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A B S T R A C T  
 

 

Oil spills in the seas and oceans cause pollution and have many destructive environmental effects. The 
diffusion (parabolic) equations are the most reasonable option to model the propagation of this leakage 

and contamination. These equations allow statistics regarding the amount of oil that has outreached the 

ocean outlet, to be used as initial and boundary conditions for a mathematical model of oil diffusion and 
alteration in seas. As it involves the hyperbolic (advection/wave) component of the equation, the most 

reasonable choices are diffusion and Allen–Cahn (AC) equations, which are difficult to solve 

numerically. Equations of diffusion and Allen-Cahn were solved with different degrees of fractional 
derivatives (α= 0.25, α=0.5, α=0.75 and α=0.75), and the oil pollution concentration was obtained at a 

specific time and place. This study adopts the homotopy perturbation method (HPM) for nonlinear 

Allen–Cahn (AC) equation and time fractional diffusion equation to express oil pollution in the water. 

Fractional derivatives are portrayed in the sense of Caputo. Two presented examples illustrate the 

applicability and validity of the proposed method. Pollution concentrations in flow field over an interval 

of time and space for different degrees of fractional derivation are shown. At lower fraction derivative 
degrees, the pollution concentration behavior is nonlinear, and as the degree of fraction derivation 

increases to one, the nonlinear behavior of the pollution concentration decreases. The results produced 

by the suggested technique compared to the exact solutions shows that it is efficient and convenient; it 
is also reduces computational time. 

doi: 10.5829/ije.2022.35.12c.15 
 

 
1. INTRODUCTION1 
 
The release of liquid hydrocarbons into the ocean is 

called oil pollution. Humanity releases oil from without 

refining, tankers and carries out engineering actions, 

including piping, drilling and offshore rigs. These 

activities have catastrophic effects on the environment 

and the biology of marine life and lead to hazardous 

consequences. Therefore, the extent of the oil spill is 

essential for reciprocity. In this way, the natural 

ecosystem of the coastline is preserved. Also, a 

catastrophe is prevented in the early stages. 

The area of spillage could be anticipated according to 

the governing equations of the fluid flow and the mass 

transfer phenomenon. The boundary and initial 
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conditions for the a calculation for diffusion of oil and 

change at sea can be deduced from the statistics of the the 

volume of oil that reaches the ocean outlet. The diffusion 

(parabolic) equations are the most reasonable option to 

model the propagation of this leakage and contamination. 

These equations allow statistics regarding the amount of 

oil that has outreached the ocean outlet, to be used as 

initial and boundary conditions for a mathematical model 

of oil diffusion and alteration in seas. Since it includes a 

hyperbolic section of the equation, the best options are 

the Allen Kahn (AC) and diffusion equations, which are 

challenging to solve mathematically. Several academics 

have investigated the production of oil and oil spill 

transfer based on the path method over the past three 

decades [1]. This method has been used for river and seas 
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[2, 3] and lake systems [4-6]. Allen Kahn's equation is a 

mathematical model used to analyze the phase separation 

procedure in binary alloys. This equation arises in fluid 

dynamics as a convection-diffusion equation and 

materials science as a reaction-diffusion equation. When 

a substance changes its composition or form, phase 

transfer occurs at the interface. It is a straightforward 

model of the nonlinear reaction propagation 

methodology. Often employed to pinnacle interface 

move over time, phase separation in alloys over time is 

used in different fields, integrating image processing, 

geology, biology, bio-fluid and materials science. 

Sutantyo et al. [7] investigated the dynamics of the 

modified PB DNA model by considering DNA in the 

Nosé-Hoover thermostat as a bio-fluid with various 

viscosities. In their study, viscosity variations are 

reviewed through temperature variations, namely thermal 

viscosity. They obtained the dynamical equation of DNA 

in the form of a nonlinear Schrödinger-like (NLS-like) 

equation by using the perturbation method and 

continuous approximation. Hariharan et al. [8] presented 

a Wavelet-based equivalence approach for cracking the 

equations for Allen-Cahn and Newell-Whitehead. The 

differential equation, the largest derivative was 

developed into the sequence of Legendre; this 

approximate is merged even though the boundary 

conditions used employing integration constants. They 

confirmed the conjunction of the suggested techniques. 

Ultimately, they have provided some numerical instances 

to verify the reality and relevance of the procedure. 

Javeed et al. [9] examine the latest exact resolutions of 

nonlinear fractional partial differential equations 

(FPDEs). The proposed technique is readily helpful and 

applicable, which can be executed successfully to solve 

various kinds of nonlinear FPDEs. Yin and Zhengyuan 

[10] supposed a rapid algorithm and assumed three 

numerical illustrations with non-smooth and smooth 

outcomes. They show the computational efficiency in 

cracking nonlinear PDEs, from which it is 

straightforward to see that the computing duration could 

be preserved. In another research, concentrating on 

suggesting and exploring a method for Allen-Cahn 

equations has been accomplished. They studied the 

conjunction of iterative answers. Numerical 

examinations were given to prove their submitted 

procedure. 

Furthermore, it is indicated that when compared to 

standard finite difference iterative methods, iterative 

processes with extremely rare unknowns have 

substantially shorter computation times [11]. Khalid et al. 

[12] introduced a collocation technique established on 

redefined cubic formulation using finite differences and 

functions to analyze the inaccurate time-fractional Allen–

Cahn equation explanation. They examined the 

computational efficiency of the offered approach via 

some numerical samples. The simulation outcomes 

exhibit a definitive accord with the exact solution 

corresponding to those seen in the publications. In 

another study, Olshansky et al. [13] investigated an 

Allen–Cahn equation expressed on a surface that changes 

with time as a phase separation example with order-

disorder evolution in a slim layer. A standard inner-outer 

expansion indicates that the solution's limiting manners 

are a classification flow for the geodesic mean curvature 

in reference coordinates. They showed a fundamental 

stability analysis and conjunction investigation for 

interpolation errors and inaccurate geometry retrieval. 

The diffusion equation has many applications that 

researchers have solved in different methods. Ahmad et 

al. [14] used analytical methods to solve initial value 

issues in ocean engineering and science. They showed 

the accuracy of using a technique by comparing the 

results to an exact solution. Patel et al. [15] approached 

Fractional Reduced Differential Method to solve the 

diffusion equation in water pollution. They proved 

FRDTM gives fast convergence and provides highly 

accurate numerical results. Lin et al. [16] simulated air 

pollution diffusion to analyze industrial places. They 

investigated industrial parks in Taiwan from 2017 to 

2019. The results will aid in managing the dangers of air 

pollution for the petrochemical sector and public health 

authorities. Moraga et al. [17] studied the SIMPLER 

algorithm's diffusion problem in fluid flow. The results 

exhibit that the suggested algorithm has significant 

advances in reducing the number of iterations and 

computation time. Yan et al. [18] presented the analytical 

model for thermal diffusion in porous media. They assess 

the significance of the Soret impact and temperature 

dependent diffusion coefficient on non-isothermal 

diffusion. Hayat et al. [19] considered the 

thermodiffusion in unsteady magnetohydrodynamic with 

first order chemical reaction. They showed that compared 

to radiation and magnetic factors, heat transfer speed is 

increased. The semi-analytical approach can be utilized 

to solve the equations governing fluid flow [8, 20, 21] 

and mass transfer problems. Many researchers have used 

semi-analytical methods to solve various engineering 

problems in heat transfer [22-25] and heat pumps [26-

28]. One of the essential advantages of these methods is 

saving time, high accuracy, and proper convergence. 

The diffusion equation is a parabolic one; fluid flow 

depicts the visible behavior of numerous micro-particles 

in Brownian movement, coming about from the irregular 

developments and collisions of the particles (Figure 1). A 

diffusion process is a solution to a stochastic differential 

equation in probability theory and statistics. The 

molecule's position is at that point irregular; an 

advection-diffusion condition represents its likelihood 

thickness work as a work of space and time. 

The real-world phenomenon has been governed by 

PDEs of integer order which cannot be adequately 

described. Additionally, no method gives an exact  
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Figure 1. Scheme of diffusion trend in the water 

 

 

solution for the fractional-order differential equation. 

Hence, nonlinear PDEs of fractional order make the 

research more significant. Therefore, in this paper, we 

have applied HPM an efficient and robust method to find 

the solutions to the time-fractional diffusion equation and  

Cahn–Allen equation arising in oil pollution. The novelty 

of our work is that it provides an accurate prediction of 

the behavior of oil and is vitally important to preserve the 

natural shoreline environmental system. Moreover, this 

method can also be applied to derive various traveling 

wave solutions with distinct physical structures for 

nonlinear fractional equations arising in ocean 

engineering for examining nonlinear behavior due to 

water waves. Equations of diffusion and Allen-Cahn 

were solved with different degrees of fractional 

derivatives (α= 0.25, α=0.5, α=0.75 and α=0.75), and the 

oil pollution concentration was obtained at a specific time 

and place.  

This study consists of five sections: In the first 

section, the topic and literature are discussed. In section 

two, time-Fractional diffusion is defined in both 

Riemann-Liouville and Caputo definitions. Also, we 

provide a review of the HPM and its application in 

section three and two presented examples illustrate the 

applicability and validity of the proposed method in 

section four. Finally, section five is the conclusion. 
 
 

2. TIME-FRACTIONAL DIFFUSION 
 

A fractional derivative of order α > 0 is defined in many 

ways [29-31]. The Riemann-Liouville and Caputo 

definitions are the two that are the most frequently 

employed. Each definition makes use of whole-order 

derivatives and Riemann-Liouville fractional integration. 

In the sense of Caputo the best definitions of fractional 

derivatives are compiled in this section (CFD). The 

general diffusion equation with nonlinearity will be taken 

into account to describe oil contamination in the oceans, 

and its form is stated as follows [14]: 

𝜕𝜓

𝜕𝑡
= 𝐷

𝜕2𝜓

𝜕𝑥2 + 𝛽𝜓 + 𝛾𝜓𝑚  (1) 

where D is the diffusion coefficient, C is the 

concentration, β and γ are real values and ψ is 

concentration. An example of a diffusion equation is the 

Allen-Cahn (AC) equation, which is created: 

Substitution → m = 3, γ = −1 , β = 1 in Equation (1). 

2. 1. Interpretation (Fractional derivative in the sense 

of Caputo)                If  f  be an integrable continual 

operation in (a, b) for t ∈ [a, b] then, the left and right 

Caputo fractional derivatives are 𝐷 𝑡
𝛼𝑓(𝑡)𝛼

𝐶  and 𝐷 𝑏
𝛼𝑓(𝑡)𝑡

𝐶  

respectively, of order α, are characterized within the 

following way: 
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2. 2. Interpretation (Fractional derivative in the sense 

of Riemann-Liouville)          If 𝑓 be an integrable continual 

operation in the interval (𝑎, 𝑏) for 𝑡 ∈ [𝑎, 𝑏] then, the 

right and left Riemann-Liouville fractional derivatives 

are 𝐷 𝑏
𝛼𝑓(𝑡)𝑡

  and 𝐷 𝑡
𝛼𝑓(𝑡)𝛼

  respectively of order α, 

are characterized by Equations (4) and (5):  
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= − − 
 −  


 

(5) 

where 𝑛 ∈ 𝑁, 𝑛 − 1 ≤ 𝛼 < 𝑛 and 𝛤 is the Euler Gamma 

Function. 

In both definitions, if α ∈ N,  give the classical 

derivatives, and the A constant's Caputo fractional 

derivative is always equal to zero. 

 

 

3. HOMOTOPY PERTURBATION METHOD 
 

We will provide a review of the HPM in this part. 

Numerous records provide information on the HPM's 

concepts and their applicability to numerous types of 

differential equations [22, 24, 32]. Consider the nonlinear 

differential equation.  

We look at the following equation to demonstrate the 

fundamental concepts behind this approach: 

( ) ( ) 0.X u z r− =
      r  (6) 

Having a boundary condition: 

( , ) 0.
u

Y u
n


=

            r  

(7) 

z(r) is a well-known analytical function, X is a generic 

differential operator, Y is a boundary operator and   is 

the domain boundary of   and L is linear and N is 

nonlinear, can be used to split the variable X. Therefore, 

Equation (10) may be expressed as follows: 

( ) ( ) ( ) 0.N u L u z r+ − =
     r  (8) 
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The following is a diagram of the homotopy perturbation 

structure: 

0
( , ) (1 )[ ( ) ( )] [ ( ) ( )] 0.H v p p L v L u p X v z r= − − + − =

 
(9) 

And: 

( , ) : [0,1]v r p R →
 (10) 

𝑝 ∈ [0,1] is a parameter of embedding and 𝑢0 is the 

initial approximation that meets the boundary 

requirement. Equation (11)'s answer can be expressed as 

a power series in p, as shown below:  

2

0 1 2
...v v pv p v= + + +

 
(11) 

The following approximates the answer to the question: 

1 0 1 2
lim ...

p
u v v v v

→
= = + + +

 
(12) 

 

3. 1. Application of HPM             To obtain the behavior 

of the Allen-Cahn condition and the dissemination 

condition. 
• Time–fractional diffusion equation 

𝜕𝛼𝜓

𝜕𝑡𝛼 =
𝜕2𝜓

𝜕𝑥2 + cos 𝑥  (13) 

• The Allen-Cahn equation with time fractions 

𝜕𝛼𝜓

𝜕𝑡𝛼 =
𝜕2𝜓

𝜕𝑥2 + 𝜓 − 𝜓3  (14) 

In this paper, the research methodology flowchart is 

shown in Figure 2. Problem identification is actually 

seeing the problem before trying to solve it. In other 

word, it is a first strategy in solving a problem.  

Numerical solution involves solving the equation by the 

HPM method, which, if solved, the answer will be 

validated by the exact solution following literature [14]. 

This process is repeated until an accurate answer is 

reached. 
 

 

4. INFORMATIVE EXAMPLES 
 

To demonstrate the effectiveness of the Homotopy 

Perturbation Method (HPM), we consider the following 

Fractional Differential Equations (FDEs) in sense of 

Caputo type. All the results were calculated by using the 

symbolic calculus Maple software. Further, the results of 

the hybrid approach are implemented in Maple software. 
 

Example 4.1 

Consider the time-fractional AC Equation (15) and 

having the initial condition as follows [14]: 

𝜕𝛼𝜓

𝜕𝑡𝛼 =
𝜕2𝜓

𝜕𝑥2 + 𝜓 − 𝜓3,     0 < 𝛼 ≤ 1  (15) 

𝜓 (𝑥, 0) =
1

2
 tanh (0.3536𝑥) −  

1

2
 ,  (16) 

 
Figure 2. The research methodology flowchart 

 

 

For α = 1, the exact answer to Equation (15) is [14]. 

𝜓 (𝑥, 0) =
1

2
 tanh (0.3536𝑥 − 0.75𝑡) −

1

2
     (17) 

 

4. 1. 1. Application of HPM               For applying the 

HPM on Equation (15), according to Equation (16) as an 

initial condition, we have 

𝑒𝑞𝑢 ∶= ∫
0.5641895835(

𝜕

𝜕𝑡
𝜓(𝑥,𝜏))

(𝑡−𝜏)0.5

𝑡

0
𝑑𝜏 −

(
𝜕2

𝜕𝑥2 𝜓(𝑥, 𝜏)) − 𝜓(𝑥, 𝜏) + 𝜓(𝑥, 𝜏)3 = 0  
(18) 

For applying the HPM on Equation (15), the homotopy 

form of the fractional differential equation should be 

written. Next, we take into account an approximate 

solution to the issue in terms of the different powers of P 

in series. Equation (26), which successfully merges to the 

precise answer 𝝍 (𝑥, 0) =
1

2
 tanh (0.3536𝑥 − 0.75𝑡) −

1

2
 , provides the analytical approximation of the fractional 

order in time of Equation (15).  

The effects of "t" on the solution of the AC equation 

are depicted in Figures 3 and 4 in accordance with the I.C 

𝝍 (𝑥, 0) =
1

2
+

1

2
 tanh (0.3536𝑥). Figure 5 also includes 

the three-dimensional charts. Figures 3 and 4 show the 

curved nonlinearity is seen for lower amounts of α, but 

that there are less nonlinear developments when is closer 

to 1 (α= 0.25, 0.5, 0.75). The outcomes have been 
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contrasted with the precise answer that is currently 

known for integer-order α= 1. Figures 3 and 4 display the 

variations ψ for various values of α. Figure 3 also 

displays the outcomes for t=0.5, and Figure 4 displays the 

outcomes for t=1. Figure 5 is three-dimensional plot for 

the changes of ψ(x,t) and Figure 6 is Abs. Error graph by 

HPM and MVIA–I [14] for example 1. 

𝜓(𝑥, 𝑡) = 𝜓0(𝑥, 𝑡) + 𝑃𝜓1(𝑥, 𝑡) + 𝑃2𝜓2(𝑥, 𝑡) +
𝑃3𝜓3(𝑥, 𝑡) + 𝑃4𝜓4(𝑥, 𝑡)  

(19) 

𝜕

𝜕𝑡
𝜓0(𝑥, 𝑡) + 𝑃 (

𝜕

𝜕𝑡
𝜓1(𝑥, 𝑡)) + 𝑃2 (

𝜕

𝜕𝑡
𝜓2(𝑥, 𝑡)) +

𝑃3 (
𝜕

𝜕𝑡
𝜓3(𝑥, 𝑡)) + 𝑃4 (

𝜕

𝜕𝑡
𝜓4(𝑥, 𝑡)) =

𝑃 (
𝜕

𝜕𝑡
𝜓0(𝑥, 𝑡) + 𝑃 (

𝜕

𝜕𝑡
𝜓1(𝑥, 𝑡)) +

𝑃2 (
𝜕

𝜕𝑡
𝜓2(𝑥, 𝑡)) + 𝑃3 (

𝜕

𝜕𝑡
𝜓3(𝑥, 𝑡)) +

𝑃4 (
𝜕

𝜕𝑡
𝜓4(𝑥, 𝑡))) −

(∫
0.5641895835(

𝜕

𝜕𝑡
𝜓0(𝑥,𝑡)+𝑃+𝑃2+𝑃3+𝑃4)

(𝑡−𝜏)0.5
𝑑𝜏

𝑡

0
) +

 (
𝜕2

𝜕𝑥2 𝜓0(𝑥, 𝑡) + 𝑃 (
𝜕2

𝜕𝑥2 𝜓1(𝑥, 𝑡)) +

𝑃2 (
𝜕2

𝜕𝑥2 𝜓2(𝑥, 𝑡)) + 𝑃3 (
𝜕2

𝜕𝑥2 𝜓3(𝑥, 𝑡)) +

𝑃4 (
𝜕2

𝜕𝑥2 𝜓4(𝑥, 𝑡))) + 𝑃𝜓1(𝑥, 𝑡) + 𝑃2𝜓2(𝑥, 𝑡) +

𝑃3𝜓3(𝑥, 𝑡) + 𝑃4𝜓4(𝑥, 𝑡) − (𝜓0(𝑥, 𝑡) + 𝑃𝜓1(𝑥, 𝑡) +
𝑃2𝜓2(𝑥, 𝑡) + 𝑃3𝜓3(𝑥, 𝑡) + 𝑃4𝜓4(𝑥, 𝑡)3)  

(20) 

Then, we should define BCs 

𝜓  (𝑥, 0) =
1

2
  tanh  (0.3536𝑥) −

1

2
 ,       (21) 

After substituting initial conditions into Equation (20) 

and we putting P=1 in each equation we have 

𝜓0(𝑥, 𝑡) = −
1

2
+

1

2
tan (

221

625
𝑥)  (22) 

𝜓1(𝑥, 𝑡) =

−
1

3125000

𝑡(103 sinh(
221

625
𝑥))+𝑡(1171875 𝑐𝑜𝑠ℎ(

221

625
𝑥))

𝑐𝑜𝑠ℎ(
221

625
𝑥)

3   
(23) 

𝜓2(𝑥, 𝑡) = −
309

6250000

1

cosh(
221

625
𝑥)

5  (𝑡 ((
781250

103
+

𝑡) cosh (
221

625
𝑥)

3
+ (

2

3
+

686645513117

120703125
𝑡) sinh (

221

625
𝑥) 𝑐𝑜𝑠ℎ (

221

625
𝑥)

2
−

5

4
𝑐𝑜𝑠ℎ (

221

625
𝑥)

 
𝑡 −

390831

1562500
𝑡 sinh (

221

625
𝑥)))  

(24) 

𝜓3(𝑥, 𝑡) =
1

45776367187500000000
  .    

1

𝑐𝑜𝑠ℎ(
221

625
𝑥)

7 ((−6437301784931250000 𝑡3 −

4526367187500000 𝑡2 −

(25) 

17166137695312500000 𝑡) 𝑐𝑜𝑠ℎ (
221

625
𝑥)

5
+

(−1697387699683408 𝑡3 −
25749206741887500000 𝑡2 −

1508789062500000 𝑡) 𝑠𝑖𝑛ℎ (
221

625
𝑥) 𝑐𝑜𝑠ℎ (

221

625
𝑥)

4
+

9657084915679687500𝑡2 (𝑡 +

241406250

412035623069
) 𝑐𝑜𝑠ℎ (

221

625
𝑥)

3
+

3960820003063620 (𝑡 +

183202031250

640909385609
) 𝑠𝑖𝑛ℎ (

221

625
𝑥) 𝑡2 𝑐𝑜𝑠ℎ (

221

625
𝑥)

2
−

368135762890625 𝑐𝑜𝑠ℎ  (
221

625
𝑥)

 
𝑡3 −

566255996392305 𝑠𝑖𝑛ℎ (
221

625
𝑥) 𝑡3)    

After simplifying and solving the problem, we have 

𝜓3(𝑥, 𝑡) = −
1

2
+

1

2
𝑡𝑎𝑛ℎ (

221

625
𝑥) −

1

3125000

𝑡(103 sinh(
221

625
𝑥)+1171875 cosh(

221

625
𝑥))

cosh(
221

625
𝑥)

3 −

309

6250000

1

cosh(
221

625
𝑥)

5 (𝑡 ((
781250

103
+ 𝑡) cosh (

221

625
𝑥)

3
+

(
2

3
+

686645513117

120703125
𝑡) sinh (

221

625
𝑥) cosh (

221

625
𝑥)

2
−

5

4
cosh (

221

625
𝑥) 𝑡 −

390831

1562500
𝑡 sinh (

221

625
𝑥))  

(26) 

 

 

 
Figure 3. The changes of ψ(x,t) to X in different values of α 

in t=0.5 

 

 

 
Figure 4. The changes of ψ(x,t) to X in different values of α 

in t=1 
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TABLE 1. Comparison of absolute errors for different values for Example 1 

x 
t=1 t=0.5 

HPM MVIA–I [14] LLWM [8] ADM [24] HPM MVIA–I [7] LLWM [8] ADM [24] 

-25 1.16529E-10 1.17373E-10 1.18943E-11 1.1644E-11 1.24869E-10 1.25342E-10 6.4747E-12 1.45683E-6 

-15 1.37844E-07 1.38319E-07 2.36636E-9 1.37206E-8 1.47136E-07 1.47721E-07 1.35653E-10 1.23638E-9 

25 1.58218E-10 1.57665E-10 9.84744E-10 4.8392E-10 1.69113E-09 1.68402E-09 7.49924E-10 1.35958E-8 

30 4.60177 E-12 4.59300 E-12 3.57575E-11 1.4096E-11 4.90841E-12 4.90550E-12 2.44443E-10 3.9604E-10 

 
 

 
Figure 5. Three-dimensional plot for the changes of ψ(x,t) 

 

 

 
Figure 6. Abs. error graph by HPM and MVIA–I [14] 

 

 
Example 4.2 

Consider the diffusion Equation (27) and having the 

initial condition as follows [14]: 

𝜕𝛼𝜓

𝜕𝑡𝛼 =
𝜕2𝜓

𝜕𝑥2 + 𝑐𝑜𝑠𝑥,      0 < 𝛼 ≤ 1  (27) 

𝜓(𝑥, 0) = 0  (28) 

For α = 1, there is an accurate solution to Equation (27) 

[7]: 

𝜓(𝑥, 𝑡) = 𝑐𝑜𝑠𝑥 (1 − 𝑒−𝑡)    (29) 

 
4. 2. 1. Application of HPM              For applying the 

homotopy perturbation method on Equation (27), 

according to the Equation (28) as an initial condition, we 

have: 

𝑒𝑞𝑢 ∶= ∫
0.5641895835(

𝜕

𝜕𝑡
𝜓(𝑥,𝜏))

(𝑡−𝜏)0.5

𝑡

0
𝑑𝜏 −

(
𝜕2

𝜕𝑥2 𝜓(𝑥, 𝜏)) − cos (𝑥)  = 0  

(30) 

For applying the HPM on Equation (15), the 

homotopy form of the FDE should be written. The 

problem's approximation is then considered in terms of 

the various powers of P in series. 

𝜓(𝑥, 𝑡) = 𝜓0(𝑥, 𝑡) + 𝑃𝜓1(𝑥, 𝑡) + 𝑃2𝜓2(𝑥, 𝑡) +
𝑃3𝜓3(𝑥, 𝑡)  

(31) 

𝜕

𝜕𝑡
𝜓0(𝑥, 𝑡) + 𝑃 (

𝜕

𝜕𝑡
𝜓1(𝑥, 𝑡)) + 𝑃2 (

𝜕

𝜕𝑡
𝜓2(𝑥, 𝑡)) +

𝑃3 (
𝜕

𝜕𝑡
𝜓3(𝑥, 𝑡)) = 𝑃 (

𝜕

𝜕𝑡
𝜓0(𝑥, 𝑡) +

𝑃 (
𝜕

𝜕𝑡
𝜓1(𝑥, 𝑡)) + 𝑃2 (

𝜕

𝜕𝑡
𝜓2(𝑥, 𝑡)) +

𝑃3 (
𝜕

𝜕𝑡
𝜓3(𝑥, 𝑡))) −

(∫
0.5641895835(

𝜕

𝜕𝑡
𝜓0(𝑥,𝑡)+𝑃+𝑃2+𝑃3)

(𝑡−𝜏)0.5 𝑑𝜏
𝑡

0
) +

 (
𝜕2

𝜕𝑥2 𝜓0(𝑥, 𝑡) + 𝑃 (
𝜕2

𝜕𝑥2 𝜓1(𝑥, 𝑡)) +

𝑃2 (
𝜕2

𝜕𝑥2 𝜓2(𝑥, 𝑡)) + 𝑃3 (
𝜕2

𝜕𝑥2 𝜓3(𝑥, 𝑡))) +

cos (𝑥))   

(32) 

Then, we should define boundary conditions 

𝜓𝑖(𝑥, 𝑡) = 0,     𝑖 = 0, … ,3  (33) 

After substituting initial conditions into Equation (32) 

and we putting P=1 in each equation we have: 

𝜓0(𝑥, 𝑡) = 0  (34) 

𝜓1(𝑥, 𝑡) = 𝑐𝑜𝑠(𝑥) 𝑡  (35) 

𝜓2(𝑥, 𝑡) = −
1

2
cos(𝑥) 𝑡 (𝑡 +

376126389

250000000
√𝑡 − 2) (36) 

and simplifying and solving the problem, we have 
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𝜓 (𝑥, 𝑡) = cos(𝑥) 𝑡 −
1

2
cos(𝑥) 𝑡 (𝑡 +

376126389

250000000
√𝑡 − 2)  

(37) 

The time-fractional diffusion problem's approximate 

analytical solution is shown in Equation (37) and the 

series solution efficiently converges for precise solution 

ψ (x,t) = cos x ( 1 − e−t ) ask → ∞ when α = 1. Figures 7 

and 8 illustrate the effects of 't' (t=0.5 and t=1) on the 

solution of the AC equation in accordance by the initial 

condition ψ (x, 0) = 0. Figure 9 also include the three-

dimensional graphs. Figures 7 and 8 show that the curved 

nonlinearity is seen for lower values of, but that less 

nonlinear developments are seen as approaches 1 (α = 

0.25, 0.5, and 0.75). The outcomes have been contrasted 

with the precise answer that is currently known for 

integer-order = 1. Figure 9 shows three-dimensional plot 

for the changes of ψ(x,t), and Figure 10 is Abs. Error 

graph by HPM and MVIA–I [14] for example 2. 

Comparison of absolute errors of HPM, MVIA-I [14], 

and VIA-I [15] for different values of parameters x and t 

is given in Tables 1 and 2, show that the error in HPM is 

less as compared to MVIT-I and VIA-I. Moreover, we 

considered only five iterations which are less than those 

in MVIT-I [14] and VIA-I [15]. This saves computational 

time and give better result. The numerical results for AC 

equations are reported in Tables 1 and 2. To prove the 

effectiveness of the planned techniques, absolute errors  

 

 

 
Figure 7. The changes of ψ(x,t) to X in different values of α 

in t=0.5 
 

 

 
Figure 8. The changes of ψ(x,t) to X in different values of α 

in t=1 

 
Figure 9. 3D plot for the variation of ψ(x,t) 

 

 

 
Figure 10. Abs. error graph by HPM and MVIA–I [14] for 

example 2 

 

 

TABLE 2. Comparison of numerical results for different values 

of x and t for Example 2 

x t 
Abs. error in 

HPM 
Abs. error in 

MVIA – I [14] 
Abs. error in 

VIA – I [15] 

1 0.5 1.242E-10 1.671E-10 6.344E-10 

2 1.0 0.000E+00 3.563E-10 9.619E-09 

3 1.5 2.398E-10 2.683E-09 1.905E-06 

4 2.0 0.000E+00 1.871E-08 2.870E+05 

5 2.5 3.667E-10 5.510E-08 1.399E-04 

6 3.0 0.000E+00 5.522E-07 3.398E-03 

7 3.5 2.8430E-10 2.929E-06 1.406E-02 

8 4.0 0.000E+00 8.666E-07 1.141E-02 

9 4.5 5.160E-09 8.689E-06 2.528E-01 

10 5.0 2.600E-09 1.682E-05 7.193E-01 

 

 

are reported along with the results of other methods; 

MVIA – I [14], ADM [47], VIA – I [15] and LLWM [1]. 

In comparison with other techniques results, one can 

ensure that the results of HPM are more precise. It is 

cleared from figures that the proposed method can handle 

the problems accurately and will be applicable in ocean 

engineering for studying linear and nonlinear water 

waves. 
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5. CONCLUSION 
 

Oil pollution is defined as the emission of fluid 

hydrocarbon into the ocean which causes disastrous 

effects on marine life’s eco and biological environment 

and leads to fatal repercussions. Thus, it is crucial to 

precisely predict the spread range of oil spills for an early 

stage countermeasure against a disaster to preserve the 

natural shoreline environmental system. For these 

reasons, in this study, the homotopy perturbation 

approach is used to generate approximations for the 

diffusion equation occurring in oil pollution in water for 

three different fractional orders, α= 0.25, α=0.5, and 

α=0.75; and integer-order, α = 1.0; Also, several types of 

AC equations are obtained using the homotopy 

perturbation method (HPM). Additionally, it may be used 

in diffusion equations for both linear and non-linear 

analyses of marine oil contamination. The results show 

that the HPM can tackle the problems perfectly, and it 

can be deployed in diffusion equations for analyzing oil 

pollution in the sea with linear and non-linear nature. The 

absolute error diagrams show good accuracy of the 

applied technique  compare to MVIA–I [14] and prove 

that this method can be used in many scientific and 

engineering problems and provides highly accurate 

numerical results without using Adomian polynomials, 

discretization, transformation, shape parameters, 

restrictive assumptions, or linearization for nonlinear 

time-fractional differential equations. As with every 

other study, our study has had certain limitations. This 

study focused on the homotopy perturbation method 

(HPM) and was validated with the MVIA-I method.  So 

for future work, it is highly recommended to solve 

diffusion equations by VIM and AGM methods. 
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Persian Abstract 

 چکیده 
انتشار    یمدل ساز  یبرا  نهیگز  نی( معقول ترکیدارد. معادلات انتشار )پارابول  یادیز  یطیمح  ستیشود و اثرات مخرب ز  یم  یها باعث آلودگ  انوسیو اق  اهاینشت نفت در در

انتشار    یاضیمدل ر  یبرا  یو مرز  هیاول  ط یاست، به عنوان شرا  دهیرس  انوسیاق  یکه به خروج  یدهد تا آمار مربوط به مقدار نفت  یمعادلات اجازه م  نیاست. ا  ینشت و آلودگ  نیا

است که   (ACانتخاب معادلات انتشار و آلن کان )  نیشود، معقول تر  ی)فرار/موج( معادله م  یکه شامل مولفه هذلول  یی. از آنجاردیستفاده قرار گمورد ا  اهاینفت در در رییو تغ 

در زمان    ینفت  یغلظت آلودگو   (α=75/0و    α  ،5/0=α  ،75 /0=α=  25/0حل شد )  یاز مشتقات کسر   یبا درجات مختلف  نآنها دشوار است. معادلات انتشار و آلن کا  یحل عدد

. دو مثال  در آب   ینفت  یآلودگ  ان یب  یزمان برا  ی و معادله انتشار کسر(AC) کان  -آلن  ی رخطیمعادله غ  یبرا(HPM)   یبه دست آمد. روش اغتشاش هموتوپ  یو مکان مشخص

نشان داده شده    یدرجات مختلف اشتقاق کسر  ی برا  ی و مکان  یبازه زمان   کیدر    انیجر   دان یدر م  یدهد. غلظت آلودگ  یرا نشان م  یشنهادیارائه شده کاربرد و اعتبار روش پ

حاصل از   جی. نتاابدییکاهش م  یغلظت آلودگ  یرخطیرفتار غ  ک،یدرجه مشتق کسر به    شیزااست و با اف  یرخطیغ  یاست. در درجات مشتق کسر کمتر، رفتار غلظت آلودگ

 . دهدیرا کاهش م یروش کارآمد و راحت بوده و زمان محاسبات نیکه ا دهدی نشان م قیدق یهاحلبا راه سهیدر مقا یشنهادیپ  کیتکن
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