Variations of Organic Loading Rate on Tofu Wastewater Degradation using Upflow Anaerobic Sludge Blanket Reactor by Modified Stover-Kincannon Model

Document Type : Original Article


1 Department of Chemical Engineering, Universitas Sumatera Utara, Jalan Almamater Kampus USU, Medan, Indonesia

2 Department of Industrial Engineering, Universitas Prima Indonesia, Medan, Indonesia


This research aims to examine the varians of organic loading rate (OLR) on degradation of tofu wastewater using the hybrid upflow anaerobic sludge blanket (hybrid UASB) reactor using the modified kinetic model of Stover Kincannon. This reactor was operated at OLRs variation of 1.5-12 kg COD m-3 d-1 and HRT of 12 - 24 hours for 328 days. Higher COD removal efficiency of 86.41% and biogas production of 7700 mL were achieved at OLR 4.8 kg COD m-3 d-1 and HRT 24 hours on 140 days. Modified Stover-Kincannon model was observed and matched data sets were obtained.  The kinetic values of model obtained at HRT variations, the parameters KB and μmax were 3.7, 12.97, 2.42 mgL-1 d-1 and 0.59, 9.41, 0.014 mgL-1 d-1, respectively. This model was a plot of the inverse of the removal rate, versus inverse of the total loading rate resulted in a straight line. It showed that the Stover-Kincannon Model is the rate of substrate removal was affected by the organic load rate (OLR) that flowed into the hybrid UASB reactor.


Main Subjects

  1. Jurczyk, Ł., Koc-Jurczyk, J.and Balawejder, M. “Quantitative dynamics of chosen bacteria phylla in wastewater treatment plants excess sludge after ozone treatment” Journal of Ecology Engineering, Vol. 20, No. 3, (2019), 204-213. doi: 10.12911/22998993/99784.
  2. Abdollahzadeh, E. and Bonakdarpour, B. “The Study of Organic Removal Efficiency and Membrane Fouling in a Submerged Membrane Bioreactor Treating Vegetable Oil Wastewater” International Journal of Engineering, Transactions C: Aspetcs, Vol. 29, No. 12, (2016), 1642-1649. doi: 10.5829/idosi.ije.2016.29.12c.02.
  3. Yanqoritha, N., Turmuzi, M. and Derlini. “Acclimatization process of tofu wastewater on hybrid upflow anaerobic sludge blanket reactor using polyvinyl chloride rings as a growth medium” In AIP Conference Proceedings, Vol. 1840, No. 1, (2017), p. 110013.
  4. Faisal, M., Gani, A., Mulana, F. and Daimon, H. “Treatment and Utilization of Industrial Tofu Waste in Indonesia.” Asian Journal of Chemistry, Vol. 28, No. 3, (2016), 501-507. doi: 10.14233/ajchem.2016.19372.
  5. Kambuaya, B. "Baku Mutu Air Limbah bagi Usaha atau Pengolahan Kedelai" Jakarta: Ministry of Environmental (in Indonesia), (2014).
  6. Indriyati, J. P. dan Susanto, “Biological processing performance of tofu liquid wastes” Jurnal Teknologi Lingkungan, Vol. 13, No. 2, (2012), 159-166.
  7. Mufarida, N., N., A. and Abidin, A., A. “The Innovation of Tofu Waste Liquid Biogas Reactor Technology as an Alternative Energy Resource” Waste Technology, Vol. 9, No. 1, (2021), 20-24. doi:
  8. Yanqoritha, N., Turmuzi, M., Irvan, Fatimah, and Derlini. “The Effect of Organic Loading Rate Variation on Digestion of Tofu Wastewater using PVC Rings as Growth Media in a Hybrid UASB Reactor” Oriental Journal Chemistry, Vol. 34, No. 3, (2018), 1653-1657. doi: 10.13005/ojc/340361.
  9. Adisasmito, S., Rasrendra, C. B., Chandra, H., and Gunartono, M. A. “Anaerobic reactor for Indonesian tofu wastewater treatment” International Journal of Engineeringn & Technology, Vol. 7, No. 3, (2018), 30-32, doi: 10.14419/ijet.v7i3.26.17456.
  10. Li, L., Guo, X. P., Zhao, T. N., Liu, L. and Li, T. Y. “Identifying the key environmental factors and bacterial communities in humification and their relationships during green waste composting.” Applied Ecology and Environmental Research, Vol. 19, No. 1, (2021), 45-62. doi: 10.15666/aeer/1901_045062.
  11. Effendi, H., Seroja, R., and Hariyadi, S. “Response surface method application in tofu production liquid waste treatment” Indonesian Journal of Chemistry, Vol. 19, No. 2, (2019), 298-304. doi: 10.22146/ijc.31693.
  12. Kleerebezem, R., Joosse, B., Rozendal, R. and Loosdrecht, M. C. M. V. “Anaerobic digestion without biogas” Reviews in Environmental Science and Bio/Technology,  Vol. 14, No. 4, (2015), 787-801. doi: 10.1007/s11157-015-9374-6.
  13. Beegle, J., R. and Borole, A. P. , “Energy production from waste: Evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors” Renewable and Sustainable Energy Reviews, Vol. 96, (2018), 343-351, doi: 10.1016/j.rser.2018.07.057.
  14. Shrestha, B., Hernandez, R., Fortela, D., L., B., Sharp, W., Chistoserdov, A., Gang, D., Revellame, E., Holmes, W. and Zappi, M., E. “A review of pretreatment methods to enhance solids reduction during anaerobic digestion of municipal wastewater sludges and the resulting digester performance: implications to future urban biorefineries” Applied Sciences, Vol. 10, No. 24, (2020) 1-28. doi: 10.3390/app10249141.
  15. BPPT, Development of Planning and Policy Support for Improving the Potential Production of Biogas as Renewable Energy in Indonesia’a Tofu Industries. 2013: Renewable Energy-Efficiency Energy Partnership (REEEP) Environmental Technology Centre, The Agency for the Assessment and Application of Technology, Indonesia.
  16. Hidayat, Y. A., Kiranamahsa, S. and Zamal, M. A. “A study of plastic waste management effectiveness in Indonesia industries.” AIMS Energy, Vol. 7, No. 3, (2019), 350-370. doi: 10.3934/ENERGY.2019.3.350.
  17. Gnanapragasam, G., Arutchelvan, V., Soundari, L. and Maneeshkumar, C., S. “Evaluation of kinetic models for tearing textile dyeing wastewater using UASB reactor.” IOSR Journal of Biotechnology and Biochemistry, Vol. 03, No. 04, (2017), 57-65. doi: 10.9790/264x-03045765.
  18. Akulshin, A., Shcherbakov, V. I., Kuznetsova, N. V., Bienkowski, N. and Shchukina, T. V. “Biogas uninterrupted production process intensification” Journal Applied Engineering Science, Vol. 15, No. 4, (2017), 471-473. doi: 10.5937/jaes15-15453.
  19. Babaee, A. and Shayegan, J. “Effect of Organic Loading Rates (OLR) on Production of Methane from Anaerobic Digestion of Vegetables Waste” World Renewable Energy Congress 2011, Bioenergy Technology Linköping, Sweden, (2011), 411. doi:
  20. Govindaradjane, S., Sundararajan, T., Sivasankaran, M. A.,  and Kumar, V. N., “Performance and Kinetics of a HUASB reactor for treating tapioca-based starch industrial waste stream.” International Journal of Engineering and Advanced Technology,  Vol. 2 No. 4, (2013), 105-110.
  21. Hemalatha, D. and Keerthinarayana, S. “Kinetic modelling of hybrid upflow anaerobic sludge blanket reactor in treatment of pulp and paper mill wastewater” Indian Journal Chemical Technology, Vol. 24, No. 3, (2017), 352-357.
  22. Li, Y. F., Abraham, C., Nelson, M. C., Chen, P. H., Graf, J. and Yu, J. “Effect of organic loading on the microbiota in a temperature-phased anaerobic digestion (TPAD) system co-digesting dairy manure and waste whey”, Applied Microbiology Biotechnology, Vol. 99, No. 20, (2015), 8777-8792. doi: 10.1007/s00253-015-6738-3.
  23. Gomes D. R. S., Papa, L.G., Cichello, G.C.V. Belançon, D., Pozzi, E.G., Balieiro, J.C.C., Monterrey-Quintero, E.S., Tommaso, G. “Effect of enzymatic pretreatment and increasing the organic loading rate of lipid-rich wastewater treated in a hybrid UASB reactor” Desalination, Vol. 279, No. 1-3, (2011), 96-103. doi: 10.1016/j.desal.2011.05.067.
  24. Thiyagu, R. and Sivarajan, P. “Influence of organic loading rate in acclimatization phase of hybrid upflow anaerobic sludge blanket (UASB) reactor treating distillery spent wash” Nature Environment and Pollution Technology, Vol. 17, No. 1, (2018), 223-227.
  25. Zinatizadeh, A. A., Mohammadi, P., Mirghorayshi, M., Ibrahim, S., Younesi, H. and Mohamed, A. R. “An anaerobic hybrid bioreactor of granular and immobilized biomass for anaerobic digestion (AD) and dark fermentation (DF) of palm oil mill effluent: Mass transfer evaluation in granular sludge and role of internal packing” Biomass and Bioenergy, Vol. 103, (2017), 1-10, doi: 10.1016/j.biombioe.2017.05.006.
  26. Jiang, M., Westerholm, M., Qiao, W. Wandera, S. M. and Dong, R. “High rate anaerobic digestion of swine wastewater in an anaerobic membrane bioreactor” Energy,  Vol. 193, (2020), 116783. doi: 10.1016/
  27. Ghasemian, P., Abdollahzadeh Sharghi, E. and Davarpanah, L. “The influence of short values of hydraulic and sludge retention time on performance of a membrane bioreactor treating sunflower oil refinery wastewater” International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 10, (2017), 1417-1424. doi: 10.5829/ije.2017.30.10a.01.
  28. Meng, F., Zhang, S., Oh, Y., Zhou, Z., Shin, H. S. and Chae, S. R. “Fouling in membrane bioreactors: An updated review” Water Research,  Vol. 114, (2017), 151-180. doi: 10.1016/j.watres.2017.02.006.
  29. Abyar, H., Younesi, H., Bahramifar, N., Zinatizadeh, A. A. and Amini, M. “Kinetic evaluation and process analysis of COD and nitrogen removal in UAASB bioreactor” Journal of the Taiwan Institute of Chemical Engineers, Vol. 78, No. 11, (2017), 272-281. doi: 10.1016/j.jtice.2017.06.014.
  30. Jafarzadeh, M. T., Mehrdadi, N. and Hashemian, S. J. “Kinetic constants of anaerobic hybrid reactor treating petrochemical waste” Asian Journal of Chemistry, Vol. 21, No. 3, (2009), 1672-1684.
  31. Wu, X., Yang, Y., Wu, G., Mao, J. and Zhou, T. “Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM)” Journal of Environmental Management,  Vol. 165, (2016) 235-242. doi: 10.1016/j.jenvman.2015.09.041.
  32. Hassan, S. R., Zwain, H. M. and Dahlan, I. “Development of Anaerobic Reactor for Industrial Wastewater Treatment : An Overview Present Stage and Future Prospects” Journal of Advanced Scientific Research, Vol. 4, No. 1, (2013), 7-12.
  33. APHA (American Public Health Association, Washington, DC) Standard Methods for the Examination of Water and Wastewater. Washington, DC, 2012.
  34. Narasimha, G. and Saigopal, D. “Impact of indigenous microorganisms on soil microbial and enzyme activities Related papers Changes in soil enzyme activities under the influence of sugar industry effluents Maddela Naga Raju Influence of organic manure on soil microbial and enzyme activities” Archives of Applied Science Research Vol. 4, No. 2, (2012) 1065-1073. [Online]
  35. Wang, T., Li, C. and Zhu, G. “Performance, process kinetics and functional microbial community of biocatalyzed electrolysis-assisted anaerobic baffled reactor treating carbohydrate-containing wastewater” The Royal Society of Chemistry, Vol. 8, No. 72, (2018), 41150-41162, Doi: 10.1039/c8ra08590k.
  36. Xiu-lan, Z., qiong Li, B., Jiu-pai, Ni, J. and De-ti Xie. “Effect of four crop straws on transformation of organic matter during sewage sludge composting” Journal Integrative Agriculture, Vol. 15, No. 1, (2016), 232-240, doi: 10.1016/S2095-3119(14)60954-0.
  37. Tchobanoglous, G., Franklin I. Burton & David Stensel, H. “Wastewater Engineering Treatment and Reuse”, McGraw Hill Series Companies, Inc., 2003.
  38. Azbar, N., Tutuk, F. and Keskin, T. “Biodegradation performance of an anaerobic hybrid reactor treating olive mill effluent under various organic loading rates” International Biodeterioration & Biodegradation, Vol. 63, No. 6, (2009), 690-698. doi: 10.1016/j.ibiod.2009.02.009.
  39. Speece, Richard E. "Anaerobic biotechnology" Environmental Science & Technology, Vol. 17, No. 9, (1983), 417A.
  40. Najafpour, G. D., A. A. L. Zinatizadeh, A. R. Mohamed, M. Hasnain Isa, and H. Nasrollahzadeh. "High-rate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor" Process Biochemistry, Vol. 41, No. 2, (2006), 370-379.
  41. Adebayo, A., Jekayinfa, S., and Linke, B. “Effects of Organic Loading Rate on Biogas Yield in a Continuously Stirred Tank Reactor Experiment at Mesophilic Temperature” British Journal of Applied Science & Technology, Vol. 11, No. 4, (2015), 1-9. doi: 10.9734/bjast/2015/18040.
  42. Sun, M.T., Fan, X.L., Zhao, X.X., Fu, S.F., He, S., Manasa, M.R.K. and Guo, R.B. “Effects of organic loading rate on biogas production from macroalgae: Performance and microbial community structure” Bioresource Technology, Vol. 235, (2017), 292-300. doi: 10.1016/j.biortech.2017.03.075.
  43. Zinatizadeh, A. A. L., A. R. Mohamed, A. Z. Abdullah, M. D. Mashitah, M. Hasnain Isa, and G. D. Najafpour, "Process modeling and analysis of palm oil mill effluent treatment in an up-flow anaerobic sludge fixed film bioreactor using response surface methodology (RSM)", Water Research, Vol. 40, No. 17 (2006),3193-3208.
  44. Zinatizadeh, A. A. L., A. R. Mohamed, G. D. Najafpour, M. Hasnain Isa, and H. Nasrollahzadeh. "Kinetic evaluation of palm oil mill effluent digestion in a high rate up-flow anaerobic sludge fixed film bioreactor", Process Biochemistry, Vol. 41, No. 5 (2006), 1038-1046.