Numerical Investigations of Damage Behaviour at the Weld/Base Metal Interface

Document Type : Original Article

Authors

1 LSCMI, University of Sciences and Technology of Oran, Mechanical Department, Oran, Algeria

2 Univ. Artois, IMT Lille Douai, Junia, Univ. Lille, ULR 4515, Laboratoire de Génie Civil et géo Environnement (LGCgE), Béthune, France

Abstract

In the present paper, the numerical modelling to predict the interface damage of weld defect in a steel pipeline was studied. This work focused on determination of the maximum operating pressure and the characterisation of mechanical behaviour at a weld-base metal interface. The operating pressure can fluctuate leading to the phenomenon of fatigue and consequently to the failure of pipeline. Experimental investigations were carried out using non-destructive test (NDT) in order to locate and determine size of defects. A bilinear interface decohesion model is used to simulate the damage behaviour considering a stress-relative displacement laws. Numerical simulations based on the finite element method were used to study the influence of size defects and young's moduli ratio on the operating pressure as well as interfacial damage between the weld and base metal. The obtained results showed that the interface damage depending on shape and material properties of defects has an impact on pipeline safety and integrity.

Keywords

Main Subjects


  1. Adjogbe, S., Okoronkwo, C., Oguoma, O., Igbokwe, J. and Okwu, M., "Investigation of the effect of hydrostatic pressure testing on the microstructure of carbon steel pipeline material", AASCIT Journal of Materials, Vol. 4, No. 3, (2018), 58-65.
  2. Matta, L., "Collective effects of leakage, temperature changes, and entrapped air during hydrostatic testing", in Pipeline Pigging and Integrity Management Conference., (2017).
  3. Bulatovic, S., Aleksic, V. and Milovic, L., "Failure of steam line causes determined by ndt testing in power and heating plants", Frattura ed Integrità Strutturale, Vol. 7, No. 26, (2013), 41-48. doi: 10.3221/IGF-ESIS.26.05.
  4. Khan, M.I., "Welding science and technology, New Age International, (2007).
  5. Eshtayeh, M., Hijazi, A. and Hrairi, M., "Nondestructive evaluation of welded joints using digital image correlation", Journal of Nondestructive Evaluation, Vol. 34, No. 4, (2015), 1-12. doi: 10.1007/s10921-015-0310-z.
  6. Deivanai, S. and Soni, M., "Non destructive testing and analysis of friction stir welded aluminium alloy 2024 pipes", Materials Today: Proceedings, Vol. 56, (2022), 3721-3726. https://doi.org/10.1016/j.matpr.2021.12.470
  7. Dalla, V.K., "Experimental investigation of fracture behavior and microstructure of api 5lx60 line pipe", Materials Today: Proceedings, Vol. 56, (2022), 595-608. https://doi.org/10.1016/j.matpr.2021.12.149
  8. Adjogbe, A., Okoronkwo, C., Igbokwe, J., Ezurike, O. and Oguoma, O., "The impact of hydrostatic pressure test on the interstitial strength of mild-steel pipeline material", Indian Journal of Science and Technology, Vol. 12, (2019), 43. doi: 10.17485/ijst/2019/v12i43/144730.
  9. Balamuralikrishnan, R., Krishnamurthy, B. and AlHarthy, M.N., "Destructive and non-destructive testing methods for condition monitoring of concrete elements", Journal of Multidisciplinary Engineering Science and Technology, Vol. 4, No. 6, (2017).
  10. Foorginejad, A., Taheri, M. and Mollayi, N., "A non-destructive ultrasonic testing approach for measurement and modelling of tensile strength in rubbers", International Journal of Engineering, Transactions C: Aspects, Vol. 33, No. 12, (2020), 2549-2555. doi: 10.5829/ije.2020.33.12c.16.
  11. Bilat, A.-S., "Estimation du risque de rupture fragile de soudures de pipelines en aciers à haut grade: Caractérisation et modélisation", Paris, ENMP, (2007),
  12. Allouti, M., "Etude de la nocivité de défauts dans les canalisations de transport de gaz tels les éraflures, les enfoncements ou leurs combinaisons", Université Paul Verlaine-Metz, (2010),
  13. Ramière, I., Masson, R., Michel, B. and Bernaud, S., "Un schéma de calcul multi-échelles de type éléments finis au carré pour la simulation de combustibles nucléaires hétérogènes", in 13e colloque national en calcul des structures., (2017).
  14. Maruschak, P., Prentkovskis, O. and Bishchak, R., "Defectiveness of external and internal surfaces of the main oil and gas pipelines after long-term operation", Journal of Civil Engineering and Management, Vol. 22, No. 2, (2016), 279-286. doi: 10.3846/13923730.2015.110067.
  15. Maruschak, P., Panin, S., Stachowicz, F., Danyliuk, I., Vlasov, I. and Bishchak, R., "Structural levels of fatigue failure and damage estimation in 17mn1si steel on the basis of a multilevel approach of physical mesomechanics", Acta Mechanica, Vol. 227, No. 1, (2016), 151-157. https://doi.org/10.1007/s00707-015-1420-5
  16. Czarnota, C., "Endommagement ductile des matériaux métalliques sous chargement dynamique-application à l'écaillage", Université de Metz, (2006),
  17. Regad, A., Benzerga, D., Berrekia, H., Haddi, A. and Chekhar, N., "Repair and rehabilitation of corroded hdpe100 pipe using a new hybrid composite", Frattura ed Integrità Strutturale, Vol. 15, No. 56, (2021), 115-122. doi: 10.3221/IGF-ESIS.56.09
  18. Berrekia, H., Benzerga, D. and Haddi, A., "Behavior and damage of a pipe in the presence of a corrosion defect depth of 10% of its thickness and highlighting the weaknesses of the asme/b31g method", Frattura ed Integrità Strutturale, Vol. 13, No. 49, (2019), 643-654. doi: 10.3221/IGF-ESIS.49.58
  19. Gupta, M., Shukla, S.K., Sharma, V.K. and Kumar, H., "Effect of tig and mig welding on microstructural and mechanical properties: Astate of art", International Journal of Applied Engineering Research, Vol. 13, No. 9, (2018), 83-90.
  20. Chaht, F.L., Mokhtari, M. and Benzaama, H., "Using a hashin criteria to predict the damage of composite notched plate under traction and torsion behavior", Frattura ed Integrità Strutturale, Vol. 13, No. 50, (2019), 331-341. doi: 10.3221/IGF-ESIS.50.28.
  21. Benzerga, D., Haddi, A., Seddak, A. and Lavie, A., "A mixed-mode damage model for delamination growth applied to a new woven composite", Computational materials science, Vol. 41, No. 4, (2008), 515-521. doi: 10.1016/j.commatsci.2007.05.022.
  22. Orangi, R., Mansourian, H., Bina, K. and Rabbanifar, S., "Vulnerability assessment of steel structures in district 12 of mashhad city and prioritizing the welding defects using the analytic hierarchy process", International Journal of Engineering, Vol. 31, No. 6, (2018), 877-885. doi: 10.5829/ije.2018.31.06c.03.
  23. Li, S., Zhang, L., Sun, Q. and Tengfei, M., "Numerical simulation method study of rock fracture based on strain energy density theory", Frattura ed Integrità Strutturale, Vol. 13, No. 47, (2019), 1-16. doi: 10.3221/IGF-ESIS.47.01.
  24. Wagner, W. and Gruttmann, F., "Delamination growth analysis of composite panels", Revue Européenne des Eléments, Vol. 13, No. 8, (2004), 915-929. doi: 10.3166/reef.13.915-929.
  25. Wu, Q. and Wang, Y., "Experimental detection of composite delamination damage based on ultrasonic infrared thermography", International Journal of Engineering, Transactions B: Applications Vol. 27, No. 11, (2014), 1723-1730. doi: 10.5829/idosi.ije.2014.27.11b.10.
  26. Sprenger, W., Gruttmann, F. and Wagner, W., "Delamination growth analysis in laminated structures with continuum-based 3d-shell elements and a viscoplastic softening model", Computer Methods in Applied Mechanics and Engineering, Vol. 185, No. 2-4, (2000), 123-139. doi: 10.1016/S0045-7825(99)00255-8.
  27. Saboori, B. and Moshrefzadeh-sani, H., "A continuum model for stone-wales defected carbon nanotubes", International Journal of Engineering, Vol. 28, No. 3, (2015), 433-439. doi: 10.5829/idosi.ije.2015.28.03c.13.
  28. Gobbi, G., Colombo, C. and Vergani, L., "A cohesive zone model to simulate the hydrogen embrittlement effect on a high-strength steel", Frattura ed Integrità Strutturale, Vol. 10, No. 35, (2016), 260-270. doi: 10.3221/IGF-ESIS.35.30.
  29. Shafeek, H., Gadelmawla, E., Abdel-Shafy, A. and Elewa, I., "Assessment of welding defects for gas pipeline radiographs using computer vision", NDT & e International, Vol. 37, No. 4, (2004), 291-299. doi: 10.1016/j.ndteint.2003.10.003.
  30. Benzerga, D., "Burst pressure estimation of corroded pipeline using damage mechanics", in Conference on Multiphysics Modelling and Simulation for Systems Design, Springer., (2014), 481-488.
  31. Chausov, M., Maruschak, P., Pylypenko, A. and Sorochak, A., Effect of impact-oscillatory loading on the variation of mechanical properties and crack resistance of pipe steel, in Degradation assessment and failure prevention of pipeline systems. 2021, Springer.189-201.