Design and Simulation of a Novel Hetero-junction Bipolar Transistor with Gate-Controlled Current Gain

Document Type : Original Article

Authors

Electrical Engineering Department, Shahrood University of Technology, Shahrood, Iran

Abstract

A new structure for SiGe Hetero-junction Bipolar transistor (HBT) is designed and simulated using Silvaco simulator. The considered extra terminal gives the ability to control the transistor's current gain. By applying voltage to the gate terminal, the base effective width would be controlled. Decrement of the Base width yields to the carrier recombination rate reduction, let the emitted electrons to have higher chance to reach the collector. Considering extra terminal have two approaches. One is to improve the current gain of the transistor by applying a constant voltage to the gate and the other is to modify the characteristics of the transistor in such a way that the current gain became optimized. The current gain of the transistor without any gate voltage is about 50V, which increases to 750 for high and 50,000 for low collector currents with the gate voltage variation consideration. In addition, our final proposed gate-controlled HBT with a large gate over the base and collector has the breakdown voltage of 8V and the cut-off frequency of about 11 GHz. The maximum FoM of 1200 is achieved using the proposed structure.

Keywords

Main Subjects


  1. Hashimoto T., Nonaka Y., Tominari T., Fujiwara H., Tokunaga K., Arai M., Wada S., Udo T., Seto M., Miura M. and Shimamoto H., “Direction to improve SiGe BiCMOS Technology featureing 200-GHz SiGe HBT and 80-nm GAT CMOS” in IEEE International Electron Devices Meeting (2003), 5.5.1-5.5.4. DOI: 1109/IEDM.2003.1269182.
  2. Karimi G. R. and Shirazi S. G., "Ballistic (n, 0) Carbon Nanotube Field Effect Transistors\' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2", International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 4, (2017), 516-522, DOI: 5829/idosi.ije.2017.30.04a.09.
  3. Dixit A. and Gupta N., "A Compact Model of Gate Capacitance in Ballistic Gate-All-Around Carbon Nanotube Field Effect Transistors", International Journal of Engineering, Transactions A: Basics, Vol. 34, No. 7, (2021), 1718-1724, DOI: 5829/IJE.2021.34.07A.16.
  4. Chakrabarty R., Roy S., Pathak T., and Kumar Mandal M., "Design of Area Efficient Single Bit Comparator Circuit using Quantum dot Cellular Automata and its Digital Logic Gates Realization", International Journal of Engineering, Transactions C: Aspects, Vol. 34, No. 12, (2021), 2672-2678, DOI: 10.5829/ije.2021.34.12c.13.
  5. FreemanJagannathan B., Shwu-Jen J.,Jae-Sung R., Stricker  A. D., Ahlgren. D. C. and Subbanna S., "Transistor design and application considerations for> 200-GHz SiGe HBTs", IEEE Transactions on Electron Devices, Vol. 50, No. 3, (2003), 645-655, DOI: 10.1109/TED.2003.810467.
  6. Washio K., "SiGe HBT and BiCMOS technologies for optical transmission and wireless communication systems", IEEE Transactions on Electron Devices, Vol. 50, No. 3, (2003), 656-668, DOI: 1109/TED.2003.810484.
  7. Zhixin, Deen M. J. and Malhi D. S., "Gate-Controlled Lateral PNP BJT: Characteristics, Modeling and Circuit Applications", IEEE Transactions on Electron Devices, Vol. 44, No. 1, (1997), 118-128, DOI: 10.1109/16.555443.
  8. Hosseini E. and Goodarzi Dehrizi H., "A new BJT-transistor with ability of controlling current gain", in International Multi-Conference on Systems, Signals & Devices (2012), 1-4, DOI: 10.1109/SSD.2012.6198085.
  9. Huang T.-H. and Chen. M.-J., “Empirical modelling for Gate-controlled Collector current of lateral bipolar transistors in an n-MOSFET structure”, Solid-state Electronics, Vol. 38, No. 1, (1995), 115-119, DOI: 1016/0038-1101(94)E0037-F.
  10. Fregonese, Avenier G., Maneux C., Chantre A. and Zimmer T., "A Compact Model for SiGe HBT on Thin-Film SOI", IEEE Transactions on Electron Devices, Vol. 53, No. 2, (2006), 296-303, DOI: 10.1109/TED.2005.862237.
  11. Sun -S., Tung M., Ng W., Kanekiyo K, Kobayashi T., Mochizuki H., Toita M., Imai H., Ishikawa A., Tamura S., and Takasuka K., "Lateral High-Speed Bipolar Transistors on SOI for RF SoC Applications," IEEE Transactions on Electron Devices, Vol. 52, No. 7, (2005), 1376-1382, DOI: 10.1109/TED.2005.850676.
  12. Matsuzawa A., "RF-SoC-Expectations and Required Conditions", IEEE Transactions on Microwave Theory and Technology, Vol. 50, No. 1, (2002), 245-253, DOI: 1109/22.981277.
  13. Rodder M., and Antoniadis. D A, “Silicon-on-insulator bipolar transistors”, IEEE Electron Device Letters, Vol. 4, No. 6, (1983), 193-195, DOI: 1109/EDL.1983.25701.
  14. Shahidi G., Tang D. D., Davari B., Taur Y., McFarland P., Jenkins K., Danner D., Rodriguez M., Megdanis A., Petrillo E., Polcari M. and Ning T. H., “A novel high-performance lateral bipolar on SOI”, in International Electron Devices Meeting (1991), 663-666, DOI: 10.1109/IEDM.1991.235335.
  15. Li, Yang J., Fleetwood D. M., Liu C., Wei Y., Barnaby H. J. and Galloway K. F., “Hydrogen soaking, displacement damage effects, and charge yield in Gated lateral bipolar junction transistors”, IEEE Transactions on Nuclear Science, Vol. 65, No. 6, (2018), 1271-1276, DOI: 10.1109/TNS.2018.2837032.
  16. Sturm C., McVittie J. P., Gibbons J. F. and Pfeiffer L., “A lateral silicon-on-insulator bipolar transistor with a selfaligned Base contact”, IEEE Electron Device Letters, Vol. 8, No. 3, (1987), 104-106, DOI: 10.1109/EDL.1987.26567.
  17. Jin, Zhao X., Zhang W., Wang X., Hu R. and Fu O., "Novel superjunction Collector power SiGe HBTs with high thermal stability" in 12th IEEE International Conference on Solid-State and Integrated Circuit Technology, (2014), 1-3, DOI: 10.1109/ICSICT.2014.7021540.
  18. Verdonckt-Vandebroek, Wong S. S., Woo J. C. S., and Ko P. K., “High-gain lateral bipolar action in a MOSFET structure”, IEEE Transactions on Electron Devices, Vol. 38, No.11, (1991), 2487-2496, DOI: 10.1109/16.97413.
  19. Chen M., Fang Y. K., Yeh W. K., Lee I. C. and Chiang Y. T., “A high current gain Gate-controlled lateral bipolar junction transistor with 90 nm CMOS technology for future RF SoC applications”, Solid-State Electronics, Vol. 52, No. 8, (2008), 1140-1144, DOI: 10.1016/j.sse.2008.06.003.
  20. Wang, Chen W., Jin X., Liu Y. and Yang. S., “Dependence on Base width and doping concentration of current degradation in Gate-controlled lateral pnp bipolar transistors exposed to reactor neutrons and gamma rays”, Energy Procedia, Vol. 127, (2017), 110-119, 10.1016/j.egypro.2017.08.119.
  21. Homayoni, Hosseini S. E. and Baedi J., "A high gain lateral BJT on thin film silicon substrate", in IEEE International Conference of Electron Devices and Solid-State Circuits, (2009), 278-281, DOI: 10.1109/EDSSC.2009.5394267.
  22. Wen, Wei J., Song Q., Wang G., Zhou C., Wang W., "Design and Simulation of Strained Si/SiGe HBT Architecture with Uniaxially-stressed Collector" in International Symposium on Devices, Circuits and Systems (2021), 1-4, DOI: 10.1109/ISDCS52006.2021.9397921.
  23. Jena R., Panda A. K. and Dash G. N., "Cap-layer and charge sheet effect in InP based pnp δ-doped heterojunction bipolar transistor", Microsystem Technologies, Vol. 27, No. 11, (2021), 4035-4040, DOI: 10.1007/s00542-020-04764-2.