the stir zone of DFSP was confirmed by X-Ray diffraction (XRD) method. Micro analysis of weld joint was achieved using metallographic microscope and scanning electron microscope (SEM). Microstructure of stir zone of DFSP shows finely distributed SiC reinforcement particles in aluminum matrix. Absence of detrimental intermetallics was confirmed by energy dispersive spectroscopy (EDS) analysis. Tensile strength of DFSPed specimen was found to be 227.3 MPa which is 19.5% lower than UTS of autogenous TIG weld specimen. Microhardness of SZ of DFSP was found to be increased from TIG weld microhardness of 86 Hv to 107 Hv due to presence of SiC particles.

Keywords

Main Subjects


  1. Bauri, R., Ram, G.J., Yadav, D. and Kumar, C.S., “Effect of process parameters and tool geometry on fabrication of Ni particles reinforced 5083 Al composite by friction stir processing,” Materials Today: Proceedings, Vol. 2, No. 4-5, (2015), 3203-3211, doi: 10.1016/j.matpr.2015.07.115.
  2. Sharma, D.K., Mahant, D. and Upadhyay, G., “Manufacturing of metal matrix composites: A state of review,” Materials Today: Proceedings, Vol. 26, (2020), 506-519, doi: 10.1016/j.matpr.2019.12.128.
  3. Nguyen-Dinh, N., Hejjaji, A., Zitoune, R., Bouvet, C. and Crouzeix, L., "Nguyen-Dinh, N., et al. "Machining of FRP composites: surface quality, damage, and material integrity: critical review and analysis", Futuristic Composites, Springer Singapore, (2018), 1-35.
  4. Mishra, R.S., Ma, Z.Y. and Charit, I., “Friction stir processing: a novel technique for fabrication of surface composite,” Materials Science and Engineering: A, Vol. 341, No. 1, (2003), 307-310, doi: https://doi.org/10.1016/S0921-5093(02)00199-5.
  5. Pantelis, D., Tissandier, A., Manolatos, P. and Ponthiaux, P., “Formation of wear resistant Al-SiC surface composite by laser melt-particle injection process,” Materials Science and Technology, Vol. 11, No. 3, (1995), 299-303, doi: 10.1179/mst.1995.11.3.299.
  6. Tailor, S., Mohanty, R.M., Sharma, V.K. and Soni, P.R., “Fabrication and Wear Behavior of Nanostructured Plasma-Sprayed 6061Al-SiCp Composite Coating,” Journal of Thermal Spray Technology, Vol. 23, No. 7, (2014), 1081-1088, doi: 10.1007/s11666-014-0065-6.
  7. Choo, S.H., Lee, S. and Kwon, S.J., “Effect of flux addition on the microstructure and hardness of TiC-reinforced ferrous surface composite layers fabricated by high-energy electron beam irradiation,” Metallurgical and Materials Transactions A, vol. 30, No. 12, (1999), 3131-3141, doi: 10.1007/s11661-999-0224-4.
  8. Attia, A.N., “New phase reinforcement for composite materials,” Materials & Design, Vol. 22, No. 6, (2001), 459-466, doi: 10.1016/s0261-3069(00)00080-7.
  9. Mishra, R.S., Mahoney, M.W., McFadden, S.X., Mara, N.A. and Mukherjee, A.K., “High strain rate superplasticity in a friction stir processed 7075 Al alloy,” Scripta Materialia, Vol. 42, No. 2, (1999), 163-168, doi: 10.1016/S1359-6462(99)00329-2.
  10. Thomas, W. M., “Friction stir welding and related friction process characteristics,” Proc. 7th International Conference Joints in Aluminium (INALCO’98), (1998), 1-18.
  11. Mehdi, H. and Mishra, R.S., “Effect of friction stir processing on mechanical properties and heat transfer of TIG welded joint of AA6061 and AA7075,” Defence Technology, Vol. 17, No. 10 (2021), 715-727, doi: 10.1016/j.dt.2020.04.014.
  12. Mishra, R.S. and Ma, Z.Y., “Friction stir welding and processing,” Materials Science and Engineering: R: reports, Vol. 50, No.1, (2005), 1-78, doi: https://doi.org/10.1016/j.mser.2005.07.001.
  13. Tandel, K.D. and Menghani, J.V., “Effect of Friction Stir Processing on Fusion Welded Joint of Al-5083,” International Journal of Engineering, Transactions C: Aspects, Vol. 35, No. 9 (2022), 1735-1743, doi: 10.5829/IJE.2022.35.09C.09.
  14. Aval, H.J., “Influences of pin profile on the mechanical and microstructural behaviors in dissimilar friction stir welded AA6082--AA7075 butt Joint,” Materials & Design, Vol. 67, (2015), 413-421, doi: https://doi.org/10.1016/j.matdes.2014.11.055.
  15. Sudhakar, M., Rao, C.S. and Saheb, K.M., “Production of Surface Composites by Friction Stir Processing-A Review,” Materials Today: Proceedings, Vol. 5, No. 1, Part 1, (2018), 929-935, doi: https://doi.org/10.1016/j.matpr.2017.11.167.
  16. Sharma, A., Sharma, V.M., Mewar, S., Pal, S.K. and Paul, J., “Friction stir processing of Al6061-SiC-graphite hybrid surface composites,” Materials and Manufacturing Processes, Vol. 33, No. 7, (2018), 795-804, doi: 10.1080/10426914.2017.1401726.
  17. Salehi, M., Saadatmand, M. and Mohandesi, J.A., “Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing,” Transactions of Nonferrous Metals Society of China, Vol. 22, No. 5, (2012), 1055-1063, doi: https://doi.org/10.1016/S1003-6326(11)61283-1.
  18. Dolatkhah, A., Golbabaei, P., Givi, M.B. and Molaiekiya, F., “Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing,” Materials & Design, Vol. 37, (2012), 458-464, doi: https://doi.org/10.1016/j.matdes.2011.09.035.
  19. Jain, S. and Mishra, R.S., “Microstructural and mechanical behavior of micro-sized SiC particles reinforced friction stir processed/welded AA7075 and AA6061,” Silicon, (2022), doi: 10.1007/s12633-022-01716-5.
  20. Mehdi, H., Mehmood, A., Chinchkar, A., Hashmi, A.W., Malla, C. and Mohapatra, P., “Optimization of process parameters on the mechanical properties of AA6061/Al2O3 nanocomposites fabricated by multi-pass friction stir processing,” Materials Today: Proceedings, Vol. 56, (2022), 1995-2003, doi: https://doi.org/10.1016/j.matpr.2021.11.333.
  21. Kianezhad, M. and Raouf, A.H., “Effect of nano-Al2O3 particles and friction stir processing on 5083 TIG welding properties,” Journal of Materials Processing Technology, Vol. 263, (2019), 356-365, doi: https://doi.org/10.1016/j.jmatprotec.2018.08.010.
  22. Khodabakhshi, F., Simchi, A., Kokabi, A.H., Nosko, M., Simanĉik, F. and Švec, P., “Microstructure and texture development during friction stir processing of Al-Mg alloy sheets with TiO2 nanoparticles,” Materials Science and Engineering: A, Vol. 605, (2014), 108-118, doi: 10.1016/j.msea.2014.03.008.
  23. Rejil, C.M., Dinaharan, I., Vijay, S.J. and Murugan, N., “Microstructure and sliding wear behavior of AA6360/(TiC+B 4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate,” Materials Science and Engineering: A, Vol. 552, (2012), 336-344, doi: 10.1016/j.msea.2012.05.049.
  24. Rana, H.G., Badheka, V.J. and Kumar, A., “Fabrication of Al7075/B4C surface composite by novel Friction Stir Processing (FSP) and investigation on wear properties,” Procedia Technology, Vol. 23, (2016), 519-528.
  25. Boopathi, S., Thillaivanan, A., Pandian, M., Subbiah, R. and Shanmugam, P., “Friction stir processing of boron carbide reinforced aluminium surface (Al-B4C) composite: Mechanical characteristics analysis,” Materials Today: Proceedings, Vol. 50, (2022), 2430-2435, doi: https://doi.org/10.1016/j.matpr.2021.10.261.
  26. Dixit, M., Newkirk, J.W. and Mishra, R.S., “Properties of friction stir-processed Al 1100-NiTi composite,” Scripta Materialia, Vol. 56, No. 6, (2007), 541-544, doi: 10.1016/j.scriptamat.2006.11.006.
  27. Moghaddas, M.A. and Kashani-Bozorg, S.F., “Effects of thermal conditions on microstructure in nanocomposite of Al/Si 3N 4 produced by friction stir processing,” Materials Science and Engineering: A, Vol. 559, (2013), 187-193, doi: 10.1016/j.msea.2012.08.073.
  28. Akinlabi, E.T., Mahamood, R.M., Akinlabi, S.A. and Ogunmuyiwa, E., “Processing parameters influence on wear resistance behaviour of friction stir processed Al-TiC composites,” Advances in Materials Science and Engineering, (2014).
  29. Akramifard, H.R., Shamanian, M., Sabbaghian, M. and Esmailzadeh, M., “Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing,” Materials & Design, Vol. 54, (2014), 838-844, doi: https://doi.org/10.1016/j.matdes.2013.08.107.
  30. Mazaheri, Y., Karimzadeh, F. and Enayati, M.H., “A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing,” Journal of Materials Processing Technology, Vol. 211, No. 10, (2011), 1614-1619, doi: 10.1016/j.jmatprotec.2011.04.015.
  31. Rathee, S., Maheshwari, S., Siddiquee, A.N. and Srivastava, M., “Distribution of reinforcement particles in surface composite fabrication via friction stir processing: Suitable strategy,” Materials and Manufacturing Processes, Vol. 33, No. 3, (2018), 262-269, doi: 10.1080/10426914.2017.1303147.
  32. Mahmoud, E.R.I., Takahashi, M., Shibayanagi, T. and Ikeuchi, K., “Effect of friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminium surface,” Science and Technology of Welding and Joining, Vol. 14, No. 5, (2009), 413-425, doi: 10.1179/136217109X406974.
  33. Lim, D.K., Shibayanagi, T. and Gerlich, A.P., “Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing,” Materials Science and Engineering: A, Vol. 507, No. 1-2, (2009), 194-199, doi: 10.1016/j.msea.2008.11.067.
  34. Huang, Y., Wang, T., Guo, W., Wan, L. and Lv, S., “Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by Direct Friction Stir Processing,” Materials & Design, Vol. 59, (2014), 274-278, doi: https://doi.org/10.1016/j.matdes.2014.02.067.
  35. Mahmoud, E.R.I., Ikeuchi, K. and Takahashi, M., “Fabrication of SiC particle reinforced composite on aluminium surface by friction stir processing,” Science and Technology of Welding and Joining, Vol. 13, No. 7, (2008), 607-618, doi: 10.1179/136217108X333327.
  36. Yang, R., Zhang, Z., Zhao, Y., Chen, G., Guo, Y., Liu, M. and Zhang, J., “Effect of multi-pass friction stir processing on microstructure and mechanical properties of Al3Ti/A356 composites,” Materials Characterization, Vol. 106, (2015), 62-69, doi: 10.1016/j.matchar.2015.05.019.
  37. Surekha, K., Murty, B.S. and Rao, K.P., “Microstructural characterization and corrosion behavior of multipass friction stir processed AA2219 aluminium alloy,” Surface and Coatings Technology, Vol. 202, No. 17, (2008), 4057-4068, doi: 10.1016/j.surfcoat.2008.02.001.
  38. Azizieh, M., Kokabi, A.H. and Abachi, P., “Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing,” Materials & Design, Vol. 32, No. 4, (2011), 2034-2041, doi: 10.1016/j.matdes.2010.11.055.
  39. Sharma, V., Gupta, Y., Kumar, B.M. and Prakash, U., “Friction Stir Processing Strategies for Uniform Distribution of Reinforcement in a Surface Composite,” Materials and Manufacturing Processes, Vol. 31, No. 10, (2016), 1384-1392, doi: 10.1080/10426914.2015.1103869.
  40. Heirani, F., Abbasi, A. and Ardestani, M., "Effects of processing parameters on microstructure and mechanical behaviors of underwater friction stir welding of Al5083 alloy," Journal of Manufacturing Processes, Vol. 25, (2017), 77-84, doi: https://doi.org/10.1016/j.jmapro.2016.11.002.
  41. Singh, R., Rizvi, S.A. and Tewari, S.P., “Effect of friction stir welding on the tensile properties of aa6063 under different conditions,” International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 4, (2017), 597-603, doi: 10.5829/idosi.ije.2017.30.04a.19.