Effects of Inflation Pressure and Wall Thickness on Gripping Force of Semi-Cylindrical Shaped Soft Actuator: Numerical Investigation

Document Type : Original Article

Authors

1 Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India

2 Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India

Abstract

Soft robotics using Pneumatic Network actuators (Pneu-Net) is a developing field that has a promising future for variety of applications involving delicate operations such as biomedical assistance. The interaction between geometry and the performance of the actuator is an important topic which has been studied by many researchers in this field. However, there is a lack of investigation on the relationship between gripping capability and geometrical parameters of soft actuators. Especially, there is a need to shed more light on the effects of wall thicknesses on the gripping force developed. In the present study, a semi-cylindrical chambered PneuNet soft actuator is numerically investigated to evaluate the effects of pressure and wall thickness variations on its performance characteristics. The results revealed that increasing the restraining layer thickness (RLT) aids the bending capability of the actuator whereas increasing the chamber wall thickness reduces it. Therefore, maximum bending of the actuator is achieved at the combinations of minimum wall thickness and maximum RLT. At these geometrical configurations of maximum bending, the deformation-pressure relationships followed a sigmoidal function and tended towards linearity with increasing wall thickness and decreasing RLT. The gripping force showed an exponential increase with increasing working pressures and wall thicknesses. The maximum gripping force increased cubically with increasing wall thicknesses at their respective maximum working pressures, which was modeled using a polynomial regression model (R2=99.79%).

Keywords

Main Subjects


  1. El-Atab, N., Mishra, R.B., Al-Modaf, F., Joharji, L., Alsharif, A.A., Alamoudi, H., Diaz, M., Qaiser, N. and Hussain M.M. “Soft Actuators for Soft Robotic Applications: A Review” Advanced Intelligent Systems, Vol. 2, (2020), 2000128. doi: 10.1002/aisy.202000128
  2. Cianchetti, M., Laschi, C., Menciassi, A. and Dario, P. “Biomedical applications of soft robotics” Nature Reviews Materials, Vol. 3, (2018), 143-153. doi: 10.1038/s41578-018-0022-y
  3. Hsiao, J., Chang, J-Y. and Cheng, C.M. “Soft medical robotics: clinical and biomedical applications, challenges, and future directions” Advanced Robotics, Vol. 33, No. 21, (2019), 1099-1111. doi: 10.1080/01691864.2019.1679251
  4. Zheng, S., Park, T., Hoang, M.C., Go, G., Kim, C-S., Park, J-O., Choi, E. and Hong A. “Ascidian-Inspired Soft Robots That Can Crawl, Tumble, and Pick-and-Place Objects” IEEE Robotics and Automation Letters, Vol. 6, No. 2, (2021), 1722-1728. doi: 10.1109/LRA.2021.3059621
  5. Terrile, S., Argüelles, M. and Barrientos, A. “Comparison of Different Technologies for Soft Robotics Grippers” Sensors, Vol. 21, (2021), 3253. https://doi.org/10.3390/s21093253
  6. Wang, J., Fei, Y. and Pang, W. “Design, Modeling, and Testing of a Soft Pneumatic Glove with Segmented PneuNets Bending Actuators” IEEE/ASME Transactions on Mechatronics, Vol. 24, No. 3, (2019), 990-1001. doi: 10.1109/TMECH.2019.2911992
  7. Savkiv, V., Mykhailyshyn, R., Duchon, F., Prentkovskis, O., Maruschak, P. and Diahovchenko, I. “Analysis of Operational Characteristics of Pneumatic Device of Industrial Robot for Gripping and Control of Parameters of Objects of Manipulation.” Transbaltica XI: Transportation Science and Technology, Transbaltica 2019. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, (2020). 504-510. doi: 10.1007/978-3-030-38666-5_53
  8. Savkiv, V., Mykhailyshyn, R., Duchon, F. and Maruschak, P. “Justification of Influence of the Form of Nozzle and Active Surface of Bernoulli Gripping Devices on Its Operational Characteristics” Transbaltica XI: Transportation Science and Technology, Transbaltica 2019. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, (2020). 263-272. doi: 10.1007/978-3-030-38666-5_28
  9. Savkiv, V., Mykhailyshyn, Maruschak, P., Kyrylovych, V., Duchon, F. and Chovanec, L. “Gripping Devices of Industrial Robots for Manipulating Offset Dish Antenna Billets and Controlling Their Shape” Transport, Vol. 36, No. 1, (2021), 63-74. doi: 10.3846/transport.2021.14622
  10. Poolsawad, K., Songkram, N., Piromsopa, K. and Songkram, N. “Teachers’ Perception for Integrating Educational Robots and Use as Teaching Assistants in Thai Primary Schools” Emerging Science Journal, Vol. 4, (2020), 127-140. doi: 10.28991/esj-2021-SP1-09
  11. Iswanto, I., Ma'arif, A., Raharja, N.M., Hariadi, T.K. and Shomad, M.A. “Using a Combination of PID Control and Kalman Filter to Design of IoT-based Telepresence Self-balancing Robots during COVID-19 Pandemic” Emerging Science Journal, Vol. 4, (2020), 241-261. doi: 10.28991/esj-2021-SP1-016
  12. Rossiter, J., Walters, P. and Stoimenov, B. “Printing 3D dielectric elastomer actuators for soft robotics” In Electroactive Polymer Actuators and Devices (EAPAD) 2009, 7287, (2009). https://doi.org/10.1117/12.815746
  13. Shen, Z., Chen, F., Zhu, X., Yong, K-T. and Gu, G. “Stimuli-responsive functional materials for soft robotics” Journal of Materials Chemistry B, Vol. 8, (2020), 8972-8991. doi: 10.1039/D0TB01585G
  14. Manti, M., Hassan, T., Passetti, G. and D’Elia, N., Laschi, C., Cianchetti M. “A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping” Soft Robotics, Vol. 2, No. 3, (2015), 107-116. doi: 10.1089/soro.2015.0009
  15. Wu, S., Hu, W., Ze, Q., Sitti, M. and Zhao, R. “Multifunctional magnetic soft composites: a review” Multifunctional Materials, Vol. 3, (2020), 042003. doi: 10.1088/2399-7532/abcb0c
  16. Hughes, J., Culha, U., Giardina, F., Guenther, F., Rosendo, A. and Iida, F. “Soft Manipulators and Grippers: A Review” Frontiers in Robotics and AI, Vol. 3, (2016), 69. doi: 10.3389/frobt.2016.00069
  17. Bira, N., Dhagat, P. and Davidson J.R. “A Review of Magnetic Elastomers and Their Role in Soft Robotics” Frontiers in Robotics and AI, Vol. 7, (2020), 588391. doi: 10.3389/frobt.2020.588391
  18. Mosadegh B., Polygerinos, P., Keplinger, C., Wannstedt, S., Shepherd, R.F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C.J. and Whitesides G.M. “Pneumatic Networks for Soft Robotics that Actuate Rapidly” Advanced Functional Materials, Vol. 24, (2014), 2163-2170; doi: 10.1002/adfm.201303288
  19. Yan J., Zhang, X., Xu, B. and Zhao J. “Pneumatic Networks for Soft Robotics that Actuate Rapidly.” Soft Robotics, Vol. 5, No. 5, (2017), 2163-2170. doi: 10.1089/soro.2017.0040
  20. Zhou, W. and Li, Y. “Modeling and Analysis of Soft Pneumatic Actuator with Symmetrical Chambers Used for Bionic robotic Fish.” Soft Robotics, Vol. 7, No. 2, (2018), 168-178. DOI: 10.1089/soro.2018.0087
  21. Liu, X., Zhao, Y., Geng, D., Chen, S., Tan, X. and Cao C. “Soft Humanoid Hands with Large Grasping Force Enabled by Flexible Hybrid Pneumatic Actuators.” Soft Robotics, Vol. 8, No. 2, (2020), 175-185. doi: 10.1089/soro.2020.0001
  22. Chandler, J.H., Chauhan, M., Garbin, N., Obstein, K. and Valdastri, P. “Parallel Helix Actuators for Soft Robotic Applications.” Frontiers in Robotics and AI, Vol. 7, (2020), 119. doi: 10.3389/frobt.2020.00119
  23. Zhang J., Wang, T., Wang J., Wang, M.Y., Li B., Zhang, X.J. and Hong, J. “Geometric Confined Pneumatic Soft–Rigid Hybrid Actuators” Soft Robotics, Vol. 7, No. 5, (2018), 574-582. doi: 10.1089/soro.2018.0157
  24. Honarpardaz, M. “A methodology for design and simulation of soft grippers” Simulation, Vol. 97, No. 11, (2021), 779-791. doi: 10.1177/00375497211018743
  25. Jing, X., Chen, S., Zhang, C. and Xie, F. “Increasing Bending Performance of Soft Actuator by Silicon Rubbers of Multiple Hardness” Machines, Vol. 10, (2022), 272. doi: 10.3390/machines10040272
  26. Zhou, X., Majidi, C. and O’Reilly, O.M. “Soft hands: An analysis of some gripping mechanisms in soft robot design” International Journal of Solids and Structures, Vol. 64-65, (2015), 155-165. doi: 10.1016/j.ijsolstr.2015.03.021
  27. Luo, M., Tao, W., Chen, F., Khuu, T.K., Ozel, S. and Onal, C.D. “Design improvements and dynamic characterization on fluidic elastomer actuators for a soft robotic snake” 2014 IEEE International Conference on Technologies for Practical Robot Applications, (2014), 1-16. doi: 10.1109/TePRA.2014.6869154
  28. Tan, N., Gu, X. and Ren, H. “Design, characterization and applications of a novel soft actuator driven by flexible shafts” Mechanism and Machine Theory, Vol. 122, (2018), 197-218. doi: 10.1016/j.mechmachtheory.2017.12.021
  29. Pranav, V.K., Prakash, A., Rajendran, A. and Sreedharan, P. “Design optimization and analysis of external corrugation and geometry of asymmetrical bellow flexible pneumatic actuator” IOP Conf. Series: Materials Science and Engineering, Vol. 1132, (2021), 012011. doi: 10.1088/1757-899X/1132/1/012011
  30. Wang, Y., Kokubu, S., Zhou, Z., Guo, X., Hsueh, Y.H. and Yu, W. “Designing soft pneumatic actuators for thumb movements” IEEE Robotics and Automation Letters, Vol. 6, No. 4, (2021), 8450-8457. doi: 10.1109/LRA.2021.3105799
  31. Marckmann, G. and Verron E. “Comparison of Hyperelastic Models for Rubber-Like Materials” Rubber Chemistry and Technology, Vol. 79, No. 5, (2006), 835-858. doi: 10.5254/1.3547969
  32. Joshi, A., Kulkarni, A. and Tadesse, Y. “FludoJelly: Experimental Study on Jellyfish-Like Soft Robot Enabled by Soft Pneumatic Composite (SPC)” Robotics, Vol. 8, No. 4, (2019), 56. doi: 10.3390/robotics8030056
  33. Yeoh, O.H. “Some Forms of the Strain Energy Function for Rubber” Rubber Chemistry and Technology, Vol. 66, (1993), 754-771. doi: 10.5254/1.3538343
  34. Xavier, M.S., Fleming, A.J. Yong, Y.K. “Finite Element Modeling of Soft Fluidic Actuators: Overview and Recent Developments” Advanced Intelligent Systems, Vol. 3, (2021), 2000187. doi: 10.1002/aisy.202000187
  35. Rackl, M. “Material testing and hyperelastic material model curve fitting for Ogden, Polynomial and Yeoh models” In ScilabTEC 2015, Paris, France, (2015) http://dx.doi.org/10.13140/RG.2.2.29552.25600/1
  36. Wang, Z., Or, K. and Hirai S. “A dual-mode soft gripper for food packaging” Robotics and Autonomous Systems, Vol. 125, (2020), 103427. doi: 10.1016/j.robot.2020.103427
  37. Wang, Z., Kanegae, R. and Hirai S. “Circular Shell Gripper for Handling Food Products” Soft Robotics, Vol. 8, No. 5, (2020), 542-554. doi: 10.1089/soro.2019.0140
  38. Cacucciolo, V., Shintake, J. and Shea H. “Delicate yet strong: characterizing the electro-adhesion lifting force with a soft gripper” In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) COEX, Seoul, Korea, April 14-18, (2019), 108-113. https://doi.org/10.1109/ROBOSOFT.2019.8722706
  39. Li H., Yao, J., Zhou, P., Chen, X., Xu, Y. and Zhao Y. “High-Load Soft Grippers Based on Bionic Winding Effect”, Soft Robotics, Vol. 6, No. 2, (2018), 276-288. doi: 10.1089/soro.2018.0024
  40. Reddy, A.S., Chembuly, V.V.M.J.S. and Rao, V.V.S.K. “Collision-free Inverse Kinematics of Redundant Manipulator for Agricultural Applications through Optimization Techniques” International Journal of Engineering, Transactions A: Basics, 35, No. 7, (2022), 1343-1354. doi: 10.5829/ije.2022.35.07a.13
  41. Ishii, K., Matsuo, T., Takemura, Y., Sonoda, T., Nishida, Y., Yasukawa, S. and Fujinaga, T. “Tomato-Harvesting-Robot Competition Towards Smart Agriculture” The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), (2021). https://doi.org/10.5954/ICAROB.2021.PS-1
  42. Shahzad, K. and Khan, M.B. “Control of a Robotic Wheel-Chair Prototype for People with Walking Disabilities” International Journal of Engineering, Transactions B: Applications, Vol. 31, No. 5, (2018), 693-698. doi: 10.5829/ije.2018.31.05b.02
  43. Sangdani, M.H. and Tavakolpour-Saleh, A.R. “Particle Swarm Optimization Based Parameter Identification Applied to a Target Tracker Robot with Flexible Joint” International Journal of Engineering, Transactions B: Aspects, 33, No. 9, (2020), 1797-1802. doi: 10.5829/ije.2020.33.09c.14
  44. Saadat, M. and Garmsiri, N. “A New Intelligent Approach to Patient-cooperative Control of Rehabilitation Robots” International Journal of Engineering, Transactions B: Aspects, Vol. 27, No. 3, (2014), 467-474. doi: 10.5829/idosi.ije.2014.27.03c.15