Fabrication of Pebax/4A Zeolite Nanocomposite Membrane to Enhance CO2 Selectivity Compared to Pure O2, N2, and CH4 Gases

Document Type : Original Article

Authors

Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran

Abstract

The separation of carbon dioxide is essential for the environment. Using membranes to separate this gas is economical, but the weakness in permeability and mechanical strength has prevented their commercialization. Robeson proved that permeability and selectivity have the opposite relationship and provided an upper limit for pairs of gases. Worth to be mentioned that any membrane placed above this limit could be commercialized. Scientists proposed mixed matrix membranes to overcome this problem. These membranes contain two phases, polymer, and inorganic. This research focuused on membrane technology and aimed to prepare a membrane that has a good performance for CO2 separation and at the same time its cost is economical, so by adding a reasonable price zeolite available in the market named 4A to the Pebax1657 polymer and changing the operating conditions of the process, permeability and Selectivity was measured. Pebax polymer and 4A zeolite were selected as respectively the polymer and mineral phases for membrane fabrication. The fabricated membranes were evaluated by XRD, FT-IR, FE-SEM, BET, EDAX, TGA/DSC, and mechanical strength tests. Finally, the selectivity of CO2 compared to N2, O2, and CH4 improved by 53, 67, and 75%, respectively, and obtained a good position on the Robeson diagram.

Keywords

Main Subjects


  1. Othman, F.E.C., Yusof, N., Petrů, M., Nordin, N.A.H.M., Hamid, M.F., Ismail, A.F., Rushdan, A.I. and Hassan, S.A., "Polyethyleneimine-impregnated activated carbon nanofiber composited graphene-derived rice husk char for efficient post-combustion CO2 capture", Nanotechnology Reviews, Vol. 11, No. 1, (2022), 926-944. https://doi.org/10.1515/ntrev-2022-0055
  2. A. Brunettia, F.S., G. Barbieria, E. Driolia,b, "Membrane technologies for CO2 separation", Journal of Membrane Science, Vol. 359, No. 1-2, (2010), 115-125. https://doi.org/10.1016/j.memsci.2009.11.040
  3. Aghanezhad, M., Shafaghat, R., Alamian, R., Seyedi, S.M.A. and Raji Asadabadi, M.J., "Experimental study on performance assessment of hydraulic power take-off system in centipede wave energy converter considering caspian sea wave characteristics", International Journal of Engineering, Transactions B: Applications, Vol. 35, No. 5, (2022), 883-899. https://doi.org/10.5829/ije.2022.35.05b.17
  4. Jahanbakhsh, A., Hosseini, M., Jahanshahi, M. and Amiri, A., "Extraction of catechin as a flavonoid compound via molecularly imprinted polymers", International Journal of Engineering, Transactions B: Applications, Vol. 35, No. 5, (2022), 988-995. https://doi.org/10.5829/ije.2022.35.08b.05
  5. Mirhosseini, N., Davarnejad, R., Hallajisani, A., Cano-europa, E. and Tavakoli, O., "Sugarcane molasses as a cost-effective carbon source on arthrospira maxima growth by taguchi technique", International Journal of Engineering, Transactions C: Aspects, Vol. 35, No. 3, (2022), 510-516. https://doi.org/10.5829/ije.2022.35.03C.13
  6. Lin, H., Freeman, B.D., Kalakkunnath, S. and Kalika, D.S., "Effect of copolymer composition, temperature, and carbon dioxide fugacity on pure-and mixed-gas permeability in poly (ethylene glycol)-based materials: Free volume interpretation", Journal of Membrane Science, Vol. 291, No. 1-2, (2007), 131-139. https://doi.org/10.1016/j.memsci.2007.01.001
  7. Sheth, J.P., Xu, J. and Wilkes, G.L., "Solid state structure–property behavior of semicrystalline poly(ether-block-amide) pebax® thermoplastic elastomers", Polymer, Vol. 44, No. 3, (2003), 743-756. https://doi.org/10.1016/S0032-3861(02)00798-X
  8. Robeson, L.M., "The upper bound revisited", Journal of Membrane Science, Vol. 320, No. 1-2, (2008), 390-400. https://doi.org/10.1016/j.memsci.2008.04.030
  9. Kianfar, F. and Kianfar, E., "Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening", Journal of Inorganic and Organometallic Polymers and Materials, Vol. 29, No. 6, (2019), 2176-2185. https://doi.org/10.1007/s10904-019-01177-1
  10. Kianfar, E., Salimi, M., Kianfar, F., Kianfar, M. and Razavikia, S.A.H., " CO2/N2 separation using polyvinyl chloride iso-phthalic acid/aluminium nitrate nanocomposite membrane", Macromolecular Research, Vol. 27, No. 1, (2019), 83-89. https://doi.org/10.1007/s13233-019-7009-4
  11. Salimi, M., Pirouzfar, V. and Kianfar, E., "Novel nanocomposite membranes prepared with pvc/abs and silica nanoparticles for C2H6/CH4 separation", Polymer Science, Series A, Vol. 59, No. 4, (2017), 566-574. https://doi.org/10.1134/S0965545X17040071
  12. Embaye, A.S., Martínez-Izquierdo, L., Malankowska, M., Téllez, C. and Coronas, J., "Poly(ether-block-amide) copolymer membranes in CO2 separation applications", Energy & Fuels, Vol. 35, No. 21, (2021), 17085-17102. https://doi.org/10.1021/acs.energyfuels.1c01638
  13. Salimi, M., Pirouzfar, V. and Kianfar, E., "Enhanced gas transport properties in silica nanoparticle filler-polystyrene nanocomposite membranes", Colloid and Polymer Science, Vol. 295, No. 1, (2017), 215-226. https://doi.org/10.1007/s00396-016-3998-0
  14. Padhi, P., Rout, S. and Panda, D., "Effect of modification of zeolite a using sodium carboxymethylcellulose (CMC)", Bulgarian Chemical Communications, Vol. 46, No.4, (2014), 777-783.
  15. Shariatzadeh, S.M.R., Salimi, M., Fathinejad, H. and Hassani Joshaghani, A., "Nanostructured α-Fe2O3: Solvothermal synthesis, characterization, and effect of synthesis parameters on structural properties", International Journal of Engineering, Transactions C: Aspects, Vol. 35, No. 6, (2022), 1186-1192. https://doi.org/10.5829/ije.2022.35.06c.10
  16. Andami, P., Zinatizadeh, A.A., Feyzi, M., Zangeneh, H., Azizi, S., Norouzi, L. and Maaza, M., "Optimization of biodiesel production from sunflower oil transesterification using Ca-k/Al2O3 nanocatalysts", International Journal of Engineering, Transactions B: Applications, Vol. 35, No. 2, (2022), 351-359. https://doi.org/10.5829/ije.2022.35.02b.11
  17. Ahmad, J. and Hägg, M.-B., "Preparation and characterization of polyvinyl acetate/zeolite 4a mixed matrix membrane for gas separation", Journal of Membrane Science, Vol. 427, (2013), 73-84. https://doi.org/10.1016/j.memsci.2012.09.036
  18. Chung, T.-S., Jiang, L.Y., Li, Y. and Kulprathipanja, S., "Mixed matrix membranes (MMMS) comprising organic polymers with dispersed inorganic fillers for gas separation", Progress in Polymer Science, Vol. 32, No. 4, (2007), 483-507. https://doi.org/10.1016/j.progpolymsci.2007.01.008
  19. Saeedi Dehaghani, A.H. and Pirouzfar, V., "Preparation of high‐performance membranes derived from poly (4‐methyl‐1‐pentene)/zinc oxide particles", Chemical Engineering & Technology, Vol. 40, No. 9, (2017), 1693-1701. https://doi.org/10.1002/ceat.201600693
  20. Suhas, D.P., Aminabhavi, T.M. and Raghu, A.V., "Para-toluene sulfonic acid treated clay loaded sodium alginate membranes for enhanced pervaporative dehydration of isopropanol", Applied Clay Science, Vol. 101, (2014), 419-429. https://doi.org/10.1016/j.clay.2014.08.017
  21. Dharupaneedi, S.P., Anjanapura, R.V., Han, J.M. and Aminabhavi, T.M., "Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation", Industrial & Engineering Chemistry Research, Vol. 53, No. 37, (2014), 14474-14484. https://doi.org/10.1021/ie502751h
  22. Kianfar, E., Pirouzfar, V. and Sakhaeinia, H., "An experimental study on absorption/stripping CO2 using mono-ethanol amine hollow fiber membrane contactor", Journal of the Taiwan Institute of Chemical Engineers, Vol. 80, (2017), 954-962. https://doi.org/10.1016/j.jtice.2017.08.017
  23. Saeedi Dehaghani, A.H., Pirouzfar, V. and Alihosseini, A., "Novel nanocomposite membranes-derived poly(4-methyl-1-pentene)/functionalized titanium dioxide to improve the gases transport properties and separation performance", Polymer Bulletin, Vol. 77, No. 12, (2020), 6467-6489. https://doi.org/10.1016/j.jtice.2017.08.017
  24. Cheng, J., Wang, Y., Liu, N., Hou, W. and Zhou, J., "Enhanced CO2 selectivity of mixed matrix membranes with carbonized zn/co zeolitic imidazolate frameworks", Applied Energy, Vol. 272, (2020), 115179. https://doi.org/10.1016/j.apenergy.2020.115179
  25. Asghari, M., Mosadegh, M. and Harami, H.R., "Supported peba-zeolite 13x nano-composite membranes for gas separation: Preparation, characterization and molecular dynamics simulation", Chemical Engineering Science, Vol. 187, (2018), 67-78. https://doi.org/10.1016/j.apenergy.2020.115179
  26. Atash Jameh, A., Mohammadi, T. and Bakhtiari, O., "Preparation of pebax-1074/modified zif-8 nanoparticles mixed matrix membranes for CO2 removal from natural gas", Separation and Purification Technology, Vol. 231, (2020), 115900. https://doi.org/10.1016/j.seppur.2019.115900
  27. Azizi, N., Mohammadi, T. and Behbahani, R.M., "Synthesis of a pebax-1074/zno nanocomposite membrane with improved CO2 separation performance", Journal of Energy Chemistry, Vol. 26, No. 3, (2017), 454-465. https://doi.org/10.1016/j.seppur.2019.115900
  28. Azizi, N., Isanejad, M., Mohammadi, T. and Behbahani, R.M., "Effect of tio2 loading on the morphology and CO2/ CH4 separation performance of pebax-based membranes", Frontiers of Chemical Science and Engineering, Vol. 13, No. 3, (2019), 517-530. https://doi.org/10.1016/j.seppur.2019.115900
  29. Deng, J., Dai, Z. and Deng, L., "Effects of the morphology of the zif on the CO2 separation performance of mmms", Industrial & Engineering Chemistry Research, Vol. 59, No. 32, (2020), 14458-14466. https://doi.org/10.1021/acs.iecr.0c01946
  30. Farashi, Z., Azizi, S., Arzhandi, M.R.-D., Noroozi, Z. and Azizi, N., "Improving CO2/ CH4 separation efficiency of pebax-1657 membrane by adding Al2O3 nanoparticles in its matrix", Journal of Natural Gas Science and Engineering, Vol. 72, No., (2019), 103019. https://doi.org/10.1016/j.jngse.2019.103019
  31. Jomekian, A., Behbahani, R.M., Mohammadi, T. and Kargari, A., "CO2/ CH4 separation by high performance co-casted zif-8/pebax 1657/pes mixed matrix membrane", Journal of Natural Gas Science and Engineering, Vol. 31, (2016), 562-574. https://doi.org/10.1016/j.jngse.2016.03.067
  32. Karamouz, F., Maghsoudi, H. and Yegani, R., "Synthesis of high‐performance pebax®‐1074/dd3r mixed‐matrix membranes for CO2/ CH4 separation", Chemical Engineering & Technology, Vol. 41, No. 9, (2018), 1767-1775. https://doi.org/10.1002/ceat.201800087
  33. Khoshkharam, A., Azizi, N., Behbahani, R.M. and Ghayyem, M.A., "Separation of CO2 from CH4 using a synthesized pebax-1657/zif-7 mixed matrix membrane", Petroleum Science and Technology, Vol. 35, No. 7, (2017), 667-673. https://doi.org/10.1080/10916466.2016.1273242
  34. Khosravi, T., Omidkhah, M., Kaliaguine, S. and Rodrigue, D., "Amine‐functionalized cubtc/poly (ether‐b‐amide‐6)(pebax® mh 1657) mixed matrix membranes for CO2/ CH4 separation", The Canadian Journal of Chemical Engineering, Vol. 95, No. 10, (2017), 2024-2033. https://doi.org/10.1002/cjce.22857
  35. Li, T., Pan, Y., Peinemann, K.-V. and Lai, Z., "Carbon dioxide selective mixed matrix composite membrane containing zif-7 nano-fillers", Journal of Membrane Science, Vol. 425, (2013), 235-242. https://doi.org/10.1002/cjce.22857
  36. Zheng, Y., Wu, Y., Zhang, B. and Wang, Z., "Preparation and characterization of CO2‐selective pebax/nay mixed matrix membranes", Journal of Applied Polymer Science, Vol. 137, No. 9, (2020), 48398. https://doi.org/10.1002/cjce.22857
  37. Zarshenas, K., Raisi, A. and Aroujalian, A., "Mixed matrix membrane of nano-zeolite nax/poly (ether-block-amide) for gas separation applications", Journal of Membrane Science, Vol. 510, (2016), 270-283. https://doi.org/10.1002/cjce.22857
  38. Nafisi, V. and Hägg, M.-B., "Development of dual layer of zif-8/pebax-2533 mixed matrix membrane for CO2 capture", Journal of Membrane Science, Vol. 459, (2014), 244-255. https://doi.org/10.1002/cjce.22857
  39. Hosseinzadeh Beiragh, H., Omidkhah, M., Abedini, R., Khosravi, T. and Pakseresht, S., "Synthesis and characterization of poly (ether-block-amide) mixed matrix membranes incorporated by nanoporous zsm-5 particles for CO2/ch4 separation", Asia-Pacific Journal of Chemical Engineering, Vol. 11, No. 4, (2016), 522-532. https://doi.org/10.1002/cjce.22857
  40. mousavian, S., Faravar, P., Zarei, Z., azimikia, R., Ghasemi Monjezi, M. and kianfar, E., "Modeling and simulation absorption of CO2 using hollow fiber membranes (HFM) with mono-ethanol amine with computational fluid dynamics", Journal of Environmental Chemical Engineering, Vol. 8, No. 4, (2020), 103946. https://doi.org/10.1016/j.jece.2020.103946
  41. Kianfar, E. and Cao, V., "Polymeric membranes on base of polymethyl methacrylate for air separation: A review", Journal of Materials Research and Technology, Vol. 10, (2021), 1437-1461. https://doi.org/10.1016/j.jmrt.2020.12.061
  42. Kianfar, E., Pirouzfar, V. and Sakhaeinia, H., "An experimental study on absorption/stripping CO2 using mono-ethanol amine hollow fiber membrane contactor", Journal of the Taiwan Institute of Chemical Engineers, Vol. 80, No., (2017), 954-962. https://doi.org/10.1016/j.jtice.2017.08.017
  43. Khoramzadeh, E., Mofarahi, M. and Lee, C.-H., "Equilibrium adsorption study of CO2 and N2 on synthesized zeolites 13x, 4a, 5a, and beta", Journal of Chemical & Engineering Data, Vol. 64, No. 12, (2019), 5648-5664. https://doi.org/10.1021/acs.jced.9b00690
  44. Surya Murali, R., Ismail, A.F., Rahman, M.A. and Sridhar, S., "Mixed matrix membranes of pebax-1657 loaded with 4a zeolite for gaseous separations", Separation and Purification Technology, Vol. 129, (2014), 1-8. https://doi.org/10.1016/j.seppur.2014.03.017
  45. Zou, W., Bai, H., Zhao, L., Li, K. and Han, R., "Characterization and properties of zeolite as adsorbent for removal of uranium(vi) from solution in fixed bed column", Journal of Radioanalytical and Nuclear Chemistry, Vol. 288, No. 3, (2011), 779-788. https://doi.org/10.1016/j.seppur.2014.03.017
  46. Castillo, J.M., Silvestre-Albero, J., Rodriguez-Reinoso, F., Vlugt, T.J. and Calero, S., "Water adsorption in hydrophilic zeolites: Experiment and simulation", Physical Chemistry Chemical Physics, Vol. 15, No. 40, (2013), 17374-17382.
  47. Azizi, N., Isanejad, M., Mohammadi, T. and Behbahani, R.M., "Effect of TiO2 loading on the morphology and CO2/ CH4 separation performance of pebax-based membranes", Frontiers of Chemical Science and Engineering, Vol. 13, No. 3, (2019), 517-530. https://doi.org/10.1007/s11705-018-1781-0
  48. Basu, S., Cano-Odena, A. and Vankelecom, I.F.J., "Mof-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations", Separation and Purification Technology, Vol. 81, No. 1, (2011), 31-40. https://doi.org/10.1016/j.seppur.2011.06.037
  49. Sridhar, S., Suryamurali, R., Smitha, B. and Aminabhavi, T.M., "Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 297, No. 1, (2007), 267-274. https://doi.org/10.1016/j.colsurfa.2006.10.054
  50. Saeedi Dehaghani, A.H., Pirouzfar, V. and Alihosseini, A., "Novel nanocomposite membranes-derived poly(4-methyl-1-pentene)/functionalized titanium dioxide to improve the gases transport properties and separation performance", Polymer Bulletin, Vol. 77, No. 12, (2020), 6467-6489. https://doi.org/10.1016/j.colsurfa.2006.10.054
  51. Rahman, M.M., Shishatskiy, S., Abetz, C., Georgopanos, P., Neumann, S., Khan, M.M., Filiz, V. and Abetz, V., "Influence of temperature upon properties of tailor-made pebax® mh 1657 nanocomposite membranes for post-combustion CO2 capture", Journal of Membrane Science, Vol. 469, (2014), 344-354. https://doi.org/10.1016/j.memsci.2014.06.048